Le paragraphe 4 et la généralisation concernent les élèves suivant la spécialité.

Adaptation de l'exercice 95 page 91 du livre HYPERBOLE spécialité TS (édition 2002).

1 Le problème

On dispose de pièces de $a \in$ et de $b \in$ (où a et b sont des entiers premiers entre eux). On aimerait savoir quelles sont les sommes payables à l'aide de ce type de pièces.

2 Conjecture sur tableur

On pose a = 7 et b = 5.

On dispose d'un nombre illimité de pièces de $a \in \text{et de } b \in \text{.}$

Comme $2 \times b + 3 \times a = 31$, on peut par exemple payer un article de $31 \in$.

On ne se préoccupe dans la suite que de sommes entières. On suppose qu'il ne peut y avoir de rendu de monnaie.

- 1. Construire une feuille de tableur qui permette de savoir pour les entiers de 1 à 500 quelles sommes on peut payer (et comment) et quelles sommes on ne peut pas payer.
- 2. Quelle semble être la plus grande somme qu'on ne peut pas payer?

3 Démonstration

Démontrer votre conjecture sur la valeur de la plus grande somme non payable.

4 Amélioration d'une feuille de calcul

Pour chercher à résoudre le problème, on a défini une feuille de calcul comme suit :

	A	В	С	D	E	F	G	Н	I	J	K	L	M	
	a=		7											
2	b=		5											
3														
4														
5														
6				s de b euro										
7			0 1	1 2	3	4	- 5	6	7	8	9	10	11	
8	somme à payer													
9		1												
10		2												
11		3												
12		4	Chaque	cellule de	ce « table	au » affi	che ur	n entier x (s	'il existe) tel q	ue S=ax+by				
13		5	où S es	t la somme	à payer (colonne	A) et :	y le nombre	e de pièces de	b euros utilise	ées (ligne 7).			
14		6	Si un te	entier x n'e	existe pas	, la cellu	le n'af	fiche rien.						
15		7												
16		8												
17		9												
18		10												
19		11												
20		12					Щ							
21		13												
22		14												
23		15												
24		16		1										
25		17												
26		18												
27		19												
28	2	20		-										
29	2	21		-										
30	2	22												
31	2	23 24					12							
32	2	24												

Expliquer pourquoi on aurait pu limiter les colonnes « nombre de pièces de $b \in \mathbb{R}$ » aux colonnes B, C, D, E, F, G, H.

Corrigé.

1 Compétences TICE

- 1. Savoir gérer des références relatives et absolues : absolue sur ligne ou colonne seulement, absolue sur ligne et colonne.
- 2. Fonction SI().
- 3. Éventuellement (pour la lisibilité de la feuille) formatage conditionnel de cellules.

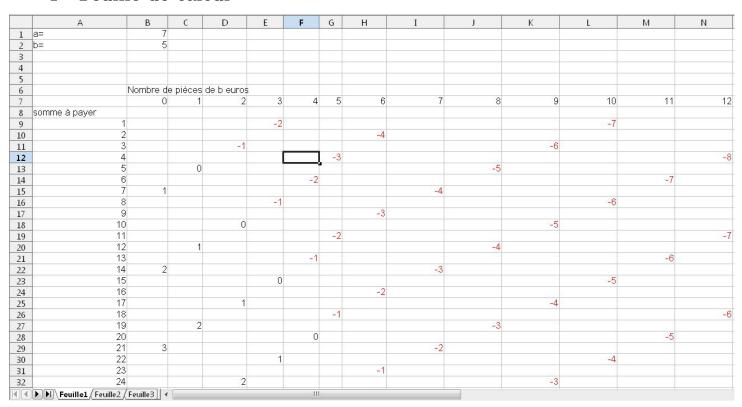
2 Apport TICE

- 1. Facilite la compréhension, l'appropriation du problème.
- 2. Permet une conjecture sans cela relativement difficile à émettre.

3 Prérequis mathématiques

- 1. Principe de la démonstration par récurrence.
- 2. Notion de division euclidienne (question 4).
- 3. Théorème de Gauss et Bezout pour le prolongement (généralisation).

4 Feuille de calcul



	A	В	С	D
1	a=	7		
2	b=	5		
3				
4				
5				
6		Nombre de pièces de b euros		
7			=B7+1	=C7+1
8	somme à payer			
9		1 =SI((\$A9-\$B\$2*B\$7)/\$B\$1=ENT((\$A9-\$B\$2*B\$7)/\$B\$1);(\$A9-\$B\$2*B\$7)/\$B\$1;"")	=SI((\$A	=SI((\$A9 →
10		2 =SI((\$A10-\$B\$2*B\$7)/\$B\$1=ENT((\$A10-\$B\$2*B\$7)/\$B\$1);(\$A10-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A10•:
11		3 =SI((\$A11-\$B\$2*B\$7)/\$B\$1=ENT((\$A11-\$B\$2*B\$7)/\$B\$1);(\$A11-\$B\$2*B\$7)/\$B\$1;"")	=SI((\$A	###
12		4 =SI((\$A12-\$B\$2*B\$7)/\$B\$1=ENT((\$A12-\$B\$2*B\$7)/\$B\$1);(\$A12-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A1) :
13		5=SI((\$A13-\$B\$2*B\$7)/\$B\$1=ENT((\$A13-\$B\$2*B\$7)/\$B\$1);(\$A13-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A1) :
14		S=SI((\$A14-\$B\$2*B\$7)/\$B\$1=ENT((\$A14-\$B\$2*B\$7)/\$B\$1);(\$A14-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A14):
15		7 =SI((\$A15-\$B\$2*B\$7)/\$B\$1=ENT((\$A15-\$B\$2*B\$7)/\$B\$1);(\$A15-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A1 5):
16		SESI((\$A16-\$B\$2*B\$7)/\$B\$1=ENT((\$A16-\$B\$2*B\$7)/\$B\$1);(\$A16-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A10
17		9=SI((\$A17-\$B\$2*B\$7)/\$B\$1=ENT((\$A17-\$B\$2*B\$7)/\$B\$1);(\$A17-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A1 > :
18		=SI((\$A18-\$B\$2*B\$7)/\$B\$1=ENT((\$A18-\$B\$2*B\$7)/\$B\$1);(\$A18-\$B\$2*B\$7)/\$B\$1;"")	=SI((\$A	
19		1=SI((\$A19-\$B\$2*B\$7)/\$B\$1=ENT((\$A19-\$B\$2*B\$7)/\$B\$1);(\$A19-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A19
20		2 =SI((\$A20-\$B\$2*B\$7)/\$B\$1=ENT((\$A20-\$B\$2*B\$7)/\$B\$1);(\$A20-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A20•
21		3 =SI((\$A21-\$B\$2*B\$7)/\$B\$1=ENT((\$A21-\$B\$2*B\$7)/\$B\$1);(\$A21-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A2⊅:
22		4 =SI((\$A22-\$B\$2*B\$7)/\$B\$1=ENT((\$A22-\$B\$2*B\$7)/\$B\$1);(\$A22-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A2≯:
23		5=SI((\$A23-\$B\$2*B\$7)/\$B\$1=ENT((\$A23-\$B\$2*B\$7)/\$B\$1);(\$A23-\$B\$2*B\$7)/\$B\$1;"")	A.A.A.	=SI((\$A2)
24		S=SI((\$A24-\$B\$2*B\$7)/\$B\$1=ENT((\$A24-\$B\$2*B\$7)/\$B\$1);(\$A24-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A24
25		7 =SI((\$A25-\$B\$2*B\$7)/\$B\$1=ENT((\$A25-\$B\$2*B\$7)/\$B\$1);(\$A25-\$B\$2*B\$7)/\$B\$1;"")	=SI((\$A	
26		SESI((\$A26-\$B\$2*B\$7)/\$B\$1=ENT((\$A26-\$B\$2*B\$7)/\$B\$1);(\$A26-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A20
27		9=SI((\$A27-\$B\$2*B\$7)/\$B\$1=ENT((\$A27-\$B\$2*B\$7)/\$B\$1);(\$A27-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A2≯:
28		=SI((\$A28-\$B\$2*B\$7)/\$B\$1=ENT((\$A28-\$B\$2*B\$7)/\$B\$1);(\$A28-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A2&
29		1 =SI((\$A29-\$B\$2*B\$7)/\$B\$1=ENT((\$A29-\$B\$2*B\$7)/\$B\$1);(\$A29-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A29:
30		2=SI((\$A30-\$B\$2*B\$7)/\$B\$1=ENT((\$A30-\$B\$2*B\$7)/\$B\$1);(\$A30-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A30
31		3 =SI((\$A31-\$B\$2*B\$7)/\$B\$1=ENT((\$A31-\$B\$2*B\$7)/\$B\$1);(\$A31-\$B\$2*B\$7)/\$B\$1;"")		=SI((\$A3⊅:
32		4 =SI((\$A32-\$B\$2*B\$7)/\$B\$1=ENT((\$A32-\$B\$2*B\$7)/\$B\$1);(\$A32-\$B\$2*B\$7)/\$B\$1;"")	=SI((\$A	###
	Feuille1 / Feuille2	Feuille3 4		

5 23 non payable.

On conjecture que M=23.

Soient x et y entiers positifs. On a $7x + 5y \ge 25$ pour $y \ge 5$. Donc si la somme 23 est payable c'est avec moins de 5 pièces de $b \in \mathbb{C}$. La feuille de calcul montre donc que cette somme n'est pas payable.

	A	В	C	D	E	F	G	Н	I	J
1	a=	7								
2	b=	5								
3										
4										
5									2	
6		Nombre de pièces de b euros								
7		0	1	2	3	4	5	6	7	8
8	somme à payer									
31		23						-1	1	

6 À partir de la somme 24, on peut tout payer

Si l'on peut payer la somme S par S = 7x + 5y alors on peut payer la somme S + 7 par 7(x + 1) + 5y. Comme la feuille de calcul montre que les sept sommes consécutives de 24 à 30 sont payables, on montre ainsi par récurrence que toutes les sommes au-delà de 24 sont payables.

jm mény $R\'{e}currence$

7 Réduction du nombre de colonnes de calcul

Supposons qu'une somme S soit payable, c'est à dire qu'il existe un couple d'entiers positifs (x; y) tel que S = 7x + 5y. Divisons y par 7: y = 7q + r avec $q \ge 0$ et $0 \le r \le 6$.

Alors S = 7(x + 5q) + 5r. Donc la somme S est payable avec un nombre de pièces de $b \in d$ 'au plus 6.

On pouvait donc dans la feuille de calcul présentée réduire le nombre de colonnes aux colonnes 0;1;2;3;4;5;6.

8 Généralisation

8.1 Généralisation

Avec des pièces de $a \in \text{et de } b \in \text{(où } a \text{ et } b \text{ sont des entiers naturels premiers entre eux)}$, faire une conjecture sur la valeur de la plus grande somme non payable.

8.2 Réduction du problème

- 1. Comme a et b sont premiers entre eux, il existe u et v entiers tels que au + bv = 1 (Bezout). Pour un entier S nous avons alors a(Su) + b(Sv) = S.
- 2. Soit S > 0 un entier, S peut s'écrire sous la forme S = ax + by avec x et y entiers (d'après ce qui précède).

Divisons y par a: y = aq + r avec $0 \le r \le a - 1$.

On a alors : S = a(x + bq) + br

Ainsi tout entier > 0 peut s'écrire comme une combinaison linéaire de a et b avec un coefficient de b compris entre 0 et a-1.

- 3. Si un entier S > 0 peut s'écrire sous la forme S = ax + by avec x et y entiers positifs alors S peut s'écrire ainsi avec de plus $0 \le y \le a 1$ (en effet y = aq + r avec $q \ge 0$ et $0 \le r \le a 1$ et S = a(x + bq) + br).
- 4. On se limite donc au problème : « Quels sont les entiers strictement positifs S pour lesquels il existe un couple d'entiers (x;y) positifs avec $y \le a-1$ tel que S=ax+by? »

8.3 Unicité de la décomposition avec $0 \le y \le a-1$

On observe sur la feuille de tableur un seul entier par ligne correspondant aux colonnes 0; 1; 2; ...; a-1. Cela suggère la propriété suivante :

Pour tout entier S, il existe un unique couple (x;y) tel que $\begin{cases} S=ax+by\\ 0\leqslant y\leqslant a-1 \end{cases}$

Démonstration.

Soient (x;y) et (u;v) deux couples d'entiers tels que $0 \le y \le a-1$, $0 \le v \le a-1$ et ax+by=au+bv.

On a en particulier $by \equiv bv \pmod{a}$.

Or a est premier avec b, donc (Gauss) $y \equiv v \pmod{a}$.

On a ainsi $y \equiv v \pmod{a}$ avec $0 \leqslant y \leqslant a - 1$ et $0 \leqslant v \leqslant a - 1$, donc y = v.

On en déduit aisément x = u. D'où l'unicité voulue.

8.4 x < 0

Dans une combinaison ax + by où $0 \le y \le a - 1$, que peut-on dire des cas x < 0?

Si x < 0, c'est à dire si $x \le -1$, on a $ax + by \le -a + by \le -a + b(a - 1)$.

Ainsi si ax + by > ab - a - b avec $0 \le y \le a - 1$, on a nécessairement $x \ge 0$.

Ce qui montre que tout entier S > ab - a - b est une somme payable avec des pièces de $a \in a$ et des pièces de $b \in a$.

8.5 ab - a - b non payable

On a :

$$ab - a - b = -a + b(a - 1)$$

Or l'écriture de ab-a-b sous la forme ax+by où $0 \le y \le a-1$ est unique (cf ci-dessus). Donc ab-a-b est non payable avec $0 \le y \le a-1$ et l'on a vu que cela impliquait que cette somme est non payable.

8.6 Réponse

La plus grande somme non payable est ab - a - b. En d'autres termes, la plus petite somme à partir de laquelle on peut toujours payer est (a-1)(b-1).