Lieb-Thirring vs Blaschke for non-selfadjoint perturbations of certain model operators

S. Kupin

IMB, Université Bordeaux 1

Journées de GDR AFHP
Université Lyon 1

Plan of the talk

Recent results by :
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.
(1) Introduction : classical Lieb-Thirring inequalities.

Plan of the talk

Recent results by :
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.
(1) Introduction : classical Lieb-Thirring inequalities.
(2) Basic construction and results on zeros of holomorphic functions.

Plan of the talk

Recent results by :
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.
(1) Introduction : classical Lieb-Thirring inequalities.
(2) Basic construction and results on zeros of holomorphic functions.
(3) Applications to different models.

Introduction
 Let $H_{0}=-\Delta$ considered on $L^{2}\left(\mathbb{R}^{d}\right)$. One has $\sigma\left(H_{0}\right)=\mathbb{R}_{+}$.

Introduction

Let $H_{0}=-\Delta$ considered on $L^{2}\left(\mathbb{R}^{d}\right)$. One has $\sigma\left(H_{0}\right)=\mathbb{R}_{+}$.
Look at

$$
H=H_{0}+V=-\Delta+V,
$$

where $V \in L^{p}\left(\mathbb{R}^{d}\right), p>0$, is a real-valued potential.

Introduction

Let $H_{0}=-\Delta$ considered on $L^{2}\left(\mathbb{R}^{d}\right)$. One has $\sigma\left(H_{0}\right)=\mathbb{R}_{+}$.
Look at

$$
H=H_{0}+V=-\Delta+V
$$

where $V \in L^{p}\left(\mathbb{R}^{d}\right), p>0$, is a real-valued potential.
One has $V\left(H_{0}-\lambda\right)^{-1} \in \mathcal{S}_{\infty}$, the class of compact operators, and, by Weyl's theorem $\sigma_{\text {ess }}(H)=\sigma_{\text {ess }}\left(H_{0}\right)=\mathbb{R}_{+}$.

Introduction

Let $H_{0}=-\Delta$ considered on $L^{2}\left(\mathbb{R}^{d}\right)$. One has $\sigma\left(H_{0}\right)=\mathbb{R}_{+}$.
Look at

$$
H=H_{0}+V=-\Delta+V
$$

where $V \in L^{p}\left(\mathbb{R}^{d}\right), p>0$, is a real-valued potential.
One has $V\left(H_{0}-\lambda\right)^{-1} \in \mathcal{S}_{\infty}$, the class of compact operators, and, by Weyl's theorem $\sigma_{\text {ess }}(H)=\sigma_{\text {ess }}\left(H_{0}\right)=\mathbb{R}_{+}$.

Theorem (Lieb-Thirring' 1975)
Let $p>0, d \geq 3$. Then

$$
\sum_{\lambda \in \sigma_{d}(H)}|\lambda|^{p} \leq C_{p, d} \int_{\mathbb{R}^{d}} V_{-}(x)^{p+d / 2} d x=C_{p, d}\left\|V_{-}\right\|_{L^{p+d / 2}}^{p+d / 2}
$$

where $V_{-}=\max \{-V, 0\}$.

Introduction

Consider now a complex-valued $V \in L^{p}\left(\mathbb{R}^{d}\right), p>0$.

Introduction

Consider now a complex-valued $V \in L^{p}\left(\mathbb{R}^{d}\right), p>0$.

Theorem (Frank-Laptev-Lieb-Seiringer' 2007)
Let $p \geq 1, d \geq 1$. Then

$$
\begin{aligned}
\sum_{\lambda \in \sigma_{d}(H): \operatorname{Re} \lambda<0}|\operatorname{Re} \lambda|^{p} & \leq C_{p, d} \int_{\mathbb{R}^{d}}(\operatorname{Re} V)_{-}^{p+d / 2} d x \\
& =C_{p, d}\left\|(\operatorname{Re} V)_{-}\right\|_{L^{p+d / 2}}^{p+d / 2} .
\end{aligned}
$$

BGK : a basic method

For simplicity, let $A_{0}=A_{0}^{*}$ be a bounded operator (with a reasonably simple spectrum).

BGK : a basic method

For simplicity, let $A_{0}=A_{0}^{*}$ be a bounded operator (with a reasonably simple spectrum).

Let $A=A_{0}+B$, where $B \in \mathcal{S}_{p}$, for integer $p \geq 1$ (B is not necessarily self-adjoint).

BGK : a basic method

For simplicity, let $A_{0}=A_{0}^{*}$ be a bounded operator (with a reasonably simple spectrum).

Let $A=A_{0}+B$, where $B \in \mathcal{S}_{p}$, for integer $p \geq 1$ (B is not necessarily self-adjoint).

For $\lambda \in \rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right)$, consider

$$
f(\lambda)=\operatorname{det}_{p}(A-\lambda)\left(A_{0}-\lambda\right)^{-1}=\operatorname{det}_{p}\left(I+\left(A-A_{0}\right)\left(A_{0}-\lambda\right)^{-1}\right) .
$$

BGK : a basic method

One has:

- $\lambda \in \sigma_{d}(A) \Leftrightarrow \operatorname{Ker}(A-\lambda /)$ is non-trivial and of finite dimension $\Leftrightarrow \lambda \in Z_{f}$ (i.e., $f(\lambda)=0$) counting multiplicities,

BGK : a basic method

One has:

- $\lambda \in \sigma_{d}(A) \Leftrightarrow \operatorname{Ker}(A-\lambda /)$ is non-trivial and of finite dimension $\Leftrightarrow \lambda \in Z_{f}$ (i.e., $f(\lambda)=0$) counting multiplicities,
- $f \in \operatorname{Hol}\left(\rho\left(A_{0}\right)\right)$ and the following bound holds

$$
\begin{aligned}
|f(\lambda)| & \leq \exp \left(\left\|\left(A-A_{0}\right)\left(A_{0}-\lambda\right)^{-1}\right\|_{\mathcal{S}_{p}}^{p}\right) \\
& \leq \exp \left(\frac{\Gamma_{p}\left\|A-A_{0}\right\|_{\mathcal{S}_{p}}^{p}}{d\left(\lambda, \sigma\left(A_{0}\right)\right)^{p}}\right)
\end{aligned}
$$

BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$
\rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right) \xrightarrow{\phi} \mathbb{D}=\{|z|<1\}
$$

BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$
\rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right) \xrightarrow{\phi} \mathbb{D}=\{|z|<1\}
$$

and the so called distortion theorem.

BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$
\rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right) \xrightarrow{\phi} \mathbb{D}=\{|z|<1\}
$$

and the so called distortion theorem.
That is, for $z=\phi(\lambda)$, one has

$$
d\left(\lambda, \sigma\left(A_{0}\right)\right) \asymp F(z) d(z, \mathbb{T})=F(z)(1-|z|)
$$

BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$
\rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right) \xrightarrow{\phi} \mathbb{D}=\{|z|<1\}
$$

and the so called distortion theorem.
That is, for $z=\phi(\lambda)$, one has

$$
d\left(\lambda, \sigma\left(A_{0}\right)\right) \asymp F(z) d(z, \mathbb{T})=F(z)(1-|z|)
$$

or, equivalently,

$$
G(\lambda) d\left(\lambda, \sigma\left(A_{0}\right)\right) \asymp d(z, \mathbb{T})
$$

BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$
\rho\left(A_{0}\right)=\overline{\mathbb{C}} \backslash \sigma\left(A_{0}\right) \xrightarrow{\phi} \mathbb{D}=\{|z|<1\}
$$

and the so called distortion theorem.
That is, for $z=\phi(\lambda)$, one has

$$
d\left(\lambda, \sigma\left(A_{0}\right)\right) \asymp F(z) d(z, \mathbb{T})=F(z)(1-|z|)
$$

or, equivalently,

$$
G(\lambda) d\left(\lambda, \sigma\left(A_{0}\right)\right) \asymp d(z, \mathbb{T})
$$

Rather often, one sees that $F(z)=d(z, E)$, where $E \subset \mathbb{T}, \# E<\infty$.

BGK : on zeros of holomorphic functions from certain classes

So one gets to the study of the zeros of classes of holomorphic functions appearing in the following theorems.

BGK : on zeros of holomorphic functions from certain classes

So one gets to the study of the zeros of classes of holomorphic functions appearing in the following theorems.

Theorem (Borichev-Golinskii-K’ 2010)
Let $f \in \operatorname{Hol}(\mathbb{D}),|f(0)|=1$, and

$$
\log |f(z)| \leq \frac{D}{d(z, E)^{q}},
$$

with $q \geq 0$. Then for any $\varepsilon>0$,

$$
\sum_{z \in Z_{t}}(1-|z|) d(z, E)^{(q-1+\varepsilon)_{+}} \leq C(q, \varepsilon) D .
$$

BGK : on zeros of holomorphic functions from certain classes

Theorem (Borichev-Golinskii-K’ 2010)
Let $f \in \operatorname{Hol}(\mathbb{D}),|f(0)|=1$, and

$$
\log |f(z)| \leq \frac{D}{d(z, \mathbb{T})^{p} d(z, E)^{q}},
$$

where $p, q \geq 0$. Then for any $\varepsilon>0$,

$$
\sum_{z \in Z_{f}}(1-|z|)^{p+1+\varepsilon} d(z, E)^{(q-1+\varepsilon)_{+}} \leq C(p, q, \varepsilon) D
$$

Applications and extensions

- (bounded) Jacobi matrices : Let $J-J_{0} \in \mathcal{S}_{\infty}$, where

$$
\begin{gathered}
J_{0}=J(\{1\},\{0\},\{1\})\left[\begin{array}{cccc}
0 & 1 & 0 & \ldots \\
1 & 0 & 1 & \ldots \\
0 & 1 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right], \\
J=J\left(\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\}\right)=\left[\begin{array}{cccc}
b_{1} & c_{1} & 0 & \ldots \\
a_{1} & b_{2} & c_{2} & \cdots \\
0 & a_{2} & b_{3} & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right],
\end{gathered}
$$

and $\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\} \subset \mathbb{C}$.

Applications and extensions

It is clear that $\sigma\left(J_{0}\right)=[-2,2]$. Then [BGK' 2010] : for $p>1$ and $\forall \varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d(\lambda,[-2,2])^{p+1+\varepsilon}}{|\lambda-2||\lambda+2|} \leq C(p, \varepsilon)\left\|J-J_{0}\right\|_{\mathcal{S}_{p}}^{p} .
$$

Applications and extensions

It is clear that $\sigma\left(J_{0}\right)=[-2,2]$. Then [BGK' 2010] : for $p>1$ and $\forall \varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d(\lambda,[-2,2])^{p+1+\varepsilon}}{|\lambda-2||\lambda+2|} \leq C(p, \varepsilon)\left\|J-J_{0}\right\|_{\mathcal{S}_{p}}^{p} .
$$

- Similar results for d-dimensional Jacobi matrices.

Applications and extensions

It is clear that $\sigma\left(J_{0}\right)=[-2,2]$. Then [BGK' 2010] : for $p>1$ and $\forall \varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d(\lambda,[-2,2])^{p+1+\varepsilon}}{|\lambda-2||\lambda+2|} \leq C(p, \varepsilon)\left\|J-J_{0}\right\|_{\mathcal{S}_{\rho}}^{p} .
$$

- Similar results for d-dimensional Jacobi matrices.
- Hansmann-Katriel' 2011 : the above relation is improved to

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d(\lambda,[-2,2])^{p+\varepsilon}}{(|\lambda-2||\lambda+2|)^{1 / 2}} \leq C(p, \varepsilon)\left\|J-J_{0}\right\|_{\mathcal{S}_{p}}^{p} .
$$

Applications and extensions

- Let \widetilde{J}_{0} be periodic (or finite-zone) Jacobi matrix. In particular,

$$
\sigma\left(\widetilde{J}_{0}\right)=\cup_{j=1}^{n}\left[\alpha_{j}, \beta_{j}\right] .
$$

Let $\widetilde{E}=\left\{\alpha_{j}, \beta_{j}\right\}_{j=1, \ldots, n}$, and $J-\widetilde{J}_{0} \in \mathcal{S}_{\infty}$.

Applications and extensions

- Let \widetilde{J}_{0} be periodic (or finite-zone) Jacobi matrix. In particular,

$$
\sigma\left(\widetilde{J}_{0}\right)=\cup_{j=1}^{n}\left[\alpha_{j}, \beta_{j}\right] .
$$

Let $\widetilde{E}=\left\{\alpha_{j}, \beta_{j}\right\}_{j=1, \ldots, n}$, and $J-\widetilde{J}_{0} \in \mathcal{S}_{\infty}$. Then [GK' 2011] : for $p \geq 1$ and for any $\varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d\left(\lambda, \sigma\left(\widetilde{J}_{0}\right)\right)^{p+1+\varepsilon}}{d(\lambda, \widetilde{E})(1+|\lambda|)} \leq C(p, \varepsilon)\left\|J-\widetilde{J}_{0}\right\|_{\mathcal{S}_{p}}^{p}
$$

Applications and extensions

- Let \widetilde{J}_{0} be periodic (or finite-zone) Jacobi matrix. In particular,

$$
\sigma\left(\widetilde{J}_{0}\right)=\cup_{j=1}^{n}\left[\alpha_{j}, \beta_{j}\right] .
$$

Let $\widetilde{E}=\left\{\alpha_{j}, \beta_{j}\right\}_{j=1, \ldots, n}$, and $J-\widetilde{J}_{0} \in \mathcal{S}_{\infty}$. Then [GK' 2011] : for $p \geq 1$ and for any $\varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d\left(\lambda, \sigma\left(\widetilde{J}_{0}\right)\right)^{p+1+\varepsilon}}{d(\lambda, \widetilde{E})(1+|\lambda|)} \leq C(p, \varepsilon)\left\|J-\widetilde{J}_{0}\right\|_{\mathcal{S}_{p}}^{p}
$$

- Hansmann' 2012 : let $A=A_{0}+B$, where $A_{0}=A_{0}^{*}$ is bounded, and $B \in \mathcal{S}_{p}, p>1$.

Applications and extensions

- Let \widetilde{J}_{0} be periodic (or finite-zone) Jacobi matrix. In particular,

$$
\sigma\left(\widetilde{J}_{0}\right)=\cup_{j=1}^{n}\left[\alpha_{j}, \beta_{j}\right] .
$$

Let $\widetilde{E}=\left\{\alpha_{j}, \beta_{j}\right\}_{j=1, \ldots, n}$, and $J-\widetilde{J}_{0} \in \mathcal{S}_{\infty}$. Then [GK' 2011] : for $p \geq 1$ and for any $\varepsilon>0$

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{d\left(\lambda, \sigma\left(\widetilde{J}_{0}\right)\right)^{p+1+\varepsilon}}{d(\lambda, \widetilde{E})(1+|\lambda|)} \leq C(p, \varepsilon)\left\|J-\widetilde{J}_{0}\right\|_{\mathcal{S}_{p}}^{p}
$$

- Hansmann' 2012 : let $A=A_{0}+B$, where $A_{0}=A_{0}^{*}$ is bounded, and $B \in \mathcal{S}_{p}, p>1$. Then

$$
\sum_{\lambda \in \sigma_{d}(A)} d\left(\lambda, \sigma\left(A_{0}\right)\right)^{p} \leq C_{p}\|B\|_{\mathcal{S}_{p}}^{p}
$$

Extensions to unbounded operators

- Demuth, Hansmann, Katriel’ 2009 : d-dimensional Schrödinger operator.

Extensions to unbounded operators

- Demuth, Hansmann, Katriel’ 2009 : d-dimensional Schrödinger operator.
- Golinskii-K' 2011 : d-dimensional periodic Schrödinger operator.

Extensions to unbounded operators

- Demuth, Hansmann, Katriel’ 2009 : d-dimensional Schrödinger operator.
- Golinskii-K' 2011 : d-dimensional periodic Schrödinger operator.
- Sambou' 2012 : magnetic Schrödinger and Pauli operators (in odd/even dimensions).

Extensions to unbounded operators

- Demuth, Hansmann, Katriel’ 2009 : d-dimensional Schrödinger operator.
- Golinskii-K' 2011 : d-dimensional periodic Schrödinger operator.
- Sambou' 2012 : magnetic Schrödinger and Pauli operators (in odd/even dimensions).
- Dubuisson' 2013 : d-dimensional Dirac, Klein-Gordon operators and fractional Laplacian.

Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$
K_{m}=\sqrt{-\Delta+m^{2}} .
$$

Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$
K_{m}=\sqrt{-\Delta+m^{2}} .
$$

It is self-adjoint on a dense subset of $L^{2}\left(\mathbb{R}^{d}\right)$ and $\sigma\left(K_{m}\right)=[m,+\infty)$.

Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$
K_{m}=\sqrt{-\Delta+m^{2}} .
$$

It is self-adjoint on a dense subset of $L^{2}\left(\mathbb{R}^{d}\right)$ and $\sigma\left(K_{m}\right)=[m,+\infty)$.
Look at

$$
K=K_{m}+V
$$

where $V \in L^{p}\left(\mathbb{R}^{d}\right)$ is a complex valued potential.

Extensions to unbounded operators

Theorem (Dubuisson' 2013)
Let $V \in L^{p}\left(\mathbb{R}^{d}\right), p>d$.

- $(m>0)$ For $0<\tau$ small enough

$$
\sum_{\lambda \in \sigma_{d}(K)} \frac{d\left(\lambda, \sigma\left(K_{m}\right)\right)^{p+\tau}}{|\lambda-m|(1+|\lambda|)^{p+\max \{p / 2, d\}+2 \tau-1}} \leq C(p, d, \tau)\|V\|_{L^{p}}^{p} .
$$

Extensions to unbounded operators

Theorem (Dubuisson' 2013)
Let $V \in L^{p}\left(\mathbb{R}^{d}\right), p>d$.

- $(m>0)$ For $0<\tau$ small enough

$$
\sum_{\lambda \in \sigma_{d}(K)} \frac{d\left(\lambda, \sigma\left(K_{m}\right)\right)^{p+\tau}}{|\lambda-m|(1+|\lambda|)^{p+\max \{p / 2, d\}+2 \tau-1}} \leq C(p, d, \tau)\|V\|_{L^{p}}^{p} .
$$

- $(m=0)$ Then, for $0<\tau$ small enough

$$
\sum_{\lambda \in \sigma_{d}(K)} \frac{d\left(\lambda, \sigma\left(K_{0}\right)\right)^{p+\tau}}{|\lambda|^{\min \{(p+\tau) / 2, d\}}(1+|\lambda|)^{\frac{p}{2}+\max \{p, 2 d\}-d+2 \tau}} \leq C(p, d, \tau)\|V\|_{L^{p}}^{p} .
$$

Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.

$$
H_{0}=-\Delta+x_{1} \cdot(.)
$$

Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.

$$
H_{0}=-\Delta+x_{1} \cdot(.)
$$

- Geometry of eigen- (root-) subspaces associated to $\sigma_{d}(H)$: a functional model? interpolation in certain spaces of holomorphic functions, etc.?

Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.

$$
H_{0}=-\Delta+x_{1} \cdot(.)
$$

- Geometry of eigen- (root-) subspaces associated to $\sigma_{d}(H)$: a functional model? interpolation in certain spaces of holomorphic functions, etc.?

THANK YOU

