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Motivation

Spectral theory of Hankel operators : a key tool in the study
of some non dispersive Hamiltonian system :

the cubic Szegő equation.
A complete integrable system which admits two Lax pairs
related to Hankel operators.
Solve a double inverse spectral problem for compact
Hankel operators.
Apply it to obtain qualitative results on the dynamics of the
cubic Szegő equation.
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PART I : CLASSICAL HANKEL OPERATORS (HANKEL MATRICES).
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Hankel operators in the real domain

A Hankel operator is an operator on `2R(Z+) of the form

(Γc(x))n =
∞∑

k=0

cn+kxk .

is selfadjoint and satisfies

ΓcΣ = Σ∗Γc = ΓΣ∗c

where Σ is the shift operator,

Σ : (x0, x1, · · · ) 7→ (0, x0, x1, · · · )

Nehari, 1957 : Γc is bounded iff

∃f ∈ L∞(T), ∀n ≥ 0, cn = f̂ (n) ,

or iff uc(eix ) :=
∞∑

n=0

cn einx ∈ BMO+ (C. Fefferman, 1971).
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The compact case

Hartman, 1958 : Γc is compact iff

∃f ∈ C(T), ∀n ≥ 0, cn = f̂ (n) ,

or iff uc(eix ) =
∞∑

n=0

cn einx ∈ VMO+ .

In this case, Γc is compact and self-adjoint, hence
∃ a sequence (λj)j≥1 , λj ∈ R , λj → 0, with

|λ1| ≥ |λ2| ≥ . . .

such that the eigenvalues of Γc are the λj ’s, repeated according
to multiplicity, and possibly 0.
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The Megretski–Peller–Treil theorem

What are the constraints on the λj ’s ?

Theorem (Megretski–Peller–Treil, 1995)
If (λj)j≥1 is the sequence of eigenvalues of some selfadjoint
compact Hankel operator, then, for every λ ∈ R \ {0},

|#{j : λj = λ} −#{j : λj = −λ}| ≤ 1 .

Conversely, any sequence (λj)j≥1 of real numbers satisfying the
above condition and tending to 0 is the sequence of
eigenvalues of some selfadjoint compact Hankel operator.

Question : describe the isospectral classes.
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No uniqueness expected : an example

Even in the rank one case, no uniqueness expected.
Indeed, Γc is a selfadjoint rank one operator if and only if

cn = αpn , α ∈ R∗ , p ∈ (−1,1) .

The only nonzero eigenvalue is

λ1 =
α

1− p2 .

Isospectral sets are therefore manifolds diffeomorphic to R.
Hence, we need to introduce additional parameters.
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The shifted Hankel operator

Given a Hankel operator Γc , define Γ̃c as

Γ̃c = Σ∗Γc = ΓcΣ = ΓΣ∗c .

Notice that
Γ̃2

c = ΓcΣΣ∗Γc = Γ2
c − ( . |c)c .

If Γc is selfadjoint compact, so is Γ̃c , and its eigenvalues (µj)j≥1
satisfy

|λ1| ≥ |µ1| ≥ |λ2| ≥ |µ2| ≥ . . .

The case with strict inequalities corresponds to a dense Gδ

subset of VMO+,R , for which the inverse spectral problem has
a particularly simple solution.
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The generic case

Theorem (PG-S. Grellier, 2012)
Given two sequences (λj)j≥1, (µj)j≥1 of real numbers such that

|λ1| > |µ1| > |λ2| > · · · → 0 ,

there exists a unique sequence (cn)n≥0 of real numbers such
that Γc is compact and

The non zero eigenvalues of Γc are the λj ’s.

The non zero eigenvalues of Γ̃c are the µj ’s.
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Back to the example

If cn = αpn , α ∈ R∗ , p ∈ (−1,1) . The only nonzero
eigenvalue of Γc is

λ1 =
α

1− p2 .

The only nonzero eigenvalue of Γ̃c is

µ1 =
αp

1− p2 .

The knowledge of λ1 and µ1 characterizes α and p, hence c.
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Catching the multiplicities

In the general case, consider the — finite or infinite tending to 0
— sequence of non zero eigenvalues of Γc and Γ̃c , listed so that

|λ1| ≥ |µ1| ≥ |λ2| ≥ |µ2| ≥ . . .

Lemma (P. Gérard-S.G.)

∀λ 6= 0 such that ker(Γ̃2
c − λ2I) + ker(Γ2

c − λ2I) 6= {0},

|dim ker(Γ̃2
c − λ2I)− dim ker(Γ2

c − λ2I)| = 1 .

Consequently, in the series |λ1| ≥ |µ1| ≥ |λ2| ≥ |µ2| ≥ . . . ,
the length of a maximal string with consecutive equal terms is
odd.
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Theorem (P. Gérard-S.G, 2013)
Let (λj), (µj) be two — finite or infinite tending to 0—
sequences of non zero real numbers satisfying

|λ1| ≥ |µ1| ≥ |λ2| ≥ |µ2| ≥ . . .
In the above sequence, the lengths of maximal strings with
consecutive equal terms are odd. Denote them by
(2nr − 1)r .
∀λ 6= 0, |#{j : λj = λ} −#{j : λj = −λ}| ≤ 1 .
∀µ 6= 0, |#{j : µj = µ} −#{j : µj = −µ}| ≤ 1 .

Then there exists a sequence (cn)n≥0 of real numbers such that
Γc is compact and

The non zero eigenvalues of Γc are the λj ’s.

The non zero eigenvalues of Γ̃c are the µj ’s.
Moreover, if M =

∑
r (nr − 1), the isospectral set is a manifold

diffeomorphic to RM if M <∞, homeomorphic to R∞ if M =∞.
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An example

In the case of a finite sequence of nonzero eigenvalues, explicit
formulae for uc . For instance, given four real numbers such that

|λ1| > |µ1| > |λ2| > |µ2| > 0 ,

we get

uc(eix ) =

λ1 − µ1eix

λ2
1 − µ2

1
+
λ2 − µ2eix

λ2
2 − µ2

2
− λ1 − µ2eix

λ2
1 − µ2

2
− λ2 − µ1eix

λ2
2 − µ2

1∣∣∣∣∣∣
λ1−µ1eix

λ2
1−µ

2
1

λ2−µ1eix

λ2
2−µ

2
1

λ1−µ2eix

λ2
1−µ

2
2

λ2−µ2eix

λ2
2−µ

2
2

∣∣∣∣∣∣
If |λ1| > |λ2| > 0 and µ1 = λ2, µ2 = −λ2, then, there exists
p ∈ (−1,1) such that

uc(eix ) = (λ2
1 − λ2

2)
1− p eix

λ1 − p eix (λ1 − λ2)− λ2 e2ix .
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Remarks

Hence, if λ1, λ2 are given such that |λ1| > |λ2| > 0, the
corresponding isospectral set consists of sequences c given by
the above two formulae.
Notice that the second expression is obtained from the first one
by making µ1 → λ2 , µ2 → −λ2 , and

2λ2 + µ2 − µ1

µ1 + µ2
→ p .



Motivation Real setting Complex setting Main result The cubic Szegö equation

PART II : COMPLEXIFIED VERSION.
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The Hardy space representation

L2
+ = {u : u(eix ) =

∞∑
n=0

cneinx ,

∞∑
n=0

|cn|2 <∞} ,

Π : L2(T) −→ L2
+ the Szegö projector ,

Given u ∈ VMO+, define Hu on L2
+ by

Hu(h) = Π
(

uh
)
.

Hu is a compact antilinear operator, non selfadjoint, and

Ĥu(h) = Γû

(
ĥ
)
, K̂u(h) = Γ̃û

(
ĥ
)

Ku := S∗Hu = HuS = HS∗u , Sh(eix ) := eixh(eix )

K 2
u = H2

u − (·|u)u .
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Eigenspaces of H2
u , K 2

u , u ∈ VMO+

Eu(s) := ker(H2
u − s2I) , Fu(s) := ker(K 2

u − s2I) .

Lemma (P. Gérard-S.G., 2013)
Let s > 0 such that Eu(s) + Fu(s) 6= {0}.

|dim Eu(s)− dim Fu(s)| = 1 .

Let (s2
j )j – finite or infinite tending to 0 – the sequence of

distinct eigenvalues of H2
u and K 2

u .
The s2j−1’s are the singular values of Hu such that

dim Eu(s2j−1) = dim Fu(s2j−1) + 1 .

The s2k ’s are the singular values of Ku such that

dim Fu(s2k ) = dim Eu(s2k ) + 1 .
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Finite Blaschke products

A finite Blaschke product is an inner function of the form

Ψ(z) = eiψ
k∏

j=1

z − pj

1− pjz
, ψ ∈ T , pj ∈ D .

The integer k is called the degree of Ψ. Alternatively, Ψ can be
written as

Ψ(z) = eiψ zkD
(1

z

)
D(z)

,

where D is a polynomial of degree k , D(0) = 1, with all its roots
outside D. We denote by Bk the set of Blaschke product of
degree k . It is a classical result that Bk is diffeomorphic to
T× R2k .
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Action of Hu and Ku on the eigenspaces

Proposition (P. Gérard-S.G., 2013)
Let s > 0 and u ∈ VMO+(T). Assume
m := dim Eu(s) = dim Fu(s) + 1. Denote by us the orthogonal
projection of u onto Eu(s). There exists Ψs, a finite Blaschke
product, of degree m − 1, such that sus = ΨsHu(us) and, if

Ψs(z) = e−iψs
zm−1Ds( 1

z )
Ds(z) ,

Eu(s) =
Hu(us)

Ds
Cm−1[z] , Fu(s) =

Hu(us)

Ds
Cm−2[z],

Hu

(
za

Ds
Hu(us)

)
= se−iψs

zm−a−1

Ds
Hu(us) , 0 ≤ a ≤ m − 1

Ku

(
zb

Ds
Hu(us)

)
= se−iψs

zm−b−2

Ds
Hu(us) , 0 ≤ b ≤ m − 2 .
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Action of Hu and Ku – continued

Assume ` := dim Fu(s) = dim Eu(s) + 1. Denote by u′s the
orthogonal projection of u onto Fu(s). There exists a finite
Blaschke product Ψs of degree `− 1 , such that

Ku(u′s) = sΨsu′s and, if Ψs(z) = e−iψs
z`−1Ds( 1

z )
Ds(z) ,

Fu(s) =
u′s
Ds

C`−1[z] , Eu(s) =
zu′s
Ds

C`−2[z],

Ku

(
za

Ds
u′s

)
= se−iψs

z`−a−1

Ds
u′s , 0 ≤ a ≤ `− 1

Hu

(
zb+1

Ds
u′s

)
= se−iψs

z`−b−1

Ds
u′s , 0 ≤ b ≤ `− 2 .
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Coming back to selfadjoint operators

Remark that the preceding identities provide very simple
matrices for the action of Hu and Ku on Eu(s) and Fu(s).
Selfadjoint Hankel operators correspond to symbols u with real
Fourier coefficients, hence the angles ψs belong to {0, π}.
In this case, one can easily check that the dimensions of the
eigenspaces of these matrices associated to the eigenvalues
±s differ of at most 1 : the Megretskii–Peller–Treil condition.
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Notation

Ωn := {s1 > s2 > · · · > sn > 0} ⊂ Rn .

Ω∞ = {(sn)n≥1 , s1 > s2 > · · · > sn → 0} .

Given u ∈ VMO+(T) \ {0}, define a finite or infinite sequence
s = (s1 > s2 > . . . ) ∈ ∪∞n=1Ωn ∪ Ω∞ such that

1 The s2j−1’s are the singular values of Hu such that

dim Eu(s2j−1) = dim Fu(s2j−1) + 1 .

2 The s2k ’s are the singular values of Ku such that

dim Fu(s2k ) = dim Eu(s2k ) + 1 .

For every n, associate to each sn an inner function Ψn.
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The statement

Let
B := ∪∞k=0Bk

and the mapping

Φ :
VMO+(T) \ {0} −→ ∪∞n=1Ωn × Bn ∪ Ω∞ × B∞

u 7−→ ((sj), (Ψj)) .

Theorem

The map Φ is bijective.
Moreover, explicit formula for Φ−1 on Ωn × Bn.
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Topological features

Theorem
The following restriction maps of Φ,

Φn : Φ−1(Ωn×Bn)→ Ωn×Bn , Φ∞ : Φ−1(Ω∞×B∞)→ Ω∞×B∞

are homeomorphisms. Moreover, given a positive integer n,
and a sequence (d1, . . . ,dn) of nonnegative integers, the map

Φ−1 : Ωn ×
n∏

r=1

Bdr −→ VMO+(T)

is a smooth embedding.
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Manifolds

As a consequence, the set

V(d1,...,dn) := Φ−1

(
Ωn ×

n∏
r=1

Bdr

)
is a submanifold of VMO+(T) of dimension n +

∑n
r=1 dr :

V(d1,...,dn) is the set of symbols u such that
1 The singular values s2j−1 of Hu such that

dim Eu(s2j−1) = dim Fu(s2j−1) + 1, ordered decreasingly,
have respective multiplicities

d1 + 1,d3 + 1, . . . .
2 The singular values s2j of Ku such that

dim Fu(s2j) = dim Eu(s2j) + 1, ordered decreasingly, have
respective multiplicities

d2 + 1,d4 + 1, . . . .
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Back to the generic case

The generic finite rank case corresponds to
(d1, . . . ,dn) = (0, . . . ,0). Denote by

V(n) :=

{
u; rkHu =

[
n + 1

2

]
, rkKu =

[n
2

]}
.

V(n) is a Kähler submanifold of L2
+ of complex dimension n.

Let V(n)gen := V(0,...,0) its open subset made of generic states u
so that Hu and Ku have simple singular values. Through Φ,

V(n)gen ' Ωn × Bn
0 ' Ωn × Tn .
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Main steps of the proof

Reduce to finite rank case by a compactness argument .
Φn is continuous and the degree of the Ψr ’s is locally
constant.
Prove that Φn : V(d1,...,dn) 7→ Ωn ×

∏n
r=1 Bdr is a

homeomorphism.
Injectivity : explicit formula for u in terms of its spectral data.
Surjectivity :

The mapping Φn is proper : compactness argument.
The mapping Φn is open : explicit calculation with the
formulae giving us , u′s.
Prove V(d1,...,dn) is non empty .

Conclude by the connectedness of the target space
Ωn ×

∏n
r=1 Bdr .

Prove that Φ−1
n is a smooth embedding of Ωn ×

∏n
r=1 Bdr so

that V(d1,...,dn) is a smooth manifold.
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V(d1,...,dn) is non empty

V(n)gen is non empty :

u(z) = zq−1 + zq−2 ∈ V(2q − 1)gen,

u(z) =
zq−1 + zq−2

1 + εzq ∈ V(2q)gen.

Prove that V(d1,...,dn) is non empty by induction on the dj ’s.
At each step, we use the preceding homeomorphism.
Induction starting from the generic case, by making
s2r+1 − s2r−1 or s2k+2 − s2k go to zero in the explicit
formula.
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zq−1 + zq−2

1 + εzq ∈ V(2q)gen.

Prove that V(d1,...,dn) is non empty by induction on the dj ’s.
At each step, we use the preceding homeomorphism.
Induction starting from the generic case, by making
s2r+1 − s2r−1 or s2k+2 − s2k go to zero in the explicit
formula.
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A key lemma about Hankel operators

Key Lemma
Let N be a positive integer. Let
Q(z) := 1− c1z − c2z2 − · · · − cNzN be a complex valued
polynomial with no roots in the closed unit disc. Let H be an
anti-linear operator on CN−1[z]

Q(z) satisfying

S∗HS∗ = H − (1|·)u .

Then H coı̈ncides with the Hankel operator Hu on CN−1[z]
Q(z) .
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Link with the cubic Szegö equation

The simultaneous consideration of operators Hu and Ku was
suggested by the study of the equation on L2

+ endowed with the
symplectic structure ω(u, v) := Im (u|v).

i u̇ = Π(|u|2u) .

A Hamiltonian system for

E(u) =
1
4

∫
T
|u|4 dx

2π
,

wellposed on Hs
+(T), s ≥ 1

2 .
This system enjoys a double Lax pair structure,

dHu

dt
= [Bu,Hu] ,

dKu

dt
= [Cu,Ku] .
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Generalized action angle coordinates

Given u ∈ H1/2
+ (T), write Φ(u) =

(
(sr ), (Ψr := e−iψrχr )

)
.

Theorem

The evolution of the cubic Szegö equation on H1/2
+ reads

dsr

dt
= 0 ,

dψr

dt
= (−1)r−1s2

r ,
dχr

dt
= 0 .

Moreover, on V(d1,...,dn),

ω|V(d1,...,dn) =
n∑

r=1

d
(

s2
r

2

)
∧ dψr , E =

1
4

n∑
r=1

(−1)r−1s4
r .

In particular, V(d1,...,dn) is a an involutive submanifold of the
Kähler manifold V(d) with d = n + 2

∑n
r=1 dr .
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Perspectives

Qualify the rational approximation it provides.
Contrary to the H1/2(T) regularity, the Hs(T) regularity is
not easily described by the mapping Φ. One can even
show that the conservation laws of the previous
Hamiltonian system do not control this regularity. It is an
open problem to find a criterion leading to high regularity of
u in terms of Φ(u).
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