3.1. Remarque

Nous verrons dans le théorème qui suit que lorsque l'on écrit les décompositions de Dunford de deux matrices, A = D + N et A' = D' + N', alors, A est semblable à A' implique que D semblable à D' et N à N'.

Mais la réciproque est fausse comme le prouve le contre-exemple suivant. Les matrices

ne sont pas semblables, car elles n'ont pas le même polynôme minimal $(\mu = X(X-1)^2$ pour la première, et $\mu' = X^2(X-1)$ pour la seconde).

Il faut donc avoir des hypothèses un peu plus fines, non pas sur la décomposition de Dunford dans sa globalité, mais localement, c'est-à-dire pour chaque sous-espace caractéristique. Dans le théorème qui suit, on note n_{ω} l'endomorphisme induit par la composante nilpotente n de l'endomorphisme u au sous-espace caractéristique associé à la valeur propre ω .

3.2. Théorème. Soit u = d + n et u' = d' + n' les décompositions de Dunford de deux endomorphismes complexes de même polynôme caractéristique χ .

Si u est semblable à u', alors, pour toute valeur propre ω de u (donc de u'), le tableau de Young $Y(n_{\omega})$ est égal au tableau de Young $Y(n'_{\omega})$. En particulier, on a bien que d est semblable à d' et n est semblable à n'.

Réciproquement, si pour toute racine ω de χ , $Y(n_{\omega}) = Y(n'_{\omega})$, alors, u est semblable à u'.

Démonstration.

On décompose χ en $\chi = \prod_{\omega} (X - \omega)^{k_{\omega}}$.

Supposons les endomorphismes u et u' semblables, et soit g inversible tel que $u' = gug^{-1}$. Il vient $d' + n' = gdg^{-1} + gng^{-1}$. On vérifie que le membre de droite est également une décomposition de Dunford (une diagonalisable plus une nilpotente qui commutent). L'unicité de la décomposition de Dunford implique que d et d' sont semblables ainsi que n et n'.

L'implication voulue est un raffinement de ce résultat. Soit ω , avec la multiplicité k_{ω} , dans le spectre de u (et donc de celui de u'). Alors, par le principe de conjugaison, voir principe I-A.1.26, l'automorphisme g envoie le sousespace caractéristique $\operatorname{Ker}(u-\omega\operatorname{Id})^{k_{\omega}}$ de u sur le sous-espace caractéristique $\operatorname{Ker}(u'-\omega\operatorname{Id})^{k_{\omega}}$. L'endomorphisme u_{ω} induit par u à $\operatorname{Ker}(u-\omega\operatorname{Id})^{k_{\omega}}$ et l'endomorphisme u'_{ω} induit par u' à $\operatorname{Ker}(u'-\omega\operatorname{Id})^{k_{\omega}}$ donnent alors un

diagramme commutatif:

$$\operatorname{Ker}(u - \omega \operatorname{Id})^{k_{\omega}} \xrightarrow{u_{\omega}} \operatorname{Ker}(u - \omega \operatorname{Id})^{k_{\omega}}$$

$$\downarrow g \qquad \qquad \downarrow g$$

$$\operatorname{Ker}(u' - \omega \operatorname{Id})^{k_{\omega}} \xrightarrow{u'_{\omega}} \operatorname{Ker}(u' - \omega \operatorname{Id})^{k_{\omega}}$$

On a donc $u'_{\omega} = gu_{\omega}g^{-1}$ et comme, par construction de la décomposition de Dunford, voir théorème III-A.3, $u_{\omega} = \omega \operatorname{Id} + n_{\omega}$, $u'_{\omega} = \omega \operatorname{Id} + n'_{\omega}$ sont les décompositions de Dunford respectives de u_{ω} et de u'_{ω} , il vient donc $n'_{\omega} = gn_{\omega}g^{-1}$, et donc, n'_{ω} et n_{ω} ont même dimensions de noyaux emboîtés. Cela prouve l'implication.

Passons à la réciproque. Soit $\nu_1 \geqslant \cdots \geqslant \nu_t$ le nombre de cases des colonnes du tableau de Young $Y(n_\omega)$. Alors, il existe une base de $\operatorname{Ker}(u-\omega\operatorname{Id})^{n_\omega}$ dans laquelle n_ω s'écrit matriciellement $\operatorname{diag}(J_{\nu_1},\ldots,J_{\nu_t})$, et donc u_ω s'écrit matriciellement $\omega\operatorname{I}_{k_\omega} + \operatorname{diag}(J_{\nu_1},\ldots,J_{\nu_t})$. Il en est de même pour u'_ω , puisque u_ω et u'_ω ont même tableau de Young associé. Comme cela est vrai pour toute valeur propre ω , u et u' ont des matrices communes dans des bases différentes. Ainsi, u et u' sont semblables.

3.3. Exemple. Dans la remarque III-3.1, les matrices ne sont pas semblables, car pour la première on a

et pour la seconde

3.4. Exercice (Stabilisateurs pour la conjugaison)

Soit A la matrice de l'endomorphisme u dans une base fixée. Montrer qu'avec les hypothèses du théorème, le stabilisateur de A pour l'action de conjugaison de $GL_n(\mathbb{C})$ (donc, le commutant de A, en fait) est isomorphe au produit direct $\prod_{\omega \in \operatorname{Spec}(u)} G_{Y(n_{\omega})}$, où $G_{Y(n_{\omega})}$ est le stabilisateur de n_{ω} décrit dans la proposition III-2.8.3.

Comme les projecteurs spectraux sont polynomiaux en u, on obtient qu'un élément du stabilisateur laisse fixe les sous-espaces caractéristiques. Il reste à stabiliser, pour la conjugaison, $\omega I + n_{\omega}$, et ce, pour tout ω . Mais cela équivaut à stabiliser n_{ω} . On utilise alors la proposition III-2.8.3. Enfin, le produit est direct car les matrices de $G_{Y(n_{\omega})}$ sont des matrices diagonales par blocs pour des blocs distincts.