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Interpolating between probability densities via the heat
flow

Let M be a compact Riemannian manifold and ρ0, ρ1 bounded
probability densities.

Find functions f ,g on M such that ρ0 = f P1(g)

ρ1 = P1(f ) g

We can then define

ρt := Pt (f ) P1−t (g) t ∈ [0,1]
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Slowing down

For ε > 0 find f ε,gε such that ρ0 = f ε Pε(gε)

ρ1 = Pε(f ε) gε

and then
ρεt := Pεt (f ε) Pε(1−t)(gε) t ∈ [0,1]
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Informal statement of the convergence as ε ↓ 0

‘Theorem’ (Leonard)
As ε ↓ 0 the curves t 7→ ρεt converge to

the W2-geodesic between ρ0
and ρ1

The actual statement is:
I on abstract spaces
I a statement about Gamma-convergence
I the main assumption is that the heat kernel satisfies the natural

large deviation principle
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How to find the functions f ε,gε (1/2)

Let Rε be the measure on M2 given by

dRε(x , y) := rε(x , y) dx dy for rε(x , y) :=
dPε(δx )

dx
(y).

f ε,gε solve our problem if and only if

f ε ⊗ gε Rε is a transport plan from ρ0 to ρ1

where f ε ⊗ gε(x , y) := f ε(x)gε(y)



How to find the functions f ε,gε (2/2)

Let πε be the unique minimum of

H(·|Rε)

among all transport plans from ρ0 to ρ1

Its Euler equation is∫
log
( dπε

dRε

)
dσ for every σ such that π1

∗σ = π2
∗σ = 0

This forces
log(

dπε

dRε
) = aε ⊕ bε

for some aε,bε.
Thus for f ε := exp(aε), gε := exp(bε) we have

πε = f ε ⊗ gε Rε



How to find the functions f ε,gε (2/2)

Let πε be the unique minimum of

H(·|Rε)

among all transport plans from ρ0 to ρ1
Its Euler equation is∫

log
( dπε

dRε

)
dσ for every σ such that π1

∗σ = π2
∗σ = 0

This forces
log(

dπε

dRε
) = aε ⊕ bε

for some aε,bε.
Thus for f ε := exp(aε), gε := exp(bε) we have

πε = f ε ⊗ gε Rε



How to find the functions f ε,gε (2/2)

Let πε be the unique minimum of

H(·|Rε)

among all transport plans from ρ0 to ρ1
Its Euler equation is∫

log
( dπε

dRε

)
dσ for every σ such that π1

∗σ = π2
∗σ = 0

This forces
log(

dπε

dRε
) = aε ⊕ bε

for some aε,bε.

Thus for f ε := exp(aε), gε := exp(bε) we have

πε = f ε ⊗ gε Rε



How to find the functions f ε,gε (2/2)

Let πε be the unique minimum of

H(·|Rε)

among all transport plans from ρ0 to ρ1
Its Euler equation is∫

log
( dπε

dRε

)
dσ for every σ such that π1

∗σ = π2
∗σ = 0

This forces
log(

dπε

dRε
) = aε ⊕ bε

for some aε,bε.
Thus for f ε := exp(aε), gε := exp(bε) we have

πε = f ε ⊗ gε Rε



A first link with optimal transport

Recalling that

rε(x , y) ∼ cε(x)e
−

d2(x , y)

2ε

we see that

εH(π|Rε) = ε

∫
log
( dπ

dRε

)
dπ

∼ −ε
∫

log
( dRε

dx dy
)

dπ

∼ 1
2

∫
d2(x , y) dπ

The precise formulation involves large deviations and Gamma-
convergence.
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The dual problem

Some manipulation show that the dual of the problem

Minimize εH(π|Rε) among all transport plan π from ρ0 to ρ1

is

Maximize
∫
ϕ dρ0 +

∫
ψ dρ1 − ε log

(∫
e
ϕ⊕ψ
ε dRε

)
among all ϕ,ψ ∈ C(M)

Moreover, if πε is a minimizer and ϕε, ψε maximizers we have

πε = e
ϕ⊕ψ
ε Rε
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Second link with optimal transport

Using again rε(x , y) ∼ cε(x)e−
d2(x,y)

2ε we get

ε log
(∫

e
ϕ⊕ψ
ε dRε

)
∼ ε log

(∫
e
ϕ⊕ψ−d2/2

ε dx dy
)

∼ max
x,y

ϕ(x) + ψ(y)− d2(x , y)

2

thus the ‘limit problem’ is to

maximize
∫
ϕ dρ0 +

∫
ψ dρ1 −max

{
ϕ⊕ ψ − d2

2

}
which is the same as

maximize
∫
ϕ dρ0 +

∫
ψ dρ1 among ϕ⊕ ψ ≤ d2

2
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Geodesics in (P2(M),W2)

A W2-geodesic (µt ) on P2(M) solves

∂tµt + div(∇φt µt ) = 0

for functions (φt ) such that

∂tφt +
|∇φt |2

2
= 0

Problem: no matter how nice µ0, µ1 are, in general the φt ’s are only
semiconcave.
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Can we approximate geodesics with smooth curves?

The problem informally stated

Given a geodeisc (µt ), can we find curves (µεt ) which are smooth and
produce a second order approximation of (µt )?



First and second order differentiation formula

Given (µt ) smooth define (φt ), (at ) by

∂tµt + div(∇φt µt ) = 0

∂tφt +
|∇φt |2

2
= at

Then for every f smooth we have

d
dt

∫
f dµt =

∫
〈∇f ,∇φt〉 dµt

d2

dt2

∫
f dµt =

∫
Hess(f )(∇φt ,∇φt ) + 〈∇f ,∇at〉 dµt
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Rigorous statement of the problem
Given M smooth and compact and µ0, µ1 with bounded density, find
(µεt ) so that
0th order: (µεt ) uniformly W2-converges to the only W2-geodesic (µt )
from µ0 to µ1 with densities uniformly bounded

1st order: Up to subsequences φεn
t → φt in W 1,2, with (φt ) a choice of

Kantorovich potentials associated to (µt ).

2nd order: For every f ∈W 2,2(M) and δ ∈ (0,1/2) it holds∫ 1−δ

δ

∫
〈∇f ,∇aεt 〉 ρεt dvol dt → 0

The estimates should depend only on ,
I the L∞-norms of the densities of µ0, µ1

I a lower bound on the Ricci curvature of M
I an upper bound on the dimension of M
I an upper bound on the diameter of M
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A natural attempt: viscous approximation of HJ

Let the geodesic (µt ) be given as well as a Kantorovich potential ϕ0.

Fix ε > 0 and solve

∂tφ
ε
t +
|∇φεt |2

2
= ε∆φε φε0 = ϕ0

and then the initial value problem

∂tµ
ε
t + div(∇φεt µεt ) = 0 µε0 = µ0
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Useful inequalities concerning the
Hamilton-Jacobi-Bellman equation

Let (ut ) be a positive solution of the heat equation on the compact
Riemannian manifold M.
Then:
∼Hamilton’s gradient estimate

|∇ log(ut )| ≤
C1

t
∀t ∈ (0,1]

Li-Yau Laplacian estimate

∆ log(ut ) ≥ −
C2

t
∀t ∈ (0,1]

The constants C1,C2 depend only on a lower bound on the Ricci
curvature and an upper bound on dimension and diameter of M.



Where this leads

0th order: (µεt ) uniformly W2-converges to the only W2-geodesic (µt )
from µ0 to µ1 with densities uniformly bounded

1st order: Up to subsequences φεn
t → φt in W 1,2, with (φt ) a choice of

Kantorovich potentials associated to (µt ).

However, we cannot obtain from PDE estimates convergence to 0 of
the acceleration in any reasonable sense.
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Setting

M is a smooth, compact, connected Riemannian manifold

ρ0, ρ1 are bounded probability densities on M

The dependence on ε, t of the various functions will sometimes be
omitted.

In fact, M can be taken to be a bounded RCD∗(K ,N) space.
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Objects and PDEs involved

ρ = fg

∂t f = ε
2 ∆f −∂tg = ε

2 ∆g

{
ϕ := ε log f

∂tϕ = 1
2 |∇ϕ|

2 + ε
2 ∆ϕ

{
ψ := ε log g

−∂tψ = 1
2 |∇ψ|

2 + ε
2 ∆ψ

ε log(ρ) = ϕ+ ψ φ := 1
2 (ψ − ϕ)

∂tρ+ div(∇φρ) = 0

∂tφ+ 1
2 |∇φ|

2 = − 1
8ε

2(2∆ log(ρ) + |∇ log(ρ)|2)︸ ︷︷ ︸
=:a
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Statement of the convergence results

Theorem (G. Tamanini ’16)
With the assumptions and notation just introduced we have:

0th order: (ρεt ) uniformly W2-converges to the only W2-geodesic (ρ̄t )
from ρ0 to ρ1

1st order: Up to subsequences φεn
t → φ̄t in W 1,2, with (φt ) a choice of

Kantorovich potentials associated to (µt ).

2nd order: For every f ∈W 2,2(M) and δ ∈ (0,1/2) it holds∫ 1−δ

δ

∫
〈∇f ,∇aεt 〉 ρεt dvol dt → 0

The estimates depend only on ‖ρ0‖L∞ , ‖ρ1‖L∞ , a lower bound on
the Ricci curvature of M and an upper bound on the dimension and
diameter of M.
Actually, the statement holds on bounded RCD∗(K ,N) spaces.



Statement of the convergence results

Theorem (G. Tamanini ’16)
With the assumptions and notation just introduced we have:

0th order: (ρεt ) uniformly W2-converges to the only W2-geodesic (ρ̄t )
from ρ0 to ρ1

1st order: Up to subsequences φεn
t → φ̄t in W 1,2, with (φt ) a choice of

Kantorovich potentials associated to (µt ).

2nd order: For every f ∈W 2,2(M) and δ ∈ (0,1/2) it holds∫ 1−δ

δ

∫
〈∇f ,∇aεt 〉 ρεt dvol dt → 0

The estimates depend only on ‖ρ0‖L∞ , ‖ρ1‖L∞ , a lower bound on
the Ricci curvature of M and an upper bound on the dimension and
diameter of M.

Actually, the statement holds on bounded RCD∗(K ,N) spaces.



Statement of the convergence results

Theorem (G. Tamanini ’16)
With the assumptions and notation just introduced we have:

0th order: (ρεt ) uniformly W2-converges to the only W2-geodesic (ρ̄t )
from ρ0 to ρ1

1st order: Up to subsequences φεn
t → φ̄t in W 1,2, with (φt ) a choice of

Kantorovich potentials associated to (µt ).

2nd order: For every f ∈W 2,2(M) and δ ∈ (0,1/2) it holds∫ 1−δ

δ

∫
〈∇f ,∇aεt 〉 ρεt dvol dt → 0

The estimates depend only on ‖ρ0‖L∞ , ‖ρ1‖L∞ , a lower bound on
the Ricci curvature of M and an upper bound on the dimension and
diameter of M.
Actually, the statement holds on bounded RCD∗(K ,N) spaces.



Ingredients of the proof

0-th and 1-st order convergence are obtained as for the viscous
approximation.

For the second order convergence we start from:
Theorem (Leonard)

d2

dt2 H(ρεt |vol) =
1
2

∫ (
Γ2(ϕεt ) + Γ2(ψεt )

)
ρεt dvol

=

∫ (
Γ2
(
φεt
)

+ ε
2 Γ2
(

log(ρεt )
))
ρεt dvol

where

Γ2(h) := ∆
|∇h|2

2
− 〈∇h,∇∆h〉



A new controlled quantity

Say that Ric(M) ≥ 0 so that

Γ2(h) ≥ |Hess(h)|2

Then from Leonard’s formula we deduce that

sup
ε∈(0,1)

∫∫ 1−δ

δ

|Hess(φεt )|2 + ε2|Hess(log(ρεt )|2 dt dvol <∞

for every δ ∈ (0,1/2).



Second order differentiation formula on RCD∗(K ,N)
spaces

Theorem (G., Tamanini ’16)
Let

I M be a compact RCD∗(K ,N) space
I (µt ) a W2-geodesic with µ0, µ1 ≤ Cvol
I f ∈ H2,2(M)

Then t 7→
∫

f dµt is C2

and
d2

dt2

∫
f dµt =

∫
Hess(f )(∇φt ,∇φt ) dµt

where (ϕt ) ⊂W 1,2(M) is any continuous choice of functions such that

∂tµt + div(∇φtµt ) = 0.

In particular, the choice of evolved Kantorovich potential does the job.

Thank you
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