Lieb-Thirring vs Blaschke
for non-selfadjoint perturbations
of certain model operators

S. Kupin

IMB, Université Bordeaux 1

Journées de GDR AFHP

Université Lyon 1
Plan of the talk

Recent results by:
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.

1 Introduction: classical Lieb-Thirring inequalities.
Plan of the talk

Recent results by:
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.

1. Introduction: classical Lieb-Thirring inequalities.
2. Basic construction and results on zeros of holomorphic functions.
Plan of the talk

Recent results by:
A. Borichev, L. Golinskii, SK,
M. Demuth, M. Hansmann, G. Katriel,
C. Dubuisson, D. Sambou.

1. Introduction: classical Lieb-Thirring inequalities.
2. Basic construction and results on zeros of holomorphic functions.
3. Applications to different models.
Let $H_0 = -\Delta$ considered on $L^2(\mathbb{R}^d)$. One has $\sigma(H_0) = \mathbb{R}_+$.

Theorem (Lieb-Thirring’ 1975) Let $p > 0$, $d \geq 3$. Then

\[
\sum_{\lambda \in \sigma_d(H)} |\lambda|^p \leq C_p d \int_{\mathbb{R}^d} V^{p-\frac{d}{2}} dx = C_p d ||V||_{L^p}^{p-\frac{d}{2}},
\]

where $V^{-} = \max\{V, 0\}$.

S. Kupin (U. Bordeaux 1)
Introduction

Let $H_0 = -\Delta$ considered on $L^2(\mathbb{R}^d)$. One has $\sigma(H_0) = \mathbb{R}_+$.

Look at

$$H = H_0 + V = -\Delta + V,$$

where $V \in L^p(\mathbb{R}^d), p > 0$, is a real-valued potential.
Introduction

Let $H_0 = -\Delta$ considered on $L^2(\mathbb{R}^d)$. One has $\sigma(H_0) = \mathbb{R}_+$.

Look at

$$H = H_0 + V = -\Delta + V,$$

where $V \in L^p(\mathbb{R}^d), p > 0$, is a real-valued potential.

One has $V(H_0 - \lambda)^{-1} \in S_\infty$, the class of compact operators, and, by Weyl’s theorem $\sigma_{ess}(H) = \sigma_{ess}(H_0) = \mathbb{R}_+$.

Theorem (Lieb-Thirring' 1975)

Let $p > 0$, $d \geq 3$. Then

$$\sum_{\lambda \in \sigma_d(H)} |\lambda|^p \leq C_p^p,$$

$$\int \mathbb{R}^d |V(x) - \lambda|^{p+\frac{d}{2}} dx = C_p^{p+\frac{d}{2}},$$

where $V^\pm = \max\{-V, 0\}$.

Introduction

Let $H_0 = -\Delta$ considered on $L^2(\mathbb{R}^d)$. One has $\sigma(H_0) = \mathbb{R}_+$.

Look at

$$H = H_0 + V = -\Delta + V,$$

where $V \in L^p(\mathbb{R}^d)$, $p > 0$, is a real-valued potential.

One has $V(H_0 - \lambda)^{-1} \in S_\infty$, the class of compact operators, and, by Weyl's theorem $\sigma_{ess}(H) = \sigma_{ess}(H_0) = \mathbb{R}_+$.

Theorem (Lieb-Thirring’ 1975)

Let $p > 0$, $d \geq 3$. Then

$$\sum_{\lambda \in \sigma_d(H)} |\lambda|^p \leq C_{p,d} \int_{\mathbb{R}^d} V_-(x)^{p+d/2} \, dx = C_{p,d} \|V_-\|_{L^{p+d/2}}^{p+d/2}$$

where $V_- = \max \{-V, 0\}$.
Consider now a complex-valued $V \in L^p(\mathbb{R}^d), p > 0$.

Theorem (Frank-Laptev-Lieb-Seiringer' 2007)

Let $p \geq 1, d \geq 1$. Then

$$
\sum_{\lambda \in \sigma_d(H)} \text{Re} \lambda < 0 \quad \left| \text{Re} \lambda \right|^p \leq C_{p,d} \int_{\mathbb{R}^d} \left| \text{Re} V \right|^p + \frac{d}{2} \, dx = C_{p,d} \left\| \left| \text{Re} V \right|^p + \frac{d}{2} \right\|_{L^p}.
$$
Introduction

Consider now a complex-valued $V \in L^p(\mathbb{R}^d), p > 0$.

Theorem (Frank-Laptev-Lieb-Seiringer’ 2007)

Let $p \geq 1, d \geq 1$. Then

$$\sum_{\lambda \in \sigma_d(H): \text{Re } \lambda < 0} |\text{Re } \lambda|^p \leq C_{p,d} \int_{\mathbb{R}^d} (\text{Re } V)^{p+d/2} \, dx$$

$$= C_{p,d} \|(\text{Re } V)^-\|^{p+d/2}_{L^{p+d/2}}.$$
For simplicity, let $A_0 = A_0^*$ be a bounded operator (with a reasonably simple spectrum).
For simplicity, let $A_0 = A_0^*$ be a bounded operator (with a reasonably simple spectrum).

Let $A = A_0 + B$, where $B \in S_p$, for integer $p \geq 1$ (B is not necessarily self-adjoint).
For simplicity, let $A_0 = A_0^*$ be a bounded operator (with a reasonably simple spectrum).

Let $A = A_0 + B$, where $B \in S_p$, for integer $p \geq 1$ (B is not necessarily self-adjoint).

For $\lambda \in \rho(A_0) = \bar{\mathbb{C}} \setminus \sigma(A_0)$, consider

$$f(\lambda) = \det_p(A - \lambda)(A_0 - \lambda)^{-1} = \det_p(I + (A - A_0)(A_0 - \lambda)^{-1}).$$
BGK : a basic method

One has:

- $\lambda \in \sigma_d(A) \iff \text{Ker}(A - \lambda I)$ is non-trivial and of finite dimension
- $\iff \lambda \in Z_f$ (i.e., $f(\lambda) = 0$) counting multiplicities,
BGK : a basic method

One has :

- $\lambda \in \sigma_d(A) \iff \text{Ker}(A - \lambda I)$ is non-trivial and of finite dimension
 $\iff \lambda \in Z_f$ (i.e., $f(\lambda) = 0$) counting multiplicities,
- $f \in Hol(\rho(A_0))$ and the following bound holds

$$|f(\lambda)| \leq \exp \left(\| (A - A_0)(A_0 - \lambda)^{-1} \|_{S_p}^p \right)$$
$$\leq \exp \left(\Gamma_p \| A - A_0 \|_{S_p}^p \right) \leq \exp \left(\frac{\Gamma_p \| A - A_0 \|_{S_p}^p}{d(\lambda, \sigma(A_0))^p} \right).$$
BGK: a basic method

On the next stage, one uses the (conformal) uniformization

$$\rho(A_0) = \mathbb{C} \setminus \sigma(A_0) \xrightarrow{\phi} \mathbb{D} = \{ |z| < 1 \}$$
BGK: a basic method

On the next stage, one uses the (conformal) uniformization

$$\rho(A_0) = \mathbb{C} \setminus \sigma(A_0) \xrightarrow{\phi} \mathbb{D} = \{ |z| < 1 \}$$

and the so called distortion theorem.

S. Kupin (U. Bordeaux 1) Lieb-Thirring vs Blaschke GDR AFHP, Lyon 1, 22/10/2013 7 / 16
BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$\rho(A_0) = \mathbb{C} \setminus \sigma(A_0) \xrightarrow{\phi} \mathbb{D} = \{|z| < 1\}$$

and the so called distortion theorem.

That is, for $$z = \phi(\lambda)$$, one has

$$d(\lambda, \sigma(A_0)) \asymp F(z)d(z, \mathbb{T}) = F(z)(1 - |z|),$$
BGK: a basic method

On the next stage, one uses the (conformal) uniformization

\[\rho(A_0) = \tilde{\mathbb{C}} \setminus \sigma(A_0) \xrightarrow{\phi} \mathbb{D} = \{ |z| < 1 \} \]

and the so-called distortion theorem.

That is, for \(z = \phi(\lambda) \), one has

\[d(\lambda, \sigma(A_0)) \asymp F(z) d(z, \mathbb{T}) = F(z)(1 - |z|), \]

or, equivalently,

\[G(\lambda) d(\lambda, \sigma(A_0)) \asymp d(z, \mathbb{T}). \]
BGK : a basic method

On the next stage, one uses the (conformal) uniformization

$$\rho(A_0) = \mathbb{C} \setminus \sigma(A_0) \xrightarrow{\phi} \mathbb{D} = \{|z| < 1\}$$

and the so-called distortion theorem.

That is, for $z = \phi(\lambda)$, one has

$$d(\lambda, \sigma(A_0)) \asymp F(z) d(z, \mathbb{T}) = F(z)(1 - |z|),$$

or, equivalently,

$$G(\lambda) d(\lambda, \sigma(A_0)) \asymp d(z, \mathbb{T}).$$

Rather often, one sees that $F(z) = d(z, E)$, where $E \subset \mathbb{T}, \# E < \infty$.
BGK: on zeros of holomorphic functions from certain classes

So one gets to the study of the zeros of classes of holomorphic functions appearing in the following theorems.

Theorem (Borichev-Golinskii-K’ 2010)

Let $f \in \text{Hol}(D)$, $|f(0)| = 1$, and $\log |f(z)| \leq D d(z, E)^q$, with $q \geq 0$. Then for any $\varepsilon > 0$,

$$\sum_{z \in \mathbb{Z}} f(1 - |z|) d(z, E)^{q - 1 + \varepsilon} \leq C(q, \varepsilon) D.$$
BGK : on zeros of holomorphic functions from certain classes

So one gets to the study of the zeros of classes of holomorphic functions appearing in the following theorems.

Theorem (Borichev-Golinskii-K’ 2010)

Let $f \in Hol(\mathbb{D})$, $|f(0)| = 1$, and

\[
\log |f(z)| \leq \frac{D}{d(z, E)^q},
\]

with $q \geq 0$. Then for any $\varepsilon > 0$,

\[
\sum_{z \in Z_f} (1 - |z|) d(z, E)^{(q-1+\varepsilon)_+} \leq C(q, \varepsilon) D.
\]
BGK : on zeros of holomorphic functions from certain classes

Theorem (Borichev-Golinskii-K’ 2010)

Let \(f \in Hol(\mathbb{D}) \), \(|f(0)| = 1\), and

\[
\log |f(z)| \leq \frac{D}{d(z, \mathbb{T})^p d(z, E)^q},
\]

where \(p, q \geq 0 \). Then for any \(\varepsilon > 0 \),

\[
\sum_{z \in Z_f} (1 - |z|)^{p+1+\varepsilon} d(z, E)^{(q-1+\varepsilon)_+} \leq C(p, q, \varepsilon) D.
\]
Applications and extensions

• (bounded) Jacobi matrices: Let $J - J_0 \in S_\infty$, where

$$J_0 = J(\{1\}, \{0\}, \{1\}) = \begin{bmatrix} 0 & 1 & 0 & \ldots \\ 1 & 0 & 1 & \ldots \\ 0 & 1 & 0 & \ldots \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix},$$

and

$$J = J(\{a_k\}, \{b_k\}, \{c_k\}) = \begin{bmatrix} b_1 & c_1 & 0 & \ldots \\ a_1 & b_2 & c_2 & \ldots \\ 0 & a_2 & b_3 & \ldots \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix},$$

and $\{a_k\}, \{b_k\}, \{c_k\} \subset \mathbb{C}$.
Applications and extensions

It is clear that $\sigma(J_0) = [-2, 2]$. Then [BGK’ 2010]: for $p > 1$ and $\forall \varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, [-2, 2])^{p+1+\varepsilon}}{|\lambda - 2||\lambda + 2|} \leq C(p, \varepsilon)\|J - J_0\|_{S_p}^p.$$
Applications and extensions

It is clear that $\sigma(J_0) = [-2, 2]$. Then [BGK’ 2010] : for $p > 1$ and $\forall \varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, [-2, 2])^{p+1+\varepsilon}}{|\lambda - 2||\lambda + 2|} \leq C(p, \varepsilon)\|J - J_0\|_{S_p}^p.$$

- Similar results for d-dimensional Jacobi matrices.
Applications and extensions

It is clear that $\sigma(J_0) = [-2, 2]$. Then [BGK’ 2010] : for $p > 1$ and $\forall \varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, [-2, 2])^{p+1+\varepsilon}}{|\lambda - 2||\lambda + 2|} \leq C(p, \varepsilon)\|J - J_0\|_{Sp}^p.$$

- Similar results for d-dimensional Jacobi matrices.

- **Hansmann-Katriel’ 2011** : the above relation is improved to

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, [-2, 2])^{p+\varepsilon}}{(|\lambda - 2||\lambda + 2|)^{1/2}} \leq C(p, \varepsilon)\|J - J_0\|_{Sp}^p.$$
Applications and extensions

- Let \tilde{J}_0 be periodic (or finite-zone) Jacobi matrix. In particular,

$$\sigma(\tilde{J}_0) = \bigcup_{j=1}^{n} [\alpha_j, \beta_j].$$

Let $\tilde{E} = \{\alpha_j, \beta_j\}_{j=1,...,n}$, and $J - \tilde{J}_0 \in S_{\infty}$.

- Hansmann' 2012: let $A = A_0 + B$, where $A_0 = A^*$ is bounded, and $B \in S_p$, $p > 1$.

Then

$$\sum_{\lambda \in \sigma} d(A) d(\lambda, \sigma(A_0)) \leq C_p ||B||_{S_p}. \quad (1)$$
Applications and extensions

Let \tilde{J}_0 be periodic (or finite-zone) Jacobi matrix. In particular,

$$\sigma(\tilde{J}_0) = \bigcup_{j=1}^n [\alpha_j, \beta_j].$$

Let $\tilde{E} = \{\alpha_j, \beta_j\}_{j=1,...,n}$, and $J - \tilde{J}_0 \in \mathcal{S}_\infty$. Then [GK’ 2011] : for $p \geq 1$ and for any $\varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, \sigma(\tilde{J}_0))^{p+1+\varepsilon}}{d(\lambda, \tilde{E})(1 + |\lambda|)} \leq C(p, \varepsilon)\|J - \tilde{J}_0\|_{S^p}. $$

Hansmann’ 2012: let $A = A_0 + B$, where $A_0 = A^* _0$ is bounded, and $B \in \mathcal{S}_p, p > 1$. Then

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, \sigma(A))^{p+1+\varepsilon}}{d(\lambda, E)(1 + |\lambda|)} \leq C(p, \varepsilon)\|A - A_0\|_{S^p}. $$
Applications and extensions

Let \tilde{J}_0 be periodic (or finite-zone) Jacobi matrix. In particular,

$$\sigma(\tilde{J}_0) = \bigcup_{j=1}^n [\alpha_j, \beta_j].$$

Let $\tilde{E} = \{\alpha_j, \beta_j\}_{j=1,...,n}$, and $J - \tilde{J}_0 \in S_\infty$. Then [GK’ 2011]: for $p \geq 1$ and for any $\varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, \sigma(\tilde{J}_0))^{p+1+\varepsilon}}{d(\lambda, \tilde{E})(1 + |\lambda|)} \leq C(p, \varepsilon) \|J - \tilde{J}_0\|_{S_p}^p.$$

Hansmann’ 2012: let $A = A_0 + B$, where $A_0 = A_0^*$ is bounded, and $B \in S_p$, $p > 1$.

• Hanssmann’ 2012: let $A = A_0 + B$, where $A_0 = A_0^*$ is bounded, and $B \in S_p$, $p > 1$.

Applications and extensions

- Let \tilde{J}_0 be periodic (or finite-zone) Jacobi matrix. In particular,

$$\sigma(\tilde{J}_0) = \bigcup_{j=1}^{n} [\alpha_j, \beta_j].$$

Let $\tilde{E} = \{\alpha_j, \beta_j\}_{j=1,...,n}$, and $J - \tilde{J}_0 \in S_\infty$. Then [GK’ 2011] : for $p \geq 1$ and for any $\varepsilon > 0$

$$\sum_{\lambda \in \sigma_d(J)} \frac{d(\lambda, \sigma(\tilde{J}_0))^{p+1+\varepsilon}}{d(\lambda, \tilde{E})(1 + |\lambda|)} \leq C(p, \varepsilon) \|J - \tilde{J}_0\|_{S_p}.$$

- Hansmann’ 2012 : let $A = A_0 + B$, where $A_0 = A_0^*$ is bounded, and $B \in S_p, p > 1$. Then

$$\sum_{\lambda \in \sigma_d(A)} d(\lambda, \sigma(A_0))^p \leq C_p \|B\|_{S_p}^p.$$
Extensions to unbounded operators

- Demuth, Hansmann, Katriel’ 2009: d-dimensional Schrödinger operator.
Extensions to unbounded operators

- **Demuth, Hansmann, Katriel’ 2009** : d-dimensional Schrödinger operator.

- **Golinskii-K’ 2011** : d-dimensional periodic Schrödinger operator.

- **Sambou’ 2012** : magnetic Schrödinger and Pauli operators (in odd/even dimensions).

- **Dubuisson’ 2013** : d-dimensional Dirac, Klein-Gordon operators and fractional Laplacian.
Extensions to unbounded operators

- **Demuth, Hansmann, Katriel’ 2009**: d-dimensional Schrödinger operator.

- **Golinskii-K’ 2011**: d-dimensional periodic Schrödinger operator.

- **Sambou’ 2012**: magnetic Schrödinger and Pauli operators (in odd/even dimensions).
Extensions to unbounded operators

- **Demuth, Hansmann, Katriel’ 2009**: d-dimensional Schrödinger operator.

- **Golinskii-K’ 2011**: d-dimensional periodic Schrödinger operator.

- **Sambou’ 2012**: magnetic Schrödinger and Pauli operators (in odd/even dimensions).

- **Dubuisson’ 2013**: d-dimensional Dirac, Klein-Gordon operators and fractional Laplacian.
Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$K_m = \sqrt{-\Delta} + m^2.$$
Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$K_m = \sqrt{-\Delta + m^2}.$$

It is self-adjoint on a dense subset of $L^2(\mathbb{R}^d)$ and $\sigma(K_m) = [m, +\infty).$
Extensions to unbounded operators

For instance, for $m \geq 0$ consider operator

$$K_m = \sqrt{-\Delta + m^2}.$$

It is self-adjoint on a dense subset of $L^2(\mathbb{R}^d)$ and $\sigma(K_m) = [m, +\infty)$. Look at

$$K = K_m + V,$$

where $V \in L^p(\mathbb{R}^d)$ is a complex valued potential.
Extensions to unbounded operators

Theorem (Dubuisson’ 2013)

Let $V \in L^p(\mathbb{R}^d)$, $p > d$.

- $(m > 0)$ For $0 < \tau$ small enough

$$
\sum_{\lambda \in \sigma_d(K)} \frac{d(\lambda, \sigma(K_m))^{p+\tau}}{|\lambda - m| (1 + |\lambda|)^{p+\max\{p/2,d\}+2\tau-1}} \leq C(p, d, \tau) \|V\|_{L^p}^p.
$$
Extensions to unbounded operators

Theorem (Dubuisson’ 2013)

Let $V \in L^p(\mathbb{R}^d)$, $p > d$.

• ($m > 0$) For $0 < \tau$ small enough

$$
\sum_{\lambda \in \sigma_d(K)} d(\lambda, \sigma(K_m))^{p+\tau} \frac{|\lambda - m| (1 + |\lambda|)^{p+\max\{p/2, d\}+2\tau-1}}{\min\{(p+\tau)/2, d\}(1 + |\lambda|)^{p/2+\max\{p,2d\}-d+2\tau}} \leq C(p, d, \tau) \|V\|_{L^p}^p.
$$

• ($m = 0$) Then, for $0 < \tau$ small enough

$$
\sum_{\lambda \in \sigma_d(K)} d(\lambda, \sigma(K_0))^{p+\tau} \frac{|\lambda|^{p+\max\{p,2d\}-d+2\tau}}{\min\{(p+\tau)/2, d\}(1 + |\lambda|)^{p/2+\max\{p,2d\}-d+2\tau}} \leq C(p, d, \tau) \|V\|_{L^p}^p.
$$
Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.

\[H_0 = -\Delta + x_1 \cdot (\cdot) . \]
Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.
 \[H_0 = -\Delta + x_1 \cdot (\cdot). \]

- Geometry of eigen- (root-) subspaces associated to \(\sigma_d(H) \): a functional model? interpolation in certain spaces of holomorphic functions, etc.?
Open problems

- Non-selfadjoint perturbations of other operators of mathematical physics, e.g.

\[H_0 = -\Delta + x_1 \cdot (\cdot). \]

- Geometry of eigen- (root-) subspaces associated to \(\sigma_d(H) \): a functional model? interpolation in certain spaces of holomorphic functions, etc.?