The complete solution of a double inverse spectral problem for compact Hankel operators

Sandrine Grellier

Université d'Orléans - Fédération Denis Poisson
Lyon - GdR AFHP - 22 octobre 2013

from joint works with Patrick Gérard (Université Paris-Sud)

Motivation

- Spectral theory of Hankel operators : a key tool in the study of some non dispersive Hamiltonian system : the cubic Szegő equation.
- A complete integrable system which admits two Lax pairs related to Hankel operators.
- Solve a double inverse spectral problem for compact Hankel operators.
- Apply it to obtain qualitative results on the dynamics of the cubic Szegő equation.

Part I : Classical Hankel operators (Hankel matrices).

Hankel operators in the real domain

A Hankel operator is an operator on $\ell_{\mathbb{R}}^{2}\left(\mathbb{Z}_{+}\right)$of the form

$$
\left(\Gamma_{c}(x)\right)_{n}=\sum_{k=0}^{\infty} c_{n+k} x_{k}
$$

is selfadjoint and satisfies

$$
\Gamma_{c} \Sigma=\Sigma^{*} \Gamma_{c}=\Gamma_{\Sigma^{*} c}
$$

where Σ is the shift operator,

$$
\Sigma:\left(x_{0}, x_{1}, \cdots\right) \mapsto\left(0, x_{0}, x_{1}, \cdots\right)
$$

Nehari, $1957: \Gamma_{c}$ is bounded iff

$$
\exists f \in L^{\infty}(\mathbb{T}), \forall n \geq 0, c_{n}=\hat{f}(n)
$$

or iff $u_{c}\left(\mathrm{e}^{i x}\right):=\sum_{n=0}^{\infty} c_{n} \mathrm{e}^{i n x} \in B M O_{+}$(C. Fefferman, 1971).

The compact case

Hartman, $1958: \Gamma_{C}$ is compact iff

$$
\exists f \in C(\mathbb{T}), \forall n \geq 0, c_{n}=\hat{f}(n)
$$

or iff $u_{C}\left(\mathrm{e}^{i x}\right)=\sum_{n=0}^{\infty} c_{n} \mathrm{e}^{i n x} \in V M O_{+}$.
In this case, Γ_{c} is compact and self-adjoint, hence
\exists a sequence $\left(\lambda_{j}\right)_{j \geq 1}, \lambda_{j} \in \mathbb{R}, \lambda_{j} \rightarrow 0$, with

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots
$$

such that the eigenvalues of Γ_{c} are the λ_{j} 's, repeated according to multiplicity, and possibly 0.

The Megretski-Peller-Treil theorem

What are the constraints on the λ_{j} 's ?

Theorem (Megretski-Peller-Treil, 1995)

If $\left(\lambda_{j}\right)^{2} 11$ is the sequence of eigenvalues of some selfadjoint compact Hankel operator, then, for every $\lambda \in \mathbb{R} \backslash\{0\}$,

$$
\left|\#\left\{j: \lambda_{j}=\lambda\right\}-\#\left\{j: \lambda_{j}=-\lambda\right\}\right| \leq 1 .
$$

Conversely, any sequence $\left(\lambda_{j}\right)_{i \geq 1}$ of real numbers satisfying the above condition and tending to 0 is the sequence of eigenvalues of some selfadjoint compact Hankel operator.

- Question : describe the isospectral classes.

The Megretski-Peller-Treil theorem

What are the constraints on the λ_{j} 's ?

Theorem (Megretski-Peller-Treil, 1995)

If $\left(\lambda_{j}\right)^{2} 11$ is the sequence of eigenvalues of some selfadjoint compact Hankel operator, then, for every $\lambda \in \mathbb{R} \backslash\{0\}$,

$$
\left|\#\left\{j: \lambda_{j}=\lambda\right\}-\#\left\{j: \lambda_{j}=-\lambda\right\}\right| \leq 1 .
$$

Conversely, any sequence $\left(\lambda_{j}\right)_{i \geq 1}$ of real numbers satisfying the above condition and tending to 0 is the sequence of eigenvalues of some selfadjoint compact Hankel operator.

- Question : describe the isospectral classes.

No uniqueness expected : an example

Even in the rank one case, no uniqueness expected. Indeed, Γ_{c} is a selfadjoint rank one operator if and only if

$$
c_{n}=\alpha p^{n}, \alpha \in \mathbb{R}^{*}, p \in(-1,1) .
$$

The only nonzero eigenvalue is

$$
\lambda_{1}=\frac{\alpha}{1-p^{2}} .
$$

Isospectral sets are therefore manifolds diffeomorphic to \mathbb{R}. Hence, we need to introduce additional parameters.

The shifted Hankel operator

Given a Hankel operator Γ_{c}, define $\tilde{\Gamma}_{c}$ as

$$
\tilde{\Gamma}_{c}=\Sigma^{*} \Gamma_{C}=\Gamma_{c} \Sigma=\Gamma_{\Sigma^{*} c} .
$$

Notice that

$$
\tilde{\Gamma}_{c}^{2}=\Gamma_{c} \Sigma \Sigma^{*} \Gamma_{c}=\Gamma_{c}^{2}-(. \mid c) c .
$$

If Γ_{c} is selfadjoint compact, so is $\tilde{\Gamma}_{c}$, and its eigenvalues $\left(\mu_{j}\right)_{j \geq 1}$ satisfy

$$
\left|\lambda_{1}\right| \geq\left|\mu_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\mu_{2}\right| \geq \ldots
$$

The case with strict inequalities corresponds to a dense G_{δ} subset of $V M O_{+, \mathbb{R}}$, for which the inverse spectral problem has a particularly simple solution.

The generic case

Theorem (PG-S. Grellier, 2012)

Given two sequences $\left(\lambda_{j}\right)_{j \geq 1},\left(\mu_{j}\right)_{j \geq 1}$ of real numbers such that

$$
\left|\lambda_{1}\right|>\left|\mu_{1}\right|>\left|\lambda_{2}\right|>\cdots \rightarrow 0
$$

there exists a unique sequence $\left(c_{n}\right)_{n \geq 0}$ of real numbers such that Γ_{c} is compact and

- The non zero eigenvalues of Γ_{c} are the λ_{j} 's.
- The non zero eigenvalues of $\tilde{\Gamma}_{c}$ are the μ_{j} 's.

Back to the example

If $c_{n}=\alpha p^{n}, \alpha \in \mathbb{R}^{*}, p \in(-1,1)$. The only nonzero eigenvalue of Γ_{C} is

$$
\lambda_{1}=\frac{\alpha}{1-p^{2}} .
$$

The only nonzero eigenvalue of $\tilde{\Gamma}_{c}$ is

$$
\mu_{1}=\frac{\alpha p}{1-p^{2}}
$$

The knowledge of λ_{1} and μ_{1} characterizes α and p, hence c.

Catching the multiplicities

In the general case, consider the - finite or infinite tending to 0

- sequence of non zero eigenvalues of Γ_{c} and $\tilde{\Gamma}_{c}$, listed so that

$$
\left|\lambda_{1}\right| \geq\left|\mu_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\mu_{2}\right| \geq \ldots
$$

Lemma (P. Gérard-S.G.)

$\forall \lambda \neq 0$ such that $\operatorname{ker}\left(\tilde{\Gamma}_{c}^{2}-\lambda^{2} I\right)+\operatorname{ker}\left(\Gamma_{c}^{2}-\lambda^{2} I\right) \neq\{0\}$,

$$
\left|\operatorname{dim} \operatorname{ker}\left(\tilde{\Gamma}_{c}^{2}-\lambda^{2} I\right)-\operatorname{dim} \operatorname{ker}\left(\Gamma_{c}^{2}-\lambda^{2} I\right)\right|=1
$$

Consequently, in the series $\left|\lambda_{1}\right| \geq\left|\mu_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\mu_{2}\right| \geq \ldots$, the length of a maximal string with consecutive equal terms is odd.

Theorem (P. Gérard-S.G, 2013)

Let $\left(\lambda_{j}\right),\left(\mu_{j}\right)$ be two - finite or infinite tending to 0 sequences of non zero real numbers satisfying

- $\left|\lambda_{1}\right| \geq\left|\mu_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\mu_{2}\right| \geq \ldots$
- In the above sequence, the lengths of maximal strings with consecutive equal terms are odd. Denote them by $\left(2 n_{r}-1\right)_{r}$.
- $\forall \lambda \neq 0,\left|\#\left\{j: \lambda_{j}=\lambda\right\}-\#\left\{j: \lambda_{j}=-\lambda\right\}\right| \leq 1$.
- $\forall \mu \neq 0,\left|\#\left\{j: \mu_{j}=\mu\right\}-\#\left\{j: \mu_{j}=-\mu\right\}\right| \leq 1$.

Then there exists a sequence $\left(c_{n}\right)_{n \geq 0}$ of real numbers such that Γ_{c} is compact and

- The non zero eigenvalues of Γ_{C} are the λ_{j} 's.
- The non zero eigenvalues of $\tilde{\Gamma}_{c}$ are the μ_{j} 's.

Moreover, if $M=\sum_{r}\left(n_{r}-1\right)$, the isospectral set is a manifold diffeomorphic to \mathbb{R}^{M} if $M<\infty$, homeomorphic to \mathbb{R}^{∞} if $M=\infty$.

An example

In the case of a finite sequence of nonzero eigenvalues, explicit formulae for u_{c}. For instance, given four real numbers such that

$$
\left|\lambda_{1}\right|>\left|\mu_{1}\right|>\left|\lambda_{2}\right|>\left|\mu_{2}\right|>0,
$$

we get
$u_{c}\left(\mathrm{e}^{i x}\right)=\frac{\frac{\lambda_{1}-\mu_{1} \mathrm{e}^{i x}}{\lambda_{1}^{2}-\mu_{1}^{2}}+\frac{\lambda_{2}-\mu_{2} \mathrm{e}^{i x}}{\lambda_{2}^{2}-\mu_{2}^{2}}-\frac{\lambda_{1}-\mu_{2} \mathrm{e}^{i x}}{\lambda_{1}^{2}-\mu_{2}^{2}}-\frac{\lambda_{2}-\mu_{1} \mathrm{e}^{i x}}{\lambda_{2}^{2}-\mu_{1}^{2}}}{\left|\begin{array}{cc}\frac{\lambda_{1}-\mu_{1} \mathrm{e}^{i x}}{\lambda_{1}^{2}-\mu_{1}^{2}} & \frac{\lambda_{2}-\mu_{1} \mathrm{e}^{i x}}{\lambda_{2}^{2}-\mu_{1}^{2}} \\ \frac{\lambda_{1}-\mu_{2} \mathrm{e}^{i x}}{\lambda_{1}^{2}-\mu_{2}^{2}} & \frac{\lambda_{2}-\mu_{2} \mathrm{e}^{i x}}{\lambda_{2}^{2}-\mu_{2}^{2}}\end{array}\right|}$
If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>0$ and $\mu_{1}=\lambda_{2}, \mu_{2}=-\lambda_{2}$, then, there exists $p \in(-1,1)$ such that

$$
u_{c}\left(\mathrm{e}^{i x}\right)=\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \frac{1-p \mathrm{e}^{i x}}{\lambda_{1}-p \mathrm{e}^{i x}\left(\lambda_{1}-\lambda_{2}\right)-\lambda_{2} \mathrm{e}^{2 i x}}
$$

Remarks

Hence, if λ_{1}, λ_{2} are given such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>0$, the corresponding isospectral set consists of sequences c given by the above two formulae.
Notice that the second expression is obtained from the first one by making $\mu_{1} \rightarrow \lambda_{2}, \mu_{2} \rightarrow-\lambda_{2}$, and

$$
\frac{2 \lambda_{2}+\mu_{2}-\mu_{1}}{\mu_{1}+\mu_{2}} \rightarrow p
$$

Part II : Complexified version.

The Hardy space representation

$$
L_{+}^{2}=\left\{u: u\left(\mathrm{e}^{i x}\right)=\sum_{n=0}^{\infty} c_{n} \mathrm{e}^{i n x}, \sum_{n=0}^{\infty}\left|c_{n}\right|^{2}<\infty\right\}
$$

$$
\Pi: L^{2}(\mathbb{T}) \longrightarrow L_{+}^{2} \text { the Szegö projector }
$$

Given $u \in V M O_{+}$, define H_{u} on L_{+}^{2} by

$$
H_{u}(h)=\Pi(u \bar{h}) .
$$

H_{u} is a compact antilinear operator, non selfadjoint, and

$$
\begin{array}{r}
\widehat{H_{u}(h)}=\Gamma_{\hat{u}}(\overline{\hat{h}}), \widehat{K_{u}(h)}=\tilde{\Gamma}_{\hat{u}}(\bar{h}) \\
K_{u}:=S^{*} H_{u}=H_{u} S=H_{S^{*} u}, \\
S h\left(\mathrm{e}^{i x}\right):=\mathrm{e}^{i x} h\left(\mathrm{e}^{i x}\right) \\
K_{u}^{2}=H_{u}^{2}-(\cdot \mid u) u .
\end{array}
$$

Eigenspaces of $H_{u}^{2}, K_{u}^{2}, u \in V M O_{+}$

$$
E_{u}(s):=\operatorname{ker}\left(H_{u}^{2}-s^{2} I\right), F_{u}(s):=\operatorname{ker}\left(K_{u}^{2}-s^{2} I\right) .
$$

Lemma (P. Gérard-S.G., 2013)

Let $s>0$ such that $E_{u}(s)+F_{u}(s) \neq\{0\}$.

$$
\left|\operatorname{dim} E_{u}(s)-\operatorname{dim} F_{u}(s)\right|=1 .
$$

Let $\left(s_{j}^{2}\right)_{j}$ - finite or infinite tending to 0 - the sequence of distinct eigenvalues of H_{u}^{2} and K_{u}^{2}.
The $s_{2 j-1}$'s are the singular values of H_{u} such that

$$
\operatorname{dim} E_{u}\left(s_{2 j-1}\right)=\operatorname{dim} F_{u}\left(s_{2 j-1}\right)+1 .
$$

The $s_{2 k}$'s are the singular values of K_{u} such that

$$
\operatorname{dim} F_{u}\left(s_{2 k}\right)=\operatorname{dim} E_{u}\left(s_{2 k}\right)+1 .
$$

Finite Blaschke products

A finite Blaschke product is an inner function of the form

$$
\psi(z)=\mathrm{e}^{i \psi} \prod_{j=1}^{k} \frac{z-p_{j}}{1-\bar{p}_{j} z}, \psi \in \mathbb{T}, p_{j} \in \mathbb{D}
$$

The integer k is called the degree of ψ. Alternatively, Ψ can be written as

$$
\Psi(z)=\mathrm{e}^{i \psi} \frac{z^{k} \bar{D}\left(\frac{1}{z}\right)}{D(z)}
$$

where D is a polynomial of degree $k, D(0)=1$, with all its roots outside $\overline{\mathbb{D}}$. We denote by \mathcal{B}_{k} the set of Blaschke product of degree k. It is a classical result that \mathcal{B}_{k} is diffeomorphic to $\mathbb{T} \times \mathbb{R}^{2 k}$.

Action of H_{u} and K_{u} on the eigenspaces

Proposition (P. Gérard-S.G., 2013)

Let $s>0$ and $u \in V M O_{+}(\mathbb{T})$. Assume $m:=\operatorname{dim} E_{u}(s)=\operatorname{dim} F_{u}(s)+1$. Denote by u_{s} the orthogonal projection of u onto $E_{u}(s)$. There exists Ψ_{s}, a finite Blaschke product, of degree $m-1$, such that $s u_{s}=\Psi_{s} H_{u}\left(u_{s}\right)$ and, if

$$
\Psi_{s}(z)=\mathrm{e}^{-i \psi_{s}} \frac{z^{m-1} \bar{D}_{s}\left(\frac{1}{z}\right)}{D_{s}(z)}
$$

$$
E_{u}(s)=\frac{H_{u}\left(u_{s}\right)}{D_{s}} \mathbb{C}_{m-1}[z], F_{u}(s)=\frac{H_{u}\left(u_{s}\right)}{D_{s}} \mathbb{C}_{m-2}[z]
$$

$$
H_{u}\left(\frac{z^{a}}{D_{s}} H_{u}\left(u_{s}\right)\right)=s \mathrm{e}^{-i \psi_{s}} \frac{z^{m-a-1}}{D_{s}} H_{u}\left(u_{s}\right), 0 \leq a \leq m-1
$$

$$
K_{u}\left(\frac{z^{b}}{D_{s}} H_{u}\left(u_{s}\right)\right)=s \mathrm{e}^{-i \psi_{s}} \frac{z^{m-b-2}}{D_{s}} H_{u}\left(u_{s}\right), 0 \leq b \leq m-2
$$

Action of H_{u} and K_{u} - continued

Assume $\ell:=\operatorname{dim} F_{u}(s)=\operatorname{dim} E_{u}(s)+1$. Denote by u_{s}^{\prime} the orthogonal projection of u onto $F_{u}(s)$. There exists a finite Blaschke product ψ_{s} of degree $\ell-1$, such that $K_{u}\left(u_{s}^{\prime}\right)=s \Psi_{s} u_{s}^{\prime}$ and, if $\Psi_{s}(z)=\mathrm{e}^{-i \psi_{s} \frac{z^{-1} \bar{D}_{s}\left(\frac{1}{z}\right)}{D_{s}(z)}}$,

$$
\begin{array}{r}
F_{u}(s)=\frac{u_{s}^{\prime}}{D_{s}} \mathbb{C}_{\ell-1}[z], E_{u}(s)=\frac{z u_{s}^{\prime}}{D_{s}} \mathbb{C}_{\ell-2}[z], \\
K_{u}\left(\frac{z^{a}}{D_{s}} u_{s}^{\prime}\right)=\operatorname{se}^{-i \psi_{s}} \frac{z^{\ell-a-1}}{D_{s}} u_{s}^{\prime}, 0 \leq a \leq \ell-1 \\
H_{u}\left(\frac{z^{b+1}}{D_{s}} u_{s}^{\prime}\right)=s \mathrm{e}^{-i \psi_{s}} \frac{z^{\ell-b-1}}{D_{s}} u_{s}^{\prime}, 0 \leq b \leq \ell-2 .
\end{array}
$$

Coming back to selfadjoint operators

Remark that the preceding identities provide very simple matrices for the action of H_{u} and K_{u} on $E_{u}(s)$ and $F_{u}(s)$. Selfadjoint Hankel operators correspond to symbols u with real Fourier coefficients, hence the angles ψ_{s} belong to $\{0, \pi\}$. In this case, one can easily check that the dimensions of the eigenspaces of these matrices associated to the eigenvalues $\pm s$ differ of at most 1 : the Megretskii-Peller-Treil condition.

Notation

- $\Omega_{n}:=\left\{s_{1}>s_{2}>\cdots>s_{n}>0\right\} \subset \mathbb{R}^{n}$.
- $\Omega_{\infty}=\left\{\left(s_{n}\right)_{n \geq 1}, s_{1}>s_{2}>\cdots>s_{n} \rightarrow 0\right\}$.

Given $u \in V M O_{+}(\mathbb{T}) \backslash\{0\}$, define a finite or infinite sequence $s=\left(s_{1}>s_{2}>\ldots\right) \in \cup_{n=1}^{\infty} \Omega_{n} \cup \Omega_{\infty}$ such that
(1) The $s_{2 j-1}$'s are the singular values of H_{u} such that

$$
\operatorname{dim} E_{u}\left(s_{2 j-1}\right)=\operatorname{dim} F_{u}\left(s_{2 j-1}\right)+1
$$

(2) The $s_{2 k}$'s are the singular values of K_{u} such that

$$
\operatorname{dim} F_{u}\left(s_{2 k}\right)=\operatorname{dim} E_{u}\left(s_{2 k}\right)+1
$$

For every n, associate to each s_{n} an inner function Ψ_{n}.

The statement

Let

$$
\mathcal{B}:=\cup_{k=0}^{\infty} \mathcal{B}_{k}
$$

and the mapping

$$
\phi: \begin{array}{clc}
V M O_{+}(\mathbb{T}) \backslash\{0\} & \longrightarrow & \cup_{n=1}^{\infty} \Omega_{n} \times \mathcal{B}^{n} \cup \Omega_{\infty} \times \mathcal{B}^{\infty} \\
u & \longmapsto & \left(\left(s_{j}\right),\left(\Psi_{j}\right)\right) .
\end{array}
$$

Theorem

The map Φ is bijective. Moreover, explicit formula for Φ^{-1} on $\Omega_{n} \times \mathcal{B}^{n}$.

Topological features

Theorem

The following restriction maps of Φ, $\Phi_{n}: \Phi^{-1}\left(\Omega_{n} \times \mathcal{B}^{n}\right) \rightarrow \Omega_{n} \times \mathcal{B}^{n}, \Phi_{\infty}: \Phi^{-1}\left(\Omega_{\infty} \times \mathcal{B}^{\infty}\right) \rightarrow \Omega_{\infty} \times \mathcal{B}^{\infty}$ are homeomorphisms. Moreover, given a positive integer n, and a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers, the map

$$
\Phi^{-1}: \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}} \longrightarrow V M O_{+}(\mathbb{T})
$$

is a smooth embedding.

Manifolds

As a consequence, the set

$$
\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}:=\Phi^{-1}\left(\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}\right)
$$

is a submanifold of $V M O_{+}(\mathbb{T})$ of dimension $n+\sum_{r=1}^{n} d_{r}$
$\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is the set of symbols u such that
(1) The singular values $s_{2 j-1}$ of H_{u} such that $\operatorname{dim} E_{u}\left(s_{2 j-1}\right)=\operatorname{dim} F_{u}\left(s_{2 j-1}\right)+1$, ordered decreasingly, have respective multiplicities

$$
d_{1}+1, d_{3}+1, \ldots
$$

(2) The singular values $s_{2 j}$ of K_{u} such that $\operatorname{dim} F_{u}\left(s_{2 j}\right)=\operatorname{dim} E_{u}\left(s_{2 j}\right)+1$, ordered decreasingly, have respective multiplicities

$$
d_{2}+1, d_{4}+1, \ldots
$$

Back to the generic case

The generic finite rank case corresponds to $\left(d_{1}, \ldots, d_{n}\right)=(0, \ldots, 0)$. Denote by

$$
\mathcal{V}(n):=\left\{u ; \operatorname{rk} H_{u}=\left[\frac{n+1}{2}\right], \operatorname{rk} K_{u}=\left[\frac{n}{2}\right]\right\} .
$$

$\mathcal{V}(n)$ is a Kähler submanifold of L_{+}^{2} of complex dimension n. Let $\mathcal{V}(n)_{\text {gen }}:=\mathcal{V}_{(0, \ldots, 0)}$ its open subset made of generic states u so that H_{u} and K_{u} have simple singular values. Through Φ,

$$
\mathcal{V}(n)_{\operatorname{gen}} \simeq \Omega_{n} \times \mathcal{B}_{0}^{n} \simeq \Omega_{n} \times \mathbb{T}^{n} .
$$

Main steps of the proof

- Reduce to finite rank case by a compactness argument
- Φ_{n} is continuous and the dearee of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \rightarrow \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1} \ldots . . d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data
- Surjectivity
- Conclude by the connectedness of the target space $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Conclude by the connectedness of the target space $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$.
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity :

The mapping Φ_{n} is proper : compactness argument. The mapping Φ_{n} is open : explicit calculation with the formulae giving

- Conclude by the connectedness of the target space
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument .
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity:
- The mapping Φ_{n} is proper : compactness argument.
formulae giving
- Conclude by the connectedness of the target space
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument.
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity:
- The mapping Φ_{n} is proper : compactness argument.
- The mapping Φ_{n} is open : explicit calculation with the formulae giving u_{s}, u_{s}^{\prime}.
- Conclude by the connectedness of the target space
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument.
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity:
- The mapping Φ_{n} is proper : compactness argument.
- The mapping Φ_{n} is open : explicit calculation with the formulae giving u_{s}, u_{s}^{\prime}.
- Prove $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty .
- Conclude by the connectedness of the target space
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1} \ldots \ldots d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument.
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity:
- The mapping Φ_{n} is proper : compactness argument.
- The mapping Φ_{n} is open : explicit calculation with the formulae giving u_{s}, u_{s}^{\prime}.
- Prove $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty .
- Conclude by the connectedness of the target space $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$.
- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

Main steps of the proof

- Reduce to finite rank case by a compactness argument.
- Φ_{n} is continuous and the degree of the Ψ_{r} 's is locally constant.
- Prove that $\Phi_{n}: \mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)} \mapsto \Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ is a homeomorphism.
- Injectivity : explicit formula for u in terms of its spectral data.
- Surjectivity :
- The mapping Φ_{n} is proper : compactness argument.
- The mapping Φ_{n} is open : explicit calculation with the formulae giving u_{s}, u_{s}^{\prime}.
- Prove $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty .
- Conclude by the connectedness of the target space

$$
\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}} .
$$

- Prove that Φ_{n}^{-1} is a smooth embedding of $\Omega_{n} \times \prod_{r=1}^{n} \mathcal{B}_{d_{r}}$ so that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a smooth manifold.

$\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty

- $\mathcal{V}(n)_{\text {gen }}$ is non empty :

$$
\begin{gathered}
u^{\prime}(z)=z^{q-1}+z^{q-2} \in \mathcal{V}(2 q-1)_{\text {gen }}, \\
u(z)=\frac{z^{q-1}+z^{q-2}}{1+\varepsilon z^{q}} \in \mathcal{V}(2 q)_{\operatorname{gen}} .
\end{gathered}
$$

- Prove that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty by induction on the d_{j} 's. At each step, we use the preceding homeomorphism. Induction starting from the generic case, by making $s_{2 r+1}-s_{2 r-1}$ or $s_{2 k+2}-s_{2 k}$ go to zero in the explicit formula.

$\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty

- $\mathcal{V}(n)_{\text {gen }}$ is non empty :

$$
\begin{gathered}
u(z)=z^{q-1}+z^{q-2} \in \mathcal{V}(2 q-1)_{\operatorname{gen}} \\
u(z)=\frac{z^{q-1}+z^{q-2}}{1+\varepsilon z^{q}} \in \mathcal{V}(2 q)_{\mathrm{gen}}
\end{gathered}
$$

- Prove that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty by induction on the d_{j} 's. At each step, we use the preceding homeomorphism. Induction starting from the generic case, by making $s_{2 r+1}-s_{2 r-1}$ or $s_{2 k+2}-s_{2 k}$ go to zero in the explicit
formula.

$\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty

- $\mathcal{V}(n)_{\text {gen }}$ is non empty :

$$
\begin{gathered}
u(z)=z^{q-1}+z^{q-2} \in \mathcal{V}(2 q-1)_{\operatorname{gen}} \\
u(z)=\frac{z^{q-1}+z^{q-2}}{1+\varepsilon z^{q}} \in \mathcal{V}(2 q)_{\text {gen }}
\end{gathered}
$$

- Prove that $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is non empty by induction on the d_{j} 's. At each step, we use the preceding homeomorphism. Induction starting from the generic case, by making $s_{2 r+1}-s_{2 r-1}$ or $s_{2 k+2}-s_{2 k}$ go to zero in the explicit formula.

A key lemma about Hankel operators

Key Lemma

Let N be a positive integer. Let
$Q(z):=1-c_{1} z-c_{2} z^{2}-\cdots-c_{N} z^{N}$ be a complex valued polynomial with no roots in the closed unit disc. Let H be an anti-linear operator on $\frac{\mathbb{C}_{N-1}[z]}{Q(z)}$ satisfying

$$
S^{*} H S^{*}=H-(1 \mid \cdot) u .
$$

Then H coïncides with the Hankel operator H_{u} on $\frac{\mathbb{C}_{N-1}[z]}{Q(z)}$.

Link with the cubic Szegö equation

The simultaneous consideration of operators H_{u} and K_{u} was suggested by the study of the equation on L_{+}^{2} endowed with the symplectic structure $\omega(u, v):=\operatorname{Im}(u \mid v)$.

$$
i \dot{u}=\Pi\left(|u|^{2} u\right)
$$

A Hamiltonian system for

$$
E(u)=\frac{1}{4} \int_{\mathbb{T}}|u|^{4} \frac{d x}{2 \pi}
$$

wellposed on $H_{+}^{s}(\mathbb{T})$, $s \geq \frac{1}{2}$.
This system enjoys a double Lax pair structure,

$$
\frac{d H_{u}}{d t}=\left[B_{u}, H_{u}\right], \frac{d K_{u}}{d t}=\left[C_{u}, K_{u}\right]
$$

Generalized action angle coordinates

Given $u \in H_{+}^{1 / 2}(\mathbb{T})$, write $\Phi(u)=\left(\left(s_{r}\right),\left(\Psi_{r}:=\mathrm{e}^{-i \psi_{r}} \chi_{r}\right)\right)$.

Theorem

The evolution of the cubic Szegö equation on $H_{+}^{1 / 2}$ reads

$$
\frac{d s_{r}}{d t}=0, \frac{d \psi_{r}}{d t}=(-1)^{r-1} s_{r}^{2}, \frac{d \chi_{r}}{d t}=0 .
$$

Moreover, on $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$,

$$
\omega_{\mid \mathcal{V}\left(d_{1}, \ldots, d_{n}\right)}=\sum_{r=1}^{n} d\left(\frac{s_{r}^{2}}{2}\right) \wedge d \psi_{r}, E=\frac{1}{4} \sum_{r=1}^{n}(-1)^{r-1} s_{r}^{4} .
$$

In particular, $\mathcal{V}_{\left(d_{1}, \ldots, d_{n}\right)}$ is a an involutive submanifold of the Kähler manifold $\mathcal{V}(d)$ with $d=n+2 \sum_{r=1}^{n} d_{r}$.

Perspectives

- Qualify the rational approximation it provides.
- Contrary to the $H^{1 / 2}(\mathbb{T})$ regularity, the $H^{s}(\mathbb{T})$ regularity is not easily described by the mapping Φ. One can even show that the conservation laws of the previous Hamiltonian system do not control this regularity. It is an open problem to find a criterion leading to high regularity of u in terms of $\Phi(u)$.

