On the structure of semigroups on L_p with a bounded H^{∞} -calculus

Stephan Fackler

Institute of Applied Analysis, University of Ulm

Journées du GdR «Analyse Fonctionelle, Harmonique et Probabilités»

Notation: $\Sigma_{\varphi} := \{z \in \mathbb{C} : |\arg(z)| < \varphi\}.$

Definition (Sectorial Operator)

Then $\omega(A) := \inf \{ \omega : (S_{\omega}) \text{ holds} \}.$

$$(A,D(A))$$
 densely defined operator with $\omega\in(0,\pi)$ such that

$$(S_{\omega})$$
 $\sigma(A) \subset \overline{\Sigma_{\omega}}$ and $\sup_{A} \|\lambda R(\lambda, A)\| < \infty \quad \forall \varepsilon > 0.$

 $\lambda \not\in \Sigma_{\omega+arepsilon}$ and $\lambda \not\in \Sigma_{\omega+arepsilon}$

Definition (Analytic C_0 -semigroup)

Family of operators $(T(z))_{z \in \Sigma_{\delta}}$ $(\delta \in (0, \frac{\pi}{2}))$ satisfying

(i)
$$z \mapsto T(z)$$
 is analytic

(ii)
$$T(z_1+z_2)=T(z_1)T(z_2)$$
 $\forall z_1,z_2\in\Sigma_\delta$

(iii)
$$\lim_{\substack{z\to 0\\z\in\Sigma_{\delta'}}} T(z)x = x \qquad \forall \delta' \in (0,\delta), \forall x \in X$$

It is called bounded if $\sup_{z \in \Sigma_{s'}} ||T(z)|| < \infty$ for all $\delta' \in (0, \delta)$.

One has 1:1 correspondence

bounded analytic
$$C_0$$
-semigroups \leftrightarrow A sectorial with $\omega(A)<rac{\pi}{2}$

At least formally $T(z) = e^{-zA}$.

Given $f \in H_0^\infty(\Sigma_\sigma) := \left\{ f : \Sigma_\sigma \to \mathbb{C} \text{ analytic} : |f(z)| \le \frac{|\lambda|^\varepsilon}{(1+|\lambda|)^{2\varepsilon}} \right\}$ define

$$f(A) := \int_{\partial \Sigma_{\sigma'}} f(\lambda) R(\lambda, A) \, d\lambda \qquad (\omega(A) < \sigma' < \sigma).$$

Definition (Bounded H^{∞} -calculus)

$$(A,D(A))$$
 sectorial has bounded $H^{\infty}(\Sigma_{\sigma})$ -calculus if for some $C\geq 0$

$$(A, D(A))$$
 sectorial has bounded $H^{**}(\Sigma_{\sigma})$ -calculus if for some $C \geq 0$

$$||f(A)|| \le C \sup_{z \in \Sigma_{\sigma}} |f(z)| \qquad \forall f \in H_0^{\infty}(\Sigma_{\sigma}).$$

Then
$$\omega_{H^{\infty}}(A) := \inf\{\sigma : (H_{\sigma}) \text{ holds}\}.$$

Theorem (C. Le Merdy)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on Hilbert space H.

Equivalent:

(i) A has a bounded
$$H^{\infty}$$
-calculus

(ii) there exists $S \in \mathcal{B}(H)$ invertible such that

$$||S^{-1}T(t)S|| \leq 1 \quad \forall t \geq 0.$$

Put differently: contractive semigroups are generic for all semigroups with a bounded H^{∞} -calculus.

Can this be generalized to L_p (1 < p < ∞)? In one direction, one has

Theorem (L. Weis)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on L_p , positive and contractive on the real line.

Then A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.

Can all semigroups on L_p with a bounded H^{∞} -calculus be obtained from such semigroups?

Theorem (S.F.)

$$-A \sim (T(z))_{z \in \Sigma}$$
 bounded analytic C_0 -semigroup on $L_p(\Omega)$ $(1 . Equivalent:$

(i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.

Theorem (S.F.)

Equivalent:

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on $L_p(\Omega)$ (1 .

- (i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.
- (ii) There exists a bounded holomorphic C_0 -semigroup $(R(z))_{z \in \tilde{\Sigma}}$ in
- some $L_p(\tilde{\Omega})$, positive and contractive on the real line with
 - $N \subset M \subset L_n(\tilde{\Omega})$ closed subspaces invariant unter (R(z))
 - $S \in \mathcal{B}(L_p(\Omega), M/N)$ isomorphism such that

$$T(z) = S^{-1}R_{M/N}(z)S \qquad orall z \in ilde{\Sigma}.$$

Theorem (S.F. (Reminder))

- $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on $L_p(\Omega)$. Equivalent:
 - (i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.
 - (ii) $T(z) = S^{-1}R_{M/N}(z)S$ $\forall z \in \tilde{\Sigma}$.
 - On Hilbert spaces $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$ holds automatically
 - This seems to be open for L_p -spaces, but false for general subspaces of L_p -spaces (N.J. Kalton)
 - (i) ⇒ (ii) holds on every UMD-Banach lattice ((R(z)) lives on another UMD-Banach lattice)

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Can the constructed semigroup (R(z)) be chosen to be contractive on a whole sector as in the Hilbert space case?

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Can the constructed semigroup (R(z)) be chosen to be contractive on a whole sector as in the Hilbert space case?

Problem

Does every positive contractive C_0 -semigroup on a UMD Banach lattice have a bounded H^{∞} -calculus?

Main ideas of the proof (I):

• For $\alpha>1$ give $H_0^\infty(\Sigma_{\frac{\pi}{2\alpha}+})$ a *p*-operator space structure as follows:

$$H^{\infty}(\Sigma_{rac{\pi}{2\alpha}+})\hookrightarrow \mathcal{B}(L_p(\mathbb{R};Y))$$
 $f\mapsto f(B^{rac{1}{lpha}}).$

where -B generates the shift semigroup V(t)g(s)=g(s-t) on $L_p(\mathbb{R};Y)$ for some vector-valued L_p -space Y.

Main ideas of the proof (I):

• For $\alpha>1$ give $H_0^\infty(\Sigma_{\frac{\pi}{2c}+})$ a *p*-operator space structure as follows:

$$H^{\infty}(\Sigma_{\frac{\pi}{2\alpha}+}) \hookrightarrow \mathcal{B}(L_p(\mathbb{R};Y))$$
 $f \mapsto f(B^{\frac{1}{\alpha}}).$

where -B generates the shift semigroup V(t)g(s) = g(s-t) on $L_p(\mathbb{R}; Y)$ for some vector-valued L_p -space Y.

• p-complete boundedness of the functional calculus, e.g. mappings

$$\mathcal{B}(\ell_p^n(H^\infty(\Sigma))) \supset M_n(H^\infty) \to M_n(\mathcal{B}(L_p(\mathbb{R};Y))) \simeq \mathcal{B}(\ell_p^n(L_p(\mathbb{R};Y)))$$
$$[f_{ij}] \mapsto [f_{ij}(B)]$$

are uniformly bounded in n.

Main ideas of the proof (II):

- A factorization theorem of G. Pisier yields a semigroup as asserted, except for strong continuity (ultraproduct construction).
- Reduce to the strongly continuous part.

Conclusions

Every bounded analytic C_0 -semigroup on $L_p(\Omega)$ with generator -A satisfying $\omega_{H^\infty}(A) < \frac{\pi}{2}$ can be obtained

- from a bounded analytic C_0 -semigroup on $L_p(\tilde{\Omega})$, positive and contractive on the real line
- after passing to invariant subspace-quotients and similarity transforms

Je vous remercie de votre attention.

Je vous remercie de votre

attention.

Et bon appétit!