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pt(x,y) be the heat kernel of M, that is the kernel of the
semi-group (e~ t2);>¢ acting on L?(M).

We suppose that :

— M satisfies the doubling volume property, that is there exist
constants C, D > 0 such that :

v(x,Ar) < CAPv(x,r), Vx € M, r>0,A> 1, (D)

— pe(x, y) satisfies a Gaussian upper bound, that is there exist
constants ¢, C > 0 such that :

C PP (x,y)
< — — .
pe(x,y) < VD) exp(—c=—— ), ¥t > 0,¥x,y € M. (G)
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We consider the heat equation :

gtu+ Au=0, Vt>0 and u(0)=up € LP(M). (1)

It is well known that —A generates an analytic semi-group of
contractions (e t2);>0 on LP(M) and that the solution of (1) is
u(t) = e *Auyp.

Let d(A)_% be the Riesz transform associated to A. We have :
d(B)72 € L(LP) <= Vf € D(A), ||d f|l, < C|AZf],.

In this case we obtain :

u(t) € WHP(M).
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Some known results

Since we have by integration by parts :
1
ld flla = [[VFl2 = |A2fll2,VF € C5°(M),

it is obvious that d(A)_% extends to a bounded operator from
L2(M) to L2(A'T*M) where A1 T*M denotes the space of 1-forms

on M. An interesting question is to know if d(A)_% can extend to
a bounded operator from LP(M) to LP(ALT*M) for p # 2.
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Some known results

— In 1999, Coulhon and Duong proved that under the assumptions
(D) and (G), the Riesz transform d(A)_% is of weak-type (1,1)
and then bounded from LP(M) to LP(A*T*M) for all p € (1,2]. In
addition, they gave a complete non-compact Riemannian manifold
satisfying (D) and (G) on which d(A)_% is unbounded from
LP(M) to LP(ALT*M) for p > 2.
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Some known results

— In 2003, Coulhon and Duong showed that if the manifold M
satisfies (D), (G) and the heat kernel pi(x, y) associated with the
Hodge-De Rham Laplacian A acting on 1-forms satisfies a
Gaussian upper bound :

C 2
exp(—c” (x,y)

v(x,/t) t

then the Riesz transform d(A)_% is bounded from LP(M) to
LP(AYT*M) for all p € (1,00).

%
1P (¥l <

),Vt > 0,Vx,y € M,
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Some known results

— In 1987, Bakry proved that if the Ricci curvature is

non-negative, then the Riesz transform d(A)fé is bounded from
LP(M) to LP(ALT*M) for all p € (1,00). The proof uses
probabilistic technics and is based on the domination :

_)
e tAuw| < e ™ w|,Vt > 0,w € C (AL T*M).
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Some known results

— In 2010, Devyver proved a boundedness result for the Riesz
transform d(A)% in the setting of Riemannian manifolds satisfying
a global Sobolev type inequality on which the balls of great radius
has a polynomial volume.

Béchner formula : & = V*V+ Ry —R_=H—R_where Vis
the Levi-Civita connection, Ry and R_ are respectively the positive
and negative part of the Ricci curvature.

Devyver assumed that R_ is e-sub critical : for some € € [0,1) ,

0 < (Rw,w) < e (Hw,w),Yw € C(N'T*M), (S-Q)

Besides, assuming R_ € Lg_” N L, he obtained a Gaussian
upper-bound for E)(x,y) and then the boundedness of the Riesz
transform d(—A)fé from LP(M) to LP(ALT*M) for p € (1,00). In
the same time, he proved that if R_ € L% then R_ is e-sub-critical
if and only if there is no harmonic 1-form on M.
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Some known results

— In 2010, Assaad and Ouhabaz studied the boundedness of Riesz
transforms associated to Schrodinger operators A=A+ V, — V_.
They proved that if (D), (G) are satisfied and if V_ is
e-sub-critical, then VA™2 is bounded on LP(M) for all p € (p}, 2]

— 2D
where Po = m > 2.
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Main results

Assume that (D), (G) and (S — C) are satisfied, then :

(i) the Riesz transform d*(z)_% is bounded from LP(A*T*M)

to LP(M) for all p € (py,2] where py = %.

(il) the Riesz transform d(z)_% is bounded from LP(A1T*M) to

LP(AzT*M) fOI’ a//p (S (p6,2] Where Po = W[jl@
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Assume that (D), (G) and (S — C) are satisfied, then :

(i) the Riesz transform d*(z)_% is bounded from LP(A*T*M)

to LP(M) for all p € (py,2] where py = %.

(il) the Riesz transform d(z)_% is bounded from LP(A'T*M) to

LP(AzT*M) fOI’ a//p (S (p6,2] Where Po = W[jl@

Corollary

Under the assumptions (D), (G) and (S — C), the Riesz transform

d(A)~2 is bounded from LP(M) to LP(NLT*M) for all p € (1, po)
_ 2D
where Po = m > 2.

\
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K = d*d + dd* is the Hodge-De Rham Laplacian acting on
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%
Bochner formula: A =V*V+ R, — R_=H— R_, where R}
(resp. R_) is the positive part (resp. negative part) of the Ricci
curvature and V denotes the Levi-Civita connection on M.

We suppose that R_ is e-sub-critical, that is for some 0 <& < 1:

0 < (Rw,w) < e (Hw,w),Yw € C(NLT*M). (S-0)
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We define the auto-adjoint operator H = V*V + R, on
L2(A1 T*M) with the method of sesquilinear forms.
That is for all w,n € CC(N'T*M) :

?(w,n) = /M < Vw(x), Vn(x) >x dm+/M < Ry (x)w(x),n(x) >x dm,
[

and D(1) = Ce(NT-M) 7,

%
where [z = /B (w,w) + w3

ince R_ is e-sub-critical, we can define the auto-adjoint operator
A =V*V + R, — R_on L2(ALT*M) with the form :

E}(w,n) = (Hw,n) — /M < R_(x)w(x),n(x) >x dm,
D(@) = D(h).
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LP theory of the heat semi-group on forms

Suppose that (D) and (G) are satisfied and that the negative part
R_ of the Ricci curvature is e-sub-critical. Then the operator

~ . .
A = V*V + R, — R_ generates a C°-semi-group of contractions

on LP(ALT*M) for all p € (pf, po) where py = Weﬂfﬂ'
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For any suitable w € AL T*M and for every x € M :

4(p—1)
2

< V(wlwlP7)(x), Vw(x) > > |V (wlwl 2 )(x)[Z

p
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Lemma

For any suitable w € AL T*M and for every x € M :

4(p—1)
2

21y, )2
p [V (wlw]z=")(x)[%

< V(wlw[P7?)(x), Ve(x) >x >

| A

Theorem

Suppose that the negative part R__> of the Ricci curvature is
e-sub-critical. Then the operator A =V*V+ R, —R_=H—-R_

generates a C°-semi-group of contractions on LP(A'T*M) for all

p € [p}, p1] where py = —5—.
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Proof.

%
We consider € CS°(AL T*M) and set wy = e~ 2y for all t > 0.
The previous lemma and the e-sub-criticality of R_ lead to :

1d 4p—1 s
o allel > (2252 o) el

Then for all p € |

2 2 :
1+/1—-¢’ 17\/1*8] ’
1d
——— P>0.
el >
Therefore [|w||p < ||wol|p, that is :

e~ B, < [nllp ¥ € CEALT*M
le™* % nllp < lInllp, ¥ € C5°( ),

and we conclude by density considerations. O]
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Theorem

Suppose that (D), (G) and (S — C) are satisfied. We consider
2<p<pr andqsuchthat1§qgooanqu_lD<2. Then for
allxe M andt >0 :

2

R C \/? g
XB(x /7)€ g S ——————— [ max | 1,4/-
| B(x,\/t) ||p Pq v(x,\/f)ilﬁ_;q< ( s
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Theorem

Suppose that (D), (G) and (S — C) are satisfied. We consider
2<p<pr andqsuchthat1§qgooanqu_lD<2. Then for
allxe M andt >0 :

2

R C \/? P
XB(x /7)€ g S —————— [ max [ 1,4/-
| B(x,/t) ||p Pq V(X,\/E)’l’_”1q< ( s

Proposition (Davies-Gaffney estimate)

Let E, F be two closed subsets of M. For any n € L2(A' T*M) with
support in E, we have :

Py _PA(EF)
le™ 2 nllizgry < e 2 Inl2-

A
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LP theory of the heat semi-group on forms

Suppose that the negative part R__> of the Ricci curvature is

e-sub-critical. Then the operator A = V*V + R, — R_ generates

a C%-semi-group of contractions on LP(A* T*M) for all p € (pg, po)
D

_ 2
Where Po = m
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Assume that (D), (G) and (S — C) are satistied, then :

(i) the Riesz transform d*(z)_% is bounded from LP(ALT*M)

to LP(M) for all p € (pp,2] where py = %.

(ii) the Riesz transform d(Z))_% is bounded from LP(A'T*M) to

LP(AzT*M) for a//p (S (p672] Where PO — %
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Let E, F be two closed subsets of M. For any n € L2(A' T*M) with
support in E we have :

¢ _PPER
Ve "2l 12(r) < e Il

e
Vi
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Let E, F be two closed subsets of M. For any n € L2(A' T*M) with
support in E we have :
P2 (E.F)

= C
Ve t8 < —e ¢ .
Ve Bl < e e

For any suitable w € AL T*M and for every x € M :
() [dw(x)]x < 2[Vw(x)lx-
(i) |d*w(x)|x < VN|Vw(x)|x.
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Corollary
Let E, F be two closed subsets of M. For any n € L?>(A* T*M) with
support in E we have :

(i) llde™ tA77||L2(F) <<

7
(i) lld*e™ 77HL2(F %
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Corollary

Let E, F be two closed subsets of M. For any n € L?>(A* T*M) with
support in E we have :

(i) llde™ tA77||L2(F) <

7
(i) ld*e™ 77||L2(F %

Theorem

Suppose that (D), (G) and (S — C) are satisfied. Then for all
r,s >0, x,y € M and all p € (py, po), 9 € [p, po),

b
N

42

x Ce s 21'+1r \/g B
—sA
IXG 1 B xaenlla <~y (max(Z L, 25

v(x,r)r a

v
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Suppose that (D), (G) and (S — C) are satistfied. Then for all
r,s >0, x,y € M and all p € (p,2],

S|

- A
(i) ||XCj(x,r)de XB(X,r)”p—2 <
42

B .
_Ce s r s i3
ﬁv(x,r)%_% (max(\/g, r )) 2

N
(ii) ”XCJ-(X,r‘)d*eisAXB(x,r)”P—2 <

B .
max( L ﬁ)) 2jB

s
1
P

&r
Ce € (
T
Vsv(x,r)P~d
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Theorem (Blunck, Kunstmann)

Let p € (1,2]. Suppose that T is a sublinear operator of strong
type (2,2), and let (A,),~o be a family of linear operators acting
on 2. Assume that for j > 2 and every ball B = B(x,r),

1

(2)

and for j > 1,

1

(\/(Xéf“r) /c,-(x,r) ’Arﬂz) < 2 (V(i r) /B ’f|p>;’ )

for all f supported in B. If ¥ := Zg(j)2Dj < 0o, then T is of

J
weak type (p, p), with a bound depending only on the strong type
(2,2) bound of T, p and X.
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Main result

Assume that (D), (G) and (S — C) are satisfied, then :

(i) the Riesz transform d*(z)_% is bounded from LP(A* T*M)

to LP(M) for a//p € ( 6 2] where Po = WDlm
(ii) the Riesz transform d(z) 2 is bounded from LP(NLT*M) to
(p

LP(AzT*M) for a//p (S ,2] Where PO — WQI\/TE)
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Sketch of proof.

_>
Set T = d*(A)_% and consider the operators

%
Ar=1—(—- e_rzA)’" for some integer m large enough.
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Sketch of proof.

|

_>
Set T = d*(A)™2 and consider the operators
%
Ar=1—(—- e_rzA)’" for some integer m large enough.
We prove (3) by using the estimate :

42

N Ce_c s 2f+1r \/E p
—sA
IX¢ixne " XBnllp-q < Vi, )P <max( Vs ’2f+1r)>
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Sketch of proof.

|

_>
Set T = d*(A)™2 and consider the operators

%
Ar=1—(—- e_rzA)’" for some integer m large enough.

We prove (3) by using the estimate :

_ R Ce ¢ 0+1y s \?
Ixcone 2 Xagerlog < oo <max( Vs ))

— —C
sA Ce °

HXCj(x,r)d*e_ XB(X,I‘)||P*2 <
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Sketch of proof.

|

_>
Set T = d*(A)™2 and consider the operators
—
Ar=1—(—- e_rzA)’" for some integer m large enough.

We prove (3) by using the estimate :

_ R Ce ¢ 0+1y s \?
Ixcone 2 Xagerlog < oo <max( Vs ))

We prove (2) by using the estimate :

4jr2 ﬁ
. A Ce s ro /s
||ch(x,r)d € SAXB(X,r)||pf2 S ——3 71 (max(, f)) 2/¥
sv(x,r)er Vsior

_>
It is the same proof for T = d(A)_%.
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Assaad and Ouhabaz introduced the following quantities :

1 R% dt [ R% dt
ST v vt A vt IS

for some r1, rn > 2.
We set :

1
IR2||y := a1 + an.

It is an easy exercise to see that when the volume is polynomial,
1
that is when v(x, r) = r"V, then ||R2||, < oo if and only if

R_ € L2771 L2"" for some 5 > 0. This kind of assumption is
classical when studying the boundedness of Riesz transform of
Schrédinger operators on LP for p > 2.



1
Assume that the manifold M satisfies (D), (G), ||[R2||, < co. If
KerLz(Z)) = {0}, then R_ is e-sub-critical.
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1

1 1

We set A := H 2R_H"2 = (R2H2)*(R2H"2) and show that
%

the operator Hz is an isomorphism from Keryi(A) to Kerp2(I — )
where -
Kerpp(A) = {w € D(T) : ¥y € C(AL T*M), @ (w,n) = 0}.
Besides A is a compact operator on L2(A1T*M); it is a
consequence of (5).
Since A is non-negative, we have : ||A]l2—2 < 1. Then the
seIf—adjo_i)ntness and the compactness of A ensure that :
Kerpi(A) = {0} <= ||A|22 < 1.




Sketch of proof.

Using the assumptions (D) and (G), we obtain :

(Row,w) < C||RZ|(Hw,w),Yw € D(F). (5)

1

We set A := H—3R_H—% = (RZH-%)*(RZH~%) and show that
the operator Hz is an isomorphism from KerHl(X) to Kerp2(1 —N)
where -

Kerpp(A) = {w € D(T) : ¥y € C(AL T*M), @ (w,n) = 0}.
Besides A is a compact operator on L2(A1T*M); it is a
consequence of (5).

Since A is non-negative, we have : ||A|2—2 < 1. Then the
seIf—adjo_i)ntness and the compactness of A ensure that :
Kerpi(A) = {0} <= ||A|22 < 1.

To conclude it suffices to remark that :

R_ is sub-critical <= 30 <e <1, [Al22 <e.




Thanks for your attention!
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