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Interpolating between probability densities via the heat
flow

Let M be a compact Riemannian manifold and pg, p1 bounded
probability densities.

Find functions f, g on M such that
po = fP1(g)
{ p1=Pi(f)g
We can then define

pt := P(f) P1_+(9) te[0,1]
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Slowing down

For ¢ > 0 find f¢, g° such that
{ po = f* P-(g°)
p1 = P(f) g°

and then
Pt = Pet(f?) Pei—1(9°)

te[0,1]
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Informal statement of the convergence as« | 0

‘Theorem’ (Leonard)
As ¢ | 0 the curves t — p? converge to the W,-geodesic between pg
and p4

The actual statement is:
» on abstract spaces
» a statement about Gamma-convergence

» the main assumption is that the heat kernel satisfies the natural
large deviation principle



How to find the functions 7, g° (1/2)

Let R. be the measure on M? given by

dR.(x,y) :==r.(x,y)dxdy for r:(x,y) = M(y).

f¢, g° solve our problem if and only if
f* ® g° R. is atransport plan from pg to p4

where f© @ g°(x,y) := ¢ (x)g°(y)
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How to find the functions ¢, g° (2/2)

Let ¢ be the unique minimum of
H(|R:)

among all transport plans from pg to p1
Its Euler equation is

/Iog (g%) do  for every o such that 7)o = 720 = 0

This forces
dre

dR.

log(—7-) =a & b°

for some a°, b°.
Thus for f¢ := exp(a®), g° := exp(b°) we have

™ =f o4 R
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A first link with optimal transport

Recalling that
(x,y)

r-(x,y) ~c.(x)e 2

we see that
dm

dR.
~ —5/|Og (dxdy) dr

~ %/dz(x,y)dw

The precise formulation involves large deviations and Gamma-
convergence.



The dual problem

Some manipulation show that the dual of the problem

Minimize eH(w|R.) among all transport plan w from pg to p4

Maximize/gpdpo+/wdp1 —e¢log (/ewﬂjw dFi’E)
among all o, € C(M)



The dual problem

Some manipulation show that the dual of the problem

Minimize eH(w|R.) among all transport plan © from pg to p1

Maximize/gpdpo+/wdp1 —e¢log (/ewﬂjw dFi’E)
among all o, € C(M)

Moreover, if 7¢ is a minimizer and ¢°, ) maximizers we have

PDY
™ =e-: R




Second link with optimal transport

Using again r.(x,y) ~ c.(x)e TN e get
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Using again r-(x, y) ~ c-(x)e~ % we get

elog / Md.‘? Nslog(/ewd_d = dxdy)
d?(x,
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Second link with optimal transport

Using again r.(x, y) ~ c.(x)e~ £en

elog (/e“’?w dRE> ~ elog (/ev’@w?dz/2 dxdy)

d?(x,y)
2

we get

~ maxp(X) + ¥(y) -

thus the ‘limit problem’ is to

d2
maximize /godpo + /¢dp1 — max{<p®w - ?}

which is the same as

2

a
maximize / pdpo + / ¥ dpq among ¢ ® ¢ < >
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Geodesics in (Z2(M), Wa)

A Ws-geodesic () on Po(M) solves
Ot + div(Ver i) = 0

for functions (¢;) such that

2
Vel _y

oon 5

Problem: no matter how nice uo, 111 are, in general the ¢;’s are only
semiconcave.



Can we approximate geodesics with smooth curves?

The problem informally stated

Given a geodeisc (1), can we find curves (u5) which are smooth and
produce a second order approximation of (y;)?



First and second order differentiation formula
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First and second order differentiation formula

Given (u¢) smooth define (¢:), (a;) by

Ot + div(Ver pe) = 0

|V e [?

Ot + 5

:at

Then for every f smooth we have

d
*/fd/itZ/ (VI,Vr) dut

i /fdm /Hess f)(Voi, Vi) + (VE, Va) duy



Rigorous statement of the problem

Given M smooth and compact and 1o, 1 with bounded density, find
(145) so that

Oth order: (u$) uniformly Ws-converges to the only W»-geodesic (u)
from po to w1 with densities uniformly bounded

1st order: Up to subsequences ¢;" — ¢; in W2, with (¢;) a choice of
Kantorovich potentials associated to (1:).

2nd order: For every f € W?2(M) and 6 € (0,1/2) it holds

1-6
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Rigorous statement of the problem

Given M smooth and compact and 1o, 1 with bounded density, find
(145) so that

Oth order: (u$) uniformly Ws-converges to the only W»-geodesic (u)
from po to w1 with densities uniformly bounded

1st order: Up to subsequences ¢;" — ¢; in W2, with (¢;) a choice of
Kantorovich potentials associated to (1:).

2nd order: For every f € W?2(M) and 6 € (0,1/2) it holds
1-6
/ / (VF,Vag) p; dvoldt — 0
1)

The estimates should depend only on ,
» the L>°-norms of the densities of ug, 11
» a lower bound on the Ricci curvature of M
» an upper bound on the dimension of M
» an upper bound on the diameter of M
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A natural attempt: viscous approximation of HJ

Let the geodesic (1) be given as well as a Kantorovich potential ¢g.

Fix € > 0 and solve

Vi
2

Ot + =eA¢® b0 = %o
and then the initial value problem

Orpr +div(Veiu;) =0 1o = Ko



Useful inequalities concerning the
Hamilton-Jacobi-Bellman equation

Let (u;) be a positive solution of the heat equation on the compact
Riemannian manifold M.
Then:
~Hamilton’s gradient estimate
’

IV log(uy)| < CT vt € (0,1]

Li-Yau Laplacian estimate
Alog(uy) > f% vt e (0,1]

The constants C;, C, depend only on a lower bound on the Ricci
curvature and an upper bound on dimension and diameter of M.



Where this leads

Oth order: (u§) uniformly Wa-converges to the only W»-geodesic ()
from po to w1 with densities uniformly bounded

1st order: Up to subsequences ¢;" — ¢; in W'2, with (¢¢) a choice of
Kantorovich potentials associated to (1:).



Where this leads

Oth order: (u§) uniformly Wa-converges to the only W»-geodesic ()
from po to w1 with densities uniformly bounded

1st order: Up to subsequences ¢;" — ¢; in W'2, with (¢¢) a choice of
Kantorovich potentials associated to (1:).

However, we cannot obtain from PDE estimates convergence to 0 of
the acceleration in any reasonable sense.
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Setting

M is a smooth, compact, connected Riemannian manifold
po, p1 are bounded probability densities on M

The dependence on ¢, t of the various functions will sometimes be
omitted.

In fact, M can be taken to be a bounded RCD*(K, N) space.
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Objects and PDEs involved

p=1g
o0f = 5Af —0ig =579
{ o =clogf { ¥ =elogg
Orp = 3|Vel? + 500 —0 = 3|VYIP + 500

elog(p) = p+ v ¢ =3 —p)



Objects and PDEs involved

p=1g
o0f = 5Af —0ig =579
{ o =clogf { ¥ =elogg
Orp = 3|Vel? + 500 —0p = 3| VYP + 59
elog(p) = ¢ +¢ ¢ = 3(v —¢)

drp + div(Vep) =0
b + 3|Vel? = —Le2(2A10g(p) + |V 1og(p)R)

=:a
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Statement of the convergence results

Theorem (G. Tamanini '16)
With the assumptions and notation just introduced we have:

Oth order: (pf) uniformly Wa-converges to the only Ws-geodesic (5;)
from pg to pq

1st order: Up to subsequences ¢;" — ¢; in W2, with (¢;) a choice of
Kantorovich potentials associated to (1:).

2nd order: For every f ¢ W?2(M) and 6 € (0,1/2) it holds

1-6
/ /(Vf,Va?) pi dvol dt — 0
5

The estimates depend only on ||po||i=, ||o1]|, @ lower bound on
the Ricci curvature of M and an upper bound on the dimension and
diameter of M.

Actually, the statement holds on bounded RCD* (K, N) spaces.



Ingredients of the proof

0-th and 1-st order convergence are obtained as for the viscous
approximation.

For the second order convergence we start from:
Theorem (Leonard)

d2 £ 1 € € £
Mo = 5 [ (Faef) + o(u)) o avol

- / (r2(6) + 5T2(10g(s7)) ) 5 dvol

where
[Vh[?

rg(h) =A >

— (Vh,VAh)



A new controlled quantity

Say that Ric(M) > 0 so that
F2(h) > |Hess(h)|?

Then from Leonard’s formula we deduce that

1-6
sup // [Hess(¢5)|? + £2|Hess(log(p5)[? dt dvol < oo
€€(0,1)

for every 6 € (0,1/2).



Second order differentiation formula on RCD*(K, N)

spaces

Theorem (G., Tamanini '16)
Let

» M be a compact RCD*(K, N) space
» () a Wa-geodesic with pg, 1 < Cvol

> f e H22(M)
Then t— /fdm is C?
and dt2 /fdﬂt /Hess(f)(VqS,,ngt) dut

where (¢) € W'2(M) is any continuous choice of functions such that
atut + div(ngtm) =0.

In particular, the choice of evolved Kantorovich potential does the job.



Second order differentiation formula on RCD*(K, N)

spaces

Theorem (G., Tamanini '16)
Let

» M be a compact RCD*(K, N) space
» () a Wa-geodesic with pg, 1 < Cvol

> f e H22(M)
Then t— /fdm is C?
and dt2 /fdﬂt /HGSS )(VqS,,ngt) dut

where (¢) € W'2(M) is any continuous choice of functions such that
atut + div(ngtm) =0.

In particular, the choice of evolved Kantorovich potential does the job.

Thank you



