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Plan of the talk

GOAL: discuss some recent geometric applications to smooth
Riemannian manifolds of non-smooth synthetic Ricci curvature
lower bounds

1. Almost rigidity in the Levy-Gromov isoperimetric inequality,

2. Almost Euclidean isoperimetric inequality in a small ball in a
space with Ricci curvature bounded below & application to
Ricci flow,



Part 1. Almost rigidity in the
Levy-Gromov isoperimetric inequality



Isoperimetric problem

One of oldest problems in mathematics, roots in myths of 2000
years ago (Queen Dido’s problem). Roughly 3 questions:

Q1 Given a space X what is the minimal amount of area needed
to enclose a fixed volume v > 0?

Q2 Is there an optimal shape?

Q3 Describe/characterize the optimal shapes.



Examples

Not many examples of spaces X where we can fully answer
Q1,Q2,Q3:

I X = Rn  only optimal shapes are round balls: |∂E | ≥ |∂B|
where B is a round ball s.t. |B| = |E |.

I X = Sn or X = Hn analogous: only optimal shapes are metric
balls: |∂E | ≥ |∂B| where B is a metric ball s.t. |B| = |E |

I Not many other examples (e.g. RP3 by Ritoré-Ros): in
general the spaces for which we can fully answer Q1,Q2,Q3
are either very symmetric or perturbations of very symmetric
spaces.

I Results in presence of mild singularities but still very
symmetric (conical manifolds: Morgan-Ritoré ’02,
Milman-Rotem ’14. Polytopes: Morgan ’07).



Levy-Gromov inequality

Besides the euclidean one, probably the most famous isoperimetric
inequality is the Levy-Gromov isoperimetric inequality:

Levy-Gromov Isoperimetric inequality
Let (Mn, g) Riemannian manifold with Ricg ≥ Kg , K > 0, and
E ⊂ M domain with smooth boundary ∂E . Then

|∂E |
|M|

≥ |∂B|
|S |

(LGI )

where S = Sn
K round sphere with Ric ≡ K , and B ⊂ S is a

spherical cap s.t. |E ||M| = |B|
|S | .

Rigidity: If for some E ⊂ M equality holds in (LGI ) then
(Mn, g) ' Sn

K isometric.
Question: Almost rigidity? i.e. If (LGI ) is almost attained, can we
say that (Mn, g) is close to Sn

K in an appropriate sense?
In order to study the almost rigidity it is convenient to enlarge the
class of spaces to allow non-smooth spaces with Ricci curvature
bounded below.



Non smooth spaces with Ricci bounded below. 1

Notations:

I (X , d,m) compact metric space (for simplicity, but everything
holds for complete and separable, with appropriate changes)
with a finite non-negative Borel measure m (σ-finite would be
enough)

I (P(X ),W2): metric space of probability measures on X
endowed with quadratic transportation distance (Wasserstein)

I Entropy functional UN,m(µ) if µ = ρm� m

UN,m(ρm) := −N
∫
ρ1− 1

N dm if 1 ≤ N <∞

=

∫
ρ log ρ dm if N =∞

(if µ is not a.c. then the singular part does not contribute in
case N <∞, in case N =∞ we set U∞,m(µ) =∞).
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I Crucial observation If (X , d,m) is a smooth Riemannian
manifold (M, g), then Ricg ≥ 0 and dim M ≤ N iff the
entropy functional UN,m is convex along geodesics in
(P(X ),W2).

I But the notion of convexity of the Entropy is purely of
metric-measure nature, i.e. it makes sense in a general metric
measure space (X , d,m).

I DEF of CD(K ,N) condition [Lott-Sturm-Villani]: fixed
N ∈ [1,∞], (X , d,m) is a CD(0,N)-space if the Entropy UN,m

is convex along geodesics in (P(X ),W2).
For K ∈ R, (X , d,m) is a CD(K ,N)-space if the Entropy
UN,m is (K ,N)-convex along geodesics in (P(X ),W2) (more
complicated non linear condition).
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Keep in mind:
- CD(K ,N)spaces  weak objects with Ricci curvature ≥ K and
dimension ≤ N
- the more convex is UN,m along geodesics in (P(X ),W2), the
more the space is positively Ricci curved.

Good properties:

I CONSISTENT: (M, g) satisfies CD(K ,N) iff Ric ≥ K and
dim(M) ≤ N

I GEOMETRIC PROPERTIES: Bishop-Gromov volume growth,
Bonnet-Myers diameter bound, Lichnerowictz spectral gap,
etc.

I STABLE under measured-Gromov Hausdorff convergence
=⇒ all Ricci limit spaces are CD(K ,N) no matter if
collapsing or not.

I Finsler manifolds with lower Ricci bounds are CD(K ,N).



CD(K ,N) and Ricci limits

I If our goal is to isolate a (synthetic) class of spaces which is
closed under mGH convergence and which contains smooth
manifolds with Ric ≥ K and dim≤ N, the class of CD(K ,N)
spaces is TOO LARGE:

I compact Finsler manifolds satisfy CD(K ,N) for some K ∈ R
and N ≥ 1 but if a smooth Finsler manifold M is a Ricci-limit
space then M is Riemannian (Cheeger-Colding ’00).

I  We would like to reinforce the CD(K ,N) condition in order
to rule out Finsler structures, but in a sufficiently weak way in
order to still get a STABLE notion.



Cheeger energy and RCD(K ,N)-spaces

Given a m.m.s. (X , d,m) and f ∈ L2(X ,m), define the Cheeger
energy

Chm(f ) :=
1

2

∫
X
|∇f |2w dm = lim inf

u→f inL2

1

2

∫
X

(lipu)2dm

where |∇f |w is the minimal weak upper gradient.

Crucial observation: On a Finsler manifold M, the Cheeger energy
is quadratic (i.e. parallelogram identity holds) iff M is Riemannian.

Idea[Ambrosio-Gigli-Savaré] reinforce the CD condition with the
requirement that Chm is quadratic (or, equivalently, the heat flow
is linear).

Definition Given K ∈ R and N ∈ [1,∞], (X , d,m) is an
RCD(K ,N) space if it is a CD(K ,N) space & the Cheeger energy
is quadratic.



Good properties of RCD(K ,N)

I Stability under mGH convergence (Ambrosio-Gigli-Savaré and
Gigli-M.-Savaré)

I Equivalent to Bochner inequality (for N =∞
Gigli-Kuwada-Ohta + Ambrosio-Gigli-Savaré, for N ∈ [1,∞)
Erbar-Kuwada-Sturm Vs Ambrosio-M.-Savaré)

I Implies Li-Yau inequalities (Garofalo-M. and Jiang)

I Implies Cheeger-Gromoll Splitting Theorem (Gigli)

I Local structure: euclidean tangent cones (Gigli-M.-Rajala and
M.-Naber) and rectifiability (M.-Naber)

I Implies that Isometries are a Lie Group (Guijarro-Rodriguez
and Sosa)

I Implies existence of a universal cover + classical Theorems on
the (revised) fundamental group (M.-Wei)

I Local to Global property (Ambrosio-M.-Savaré, Cavalletti-E.
Milman)

I . . .



Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD(K ,N), in the latter get RCD(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’12: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
N − Ricci ≥ K : i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD(K ,N).

I Cones or spherical suspensions over RCD spaces (Ketterer ’13)

I . . .



Levy-Gromov isoperimetric inequality in RCD(K ,N)-spaces

DEF: Let (X , d,m) be a m.m.s. with m(X ) = 1 and let E ⊂ X be
a Borel set. Define the outer Minkowski content

m+(E ) := lim inf
ε→0+

m(E ε)−m(E )

ε

where E ε := {x ∈ X : d(x ,E ) < ε}

THM [Cavalletti-M. ’15]: If (X , d,m), with m(X ) = 1, is an
RCD(K ,N) space for some K > 0 and 2 ≤ N ∈ N then (LGI)
holds, i.e. for every Borel subset E ⊂ X

m+(E ) ≥ |∂B|
|S |

where S = SN
K round sphere with Ric ≡ K , and B ⊂ S is a

spherical cap s.t. m(E ) = |B|
|S | .



Method of proof and its roots

Main idea of proof: reduce the inequality to a family of
1-dimensional problems, via L1-optimal transport.

Such a 1-dimensional reduction is called 1-D localization:

I In Rn or Sn, using the high symmetry of the space, 1-D
localizations can be usually obtained via iterative bisections

I Roots in a paper by Payne-Weinberger ’60 about sharp
estimate of 1st eigenvalue of Neumann Laplacian in compact
convex sets of Rn

I Formalized by Gromov-V. Milman ’87, Kannan - Lovász -
Simonovits ’95

I Extended by B. Klartag ’14 to Riemannian manifolds via
L1-optimal trasport: no symmetry but still heavily using the
smoothness of the space (estimates on 2nd fundamental form
of level sets of the Kantorovich potential ϕ)

I Our contribute: simplify the approach via L1-transport and
extend it to non-smooth framework getting new applications.



Rigidity

Fact: we cannot hope to have the same rigidity as in the smooth
setting, since (non-smooth) spherical suspensions have the same
isoperimetric profile function of the round sphere.
Q: Are these the only cases of equality in (LGI )?

THM[Rigidity] (Cavalletti-M. ’15) Let (X , d,m) be an
RCD(N − 1,N) space with m(X ) = 1. Assume there exists E ⊂ X
with m(E ) ∈ (0, 1) such that

m+(E ) =
|∂B|
|S |

where S = SN round sphere of unit radius, and B ⊂ S is a
spherical cap s.t. m(E ) = |B|

|S | .

Then (X , d,m) is a spherical suspension: X ' [0, π]×N−1
sin Y as

m.m.s. for some RCD(N − 2,N − 1) space (Y , dY ,mY )



Almost Rigidity

Q: If (LGI ) has almost equality, must the space be close to a
spherical suspension?

THM[Almost Rigidity] (Cavalletti-M. ’15) Let (X , d,m) be an
RCD(N − 1− δ,N + δ) space with m(X ) = 1. Assume there exists
E ⊂ X with m(E ) = v ∈ (0, 1) such that

m+(E ) ≤ |∂B|
|S |

+ δ.

Then (X , d,m) is ε = ε(δ|N, v)-mGH close to a spherical
suspension:

dmGH(X , [0, π]×N−1
sin Y ) ≤ ε

for some RCD(N − 2,N − 1) space (Y , dY ,mY ).

RK The almost rigidity seems to be new even in case (X , d,m) is a
smooth Riemannian manifold of dimension N and
Ricci≥ N − 1− δ.



Part 2. Ricci flow, Perelman’s Pseudo
Locality Theorem and Almost
euclidean isoperimetric inequalities.



Perelman’s Pseudo-locality Theorem

THM[Theorem 10.1, Perelman’s first Ricci flow paper 2002] For
every α > 0 there exists δ > 0, ε > 0 with the following property.
Suppose we have a smooth solution to the Ricci flow
(gij)t = −2Rij , 0 ≤ t ≤ ε2, and assume that at t = 0 we have

Rg0(x) ≥ −1 & |∂Ω|g0 ≥ (1− δ) cn|Ω|(n−1)/n
g0 , ∀x ,Ω ⊂ B1(x0),

where cn is the euclidean isoperimetric constant.
Then we have an estimate |Rm|(x , t) ≤ αt−1 + ε−2 whenever
0 < t ≤ ε2, dgt (x , x0) < ε.

RK: fundamental difference from Ricci flow and heat flow. Heat
flow has infinite speed of propagation, Ricci flow not. The
non-linearity of Ricci flow here helps: if we have good geometric
control on ball, and no assumtions outside, the Ricci flow for small
times improves the geometric control in the ball regardless how
bad the manifold is outside.



Perelman’s Pseudo-locality Theorem revisited by
Tian&Wang

THM[Tian-Wang JAMS 2015] For every α > 0 there exists
δ > 0, ε > 0 with the following property. Suppose we have a
smooth solution to the Ricci flow (gij)t = −2Rij , 0 ≤ t ≤ ε2, and
assume that at t = 0 we have

Ricg0(x) ≥ −δ2g0 on B1(x0) & |B1(x0)|g0 ≥ (1− δ)ωn.

Then |Rm|(x , t) ≤ αt−1 + ε−2 for 0 < t ≤ ε2, dgt (x , x0) < ε.

RK: - From Bishop Gromov we have |B|g0 ≤ (1 + C δ)ωn, so the
condition |B|g0 ≥ (1− δ)ωn is an almost maximal volume
assumption.
-The proof by Tian-Wang is highly technical and it does not easily
reduce to Perelman’s Theorem.



Almost euclidean isoperimetric inequality

Q: do the assumptions of Tian-Wang’s Pseudo-locality imply the
assumptions of Perelman’s Pseudo-Locality? I.E.

Ricg0(x) ≥ −δ2g0 & |B|g0 ≥ (1− δ)ωn
?⇒ |∂Ω|ng0

≥ (1− ε) cn|Ω|n−1
g0

for all Ω ⊂ Bε(x0).

THM[Cavalletti-M. ’17] For every N ∈ [2,∞) ∩ N there exist
ε̄N , δ̄N ,CN > 0 such that the next holds.
Let (M, g) be a smooth N-dim. Riem. manifold and let x̄ ∈ M.
Assume that B1(x̄) is rel. compact and for some δ ∈ [0, δ̄N ]

|B1(x̄)| ≥ (1− δ)ωN & Ricg ≥ −δ2g on B1(x̄).

Then for every subset E ⊂ BεN (x̄):

|∂E |g ≥ Nω
1/N
N (1− CNδ) |E |

N−1
N

g .

RK Actually we prove the corresponding statement more generally
for a m. m. space (X , d,m) which is essentially non-branching,
CDloc(−δ,N) on a ball B1(x̄) and m(B1(x̄)) ≥ (1− δ)ωN .



Combining Colding’s volume convergence Theorem (Annals of
Math. ’97) with the above result we get:

COR[Cavalletti-M. ’17] For every N ∈ [2,∞) ∩ N there exist
ε̄N , δ̄N ,CN > 0 such that the next holds.
Let (M, g) be a smooth N-dim. Riem. manifold and let x̄ ∈ M.
Assume that B1(x̄) is rel. compact and for some δ ∈ [0, δ̄N ], it
holds:

Ricg ≥ −δ2g on B1(x̄) & dGH(B1(x̄),BRN

1 ) ≤ δ.

Then for every subset E ⊂ BεN (x̄):

|∂E |g ≥ Nω
1/N
N (1− CNδ) |E |

N−1
N

g .

RK closeness in GH-distance is a priori a very weak assumption (a
manifold is δ-GH close to a δ-net which is a discrete space); so it is
remarkable that GH-close + lower Ricci bound ⇒ almost euclidean
isoperimetric inequality.



Some comments, 1.

Q: Why the almost euclidean isoperimetric inequality remained an
open problem since Perelman’s work?

Classical method for proving Levy-Gromov isoperimetric inequality
in a nutshell:

1. in a compact manifold, for every fixed volume v there is a
minimizer Ω of the perimeter having volume v .

2. ∂Ω is smooth (up to a singular set of large codimension) and
the smooth part has constant mean curvature (the regularity
is now classical but it is not trivial at all!).

3. Using the regularity of ∂Ω (crucial: regular part has CMC)
perform computations  get a lower bound on |∂Ω| (so a
fortiori get a lower bound of the perimeter of any set since Ω
is a minimizer).



Some comments, 2.

DIFFICULTY If we want to prove an AE isoperimetric ineq on
B1(x̄)

I A minimizing sequence for the perimeter can approach ∂B1(x̄)
and so the minimizer Ω will hit ∂B1(x̄).

I On the contact region we have an obstacle problem, regularity
is more tricky (partial regularity by Caffarelli in 70ies); in any
case ∂Ω ∩ ∂B1(x̄) may not have constant mean curvature (if
∂B1(x̄) has not)

I  not in good shape to perform computations of
Levy-Gromov on the minimizer.

What we do: Via 1-D localization, we prove the lower bound on
the perimeter of EVERY subset, not just of the minimizers,
without any regularity assumption.
 Use of synthetic Ricci curvature lower bounds via optimal
transport to prove an exquisitely new smooth statement.



!!THANK YOU FOR THE
ATTENTION!!


