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Abstract. In a multi-dimensional risk model with dependent lines of
business, we propose to allocate capital with respect to the minimization
of some risk indicators. These indicators are sums of expected penal-
ties due to the insolvency of a branch while the global reserve is either
positive or negative. Explicit formulas in the case of two branches are ob-
tained for several models (independent exponential, correlated Pareto).
The asymptotic behavior (as the initial capital goes to infinity) is stud-
ied. For higher dimension and several periods, no explicit expression
is available. Using a stochastic algorithm, we get estimations of the
allocation, compare the different allocations and study the impact of
dependence.

Introduction

The current change of regulation leads the insurance industry to address
new questions regarding solvency. In Europe, insurance groups will soon
have to comply with new rules, namely Solvency II. In comparison to the pre-
vious regulation system, Solvency II aims at defining solvency requirements
that are better adjusted to the underlying risks. Solvency requirements may
either be computed thanks to a standard formula, or with internal models
that companies are encouraged to develop.

While a bottom-up approach is used in the standard formula to aggregate
risks (one first studies each small risk separately and then aggregates them
thanks to a kind of correlation matrix), a top-down approach may be used in
some internal or partial internal models to allocate economic capital: once
the main risk drivers for the overall company have been identified and the
global solvency capital requirement has been computed, it is necessary to
split this overall buffer capital into marginal solvency capitals for each line
of business, in order to penalize as equitably as possible lines of business
and customers according to the share of the overall risk they represent af-
ter diversification. Once this is done, one may also want to allocate some
free additional surplus in some different zones in order to avoid as far as
possible that some lines of business become insolvent too often. Capital
fungibility between lines of business or between entities of a large insurance
group that lie in different countries is indeed limited by different entity-
specific or country-specific solvency constraints. For example, when AIG
experienced problems in the USA, it was impossible for the group to trans-
fer some funds from some European branches to the ones in distress. Some
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European branches were able to continue business almost as usual and were
not impacted, while some other lines would have to get up to 37.8 billion of
fresh liquidity.

One possible way to define optimality of the global reserve allocation is
to minimize the expected sum of penalties that each line of business would
have to pay due to its temporary potential insolvency, following ideas pre-
sented in [11]. If one neglects discounting factors, a first approximation of
this penalty is given by the time-integrated expected negative part of the
surplus process. Closed-form formulas were available in the classical risk
model for exponentially distributed claim amounts, which led to a semi-
explicit optimal reserve allocation.
However, this approach does not take into account the dependence struc-
ture. Also, one could object that if the company is ruined at the group
level (i.e. the sum of the surpluses is negative), then the allocation does not
change anything. Following [4], we define and study the expected orange
area: the reserve of line k at time j is denoted by Rkj (defined as uk plus the

aggregate premium minus the aggregate claim of the kth branch over the
first j periods). We look for the optimal allocation (u1, . . . , ud) - where uk

stands for the part of capital allocated to the kth branch - that minimizes

I1 =

p∧τ∑
j=1

d∑
k=1

E
(
|Rkj |11{Rk

j<0}11{R1
j+···+Rd

j≥0}
)

under the constraint that u1 + · · ·+ ud = u, where

τ = inf
{
j ∈ N∗, R1

j + · · ·+Rdj < 0
}
.

The I1 indicator is the stopped version of the indicator considered in [4]:

I2 =

p∑
j=1

d∑
k=1

E
(
|Rkj |11{Rk

j<0}11{R1
j+···+Rd

j≥0}
)
.

Remark that in the case p = 1, I1 = I2. Below, I1 is referred to as the
stopped orange area and I2 is referred to as the orange area. In the present
paper, we also consider the alternative risk indicator, called expected violet
area:

J =

p∑
j=1

d∑
k=1

E
(
|Rkj |11{Rk

j<0}11{R1
j+···+Rd

j≤0}
)
.

The three studied cases are represented in the figure below. In the case
when p = 1, these three indicators may be considered as particular cases of
Dhaene et al.’s [6] general framework which resumes as the minimization of

d∑
j=1

E
[
ξjD

(
Xj − uj

vj

)]
where Xj stands for the loss of the jth branch, (vj) for a weight sequence
and D is a deviation function.
Our proposal corresponds to take ξj = 11{S≤u} or ξj = 11{S≥u} (where S is

the aggregate loss) and D(x) = x+ (see equations (31), (69), (72) and (74)
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1

R1
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1

u = u1 + u2

∑d
k=1 Rk

p

R1
p

R2
p

Stopped orange area

Figure 1. Representation of the three indicators

in [6]).

The number p of periods could also correspond to one year in the Solvency II
Solvency Capital Requirement computation problem, or to 3 to 5 years in
the Own Risk and Solvency Assessment (ORSA) framework. ORSA is de-
fined as the process undertaken by an insurer or an insurance group to assess
the adequacy of its risk management and current and future solvency posi-
tion; in that setting, time is often discrete to limit the complexity and one
is interested in ruin at yearly inventories. The Article 45 of the Solvency II
directive defines the ORSA as a part of the risk-management system of an
insurance or reinsurance undertaking to conduct its own risk and solvency
assessment (see [7] for example). The National (U.S) Association of In-
surance Commissioner (NAIC) had also initiated reflections and proposed
principles on ORSA, a review may be found in [12].
Here we consider very basic insurance discrete time models for different lines,
and we try to study the optimal reserve allocation. We shall see that consid-
ering the orange area (I1 or I2 indicator) is a completely different approach
from the economic capital allocation problem, where one tries to penalize
contributions to the overall risk and to diversification effect.

As noticed in [6], different capital allocations must in some sense correspond
to different questions that can be asked within the context of risk manage-
ment. A review on various ways to allocate capital may be found in [5].
Also J.-P. Laurent [10] gives a global view of capital allocation and exhibits
connections between several theories (including Euler, Shapley-Aumann and
Pareto optimal allocations). Let us remark that even if our purpose implies
a risk driven allocation of capital, we do not refer explicitly to risk measure
theory (see [3, 8, 9]). An example is the TVaR allocation principle (which
appears also as a particular case of [6], see equation (54)), according to
which each line of business k has to pay for cost of capital corresponding to
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average marginal loss for line k given that things go wrong for the global
company (the VaR of the sum is overshot). This allocation principle is sim-
ilar in spirit to the minimization of the indicator J (violet area), while the
orange area is placed in a different context and relevant when the global
company is safe. We are more interested in the stability and liquidity issues
with limited capital fungibility. When the global company is ruined, this
allocation has no importance (even if in practice, one may break the mutual
solidarity principle and decide to run separately healthy lines). Finally, note
that we do not take into account the penalties in the overall reserve process;
in theory the line of business or the global company would have to pay the
penalty upfront, and this could accelerate ruin.

The present article is an attempt to explore the quantitative behavior of the
allocation procedure, based on the minimization of a risk indicator. While
Dhaene et al. (see Theorem 3 in [6]) show that the optimization problem
leads to compute quantile functions and comonotonic sums related to each
risk and to the specific form of the indicator (see Theorem 3), we propose ex-
plicit computations in dimension 2 and provide a simulation study in higher
dimension and for multi-periodic models. The simulation study is made pos-
sible thanks to the algorithmic procedure proposed in [4]. Let us emphasize
that in [6], the question of the effective computation of the solution to the
optimization problem is not addressed.

Our paper is organized as follows. In Section 1, we tackle the case when there
are two lines of business (d = 2) and one period (p = 1). We derive semi-
explicit formulas and/or asymptotics in the cases where aggregate claim
amounts are independent exponentials, independent Generalized Pareto Dis-
tribution (GPD), correlated GPD, for the minimization of the orange area.
In Section 2, we present the same computations for the minimization of the
violet area, and compare both minimization strategies. Section 3 consists in
a simulation study for the case treated in Section 1 and Section 2, using the
algorithm developed in [4]. This section helps for benchmarking the param-
eters of the algorithm. In Section 4, models in higher dimension (d = 10),
still for one period, are considered. In Section 5, we investigate time hori-
zons p > 1 and d = 2, . . . , 5 lines of business. For the models considered in
these two last sections, semi-explicit formulas are generally not available.

1. Time horizon p = 1, d = 2 lines

In this section, we consider the one-period problem with two lines of
business. Let

Rk1 = uk + ck −Xk,

where for line k = 1, 2, uk is the initial reserve, ck is the premium and Xk

is the aggregate claim amount during the first period. We start with a basic
example with a discrete distribution. It illustrates the fact that the use of
the orange area may lead to inconsistent allocation, for example, if the total
capital u is too small. Then we consider more meaningful models for the
claims, for which we may derive explicit solutions.
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1.1. A basic example. The following example is very basic but a carica-
ture. It was chosen to highlight the fact that the expected orange area must
not be used to penalize lines of business according to their risk contribu-
tions. Imagine that c1 = c2 = 10, that X1 = 1000Y 1 and X2 = 20Y 2, where
Y 1 and Y 2 are independent Bernoulli random variables with parameter 1/2,

and that u = 10. The expected orange area is equal to 10−u2
4 for 0 ≤ u2 ≤ u,

because the aggregate reserves are negative if X1 = 1000. Consequently, the
optimal reserve allocation would be to allocate all the capital to the less risky
line of business (line 2). This decision corresponds to minimizing penalties
in case of temporary insolvency of one line, but is in complete disagreement
with any reasonable economic capital allocation principle. Let us remark
that in this example, the violet area equals 1

4(1980− u1), so that it is mini-
mized by allocating all the capital to the most risky branch, as expected.
We remark that in this example, u and the premiums c1 and c2 are not
consistent with the claims X1 and X2. Belowa, we have taken u = 960,
c1 = 50 and c2 = 1. We have considered two cases: firstly Y 1 and Y 2

are independent Bernoulli variables with parameter 1
2 . Secondly, they are

still independent Bernoulli variables but Y 1 has parameter 1
2 and Y 2 has

parameter 1
3 .

1.1.1. Y 1 ; B(1
2), Y 2 ; B(1

2). A direct computation gives:

I1 = I2 = J =
1

4

(
(950− u1)11{u1<950} + (19− u2)11{u2<19}

)
.

The violet and the orange area are the same. Under the constraint u1 +u2 =
u, it is minimized for 10 ≤ u2 ≤ 19 (in this case, there is not a unique
minimum).

1.1.2. Y 1 ; B(1
2), Y 2 ; B(1

3). A direct computation gives:

I1 = I2 =
1

6

(
2 ∗ (950− u1)11{u1<950} + (19− u2)11{u2<19}

)
,

J =
1

6

(
(950− u1)11{u1<950}} + (19− u2)11{u2<19}

)
.

There is a unique minimum for I1 = I2, which is reached for u2 = 10 and
u1 = 950.
In the case of the violet area J , the minimum is reached for u2 ∈ [10; 19],
the minimum is not unique.

Let us now assume that the insurance company has previously correctly pe-
nalized lines of business according to their risks, and then wants to allocate
some additional safety capital u in order to avoid temporary insolvencies of
some lines. The orange area has been designed to answer this question.

1.2. General remarks. We now consider more general cases, still for the
period p = 1 and focus on the orange area. For the sake of simplicity, in
the remainder of this section, we will consider uk instead of uk + ck. The
premium is thus included in the allocation here. Remark that for p > 1 this
would be a non sense to include the premium in the allocation.

aThe premiums have been taken equal to 10% of the expected value of the claims.
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The gradient with respect to (u1, u2) of the average orange area I2 is given
by (

P(R1
1 < 0, R1

1 +R2
1 ≥ 0), P(R2

1 < 0, R1
1 +R2

1 ≥ 0)
)
.

We are looking for non degenerate solutions (i.e. each line receives a pos-
itive initial reserve uk in the optimal strategy), an easy calculation with
Lagrange’s multipliers with the constraint u1 + u2 = u leads to an optimal
allocation when

P
(
R1

1 < 0, R1
1 +R2

1 ≥ 0
)

= P
(
R2

1 < 0, R1
1 +R2

1 ≥ 0
)
,

which can be rewritten as

(1.1) P
(
X1 > u1, X1 +X2 ≤ u

)
= P

(
X2 > u2, X1 +X2 ≤ u

)
.

We shall consider several probabilistic models for the claims X1 and X2:
independent exponentials (Section 1.3), independent GPD (Section 1.4), as
well as conditionally independent exponentials (Section 1.5) which are cor-
related Pareto distributed (GPD).

1.3. Independent exponentials. Assume X1 and X2 are independent ex-
ponential random variables with respective parameters µ1 and µ2. In the
particular case where µ1 = µ2, the optimal allocation is u1 = u2 = u/2.
From now on, assume that µ2 > µ1.

1.3.1. Optimal allocation.
Let us denote α and β the real numbers such that µ2 = αµ1 and u1 = βu,
α > 1 and 0 ≤ β ≤ 1. Equation (1.1) leads to the optimal allocation

(1.2) (α−1) (h (β)− h (α(1− β)))−αh(1)+(1+α)h (β + α− αβ) = h(α)

where h is the function defined by h(x) = exp
(
−uµ1x

)
.

Proposition 1.1. There exists a unique β = ψ(α, u, µ1) ∈ [0, 1] satisfying
Equation (1.2). Moreover, 0 < ψ(α, u, µ1) ≤ α

α+1 and α 7→ ψ(α, u, µ1) is
non decreasing.

Proof. The proof is a straightforward application of the convexity of h and
the implicit function theorem. �

Remark 1.2. The fact that ψ(α, u, µ1) (and thus u1) increases with α is
consistent with the fact that if α increases then the first branch becomes
riskier.

1.3.2. Asymptotic as the capital u goes to infinity. Studying the asymptotic
as u→∞ is useful in order to make comparison between models easier.

Proposition 1.3. For α > 1,

lim
u→∞

ψ(α, u, µ1) =
α

α+ 1
.

Proof. Multiplying (1.2) by h(−β), we get

(α−1)−αh(1−β)+(1+α)h (α(1− β))−(α−1)h (α(1− β)− β)−h(α−β) = 0.

Remark that limu→∞ ψ(α, u, µ1) 6= 1 since the left hand side of the previous
equation has to go to 0 when u tends to ∞. Then, one has

lim
u→∞

−αh
(
1− ψ(α, u, µ1)

)
+(1+α)h

(
α
(
1− ψ(α, u, µ1)

))
−h
(
α− ψ(α, u, µ1)

)
= 0,
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and consequently h
(
α
(
1− ψ(α, u, µ1)

)
− ψ(α, u, µ1)

)
−→
u→∞

1, which leads to

lim
u→∞

α
(
1− ψ(α, u, µ1)

)
− ψ(α, u, µ1) = 0

and Proposition 1.3 follows. �

1.4. Independent Pareto. We consider two independent Generalized Pareto
Distribution (GPD) denoted by X1 and X2 with respective parameters(

1
a ,

b
a

)
and

(
1
a ,

b
αa

)
, a, b > 0, α ≥ 1. The density and survival functions

are given by:

fX1(x) =
a

b

(
1 +

x

b

)−a−1
, fX2(x) =

αa

b

(
1 +

αx

b

)−a−1

and

FX1(x) =
(

1 +
x

b

)−a
, FX2(x) =

(
1 +

αx

b

)−a
.

Equation (1.1) yields in this case

FX1(u1) − a

b

u∫
u1

(
1 +

x

b

)−a−1
(

1 +
α(u− x)

b

)−a
dx

= FX2(u2) − a

b

u∫
u2

(
1 +

αx

b

)−a−1
(

1 +
(u− x)

b

)−a
dx.(1.3)

We do not know how to derive an explicit optimal allocation from this
equation. Nevertheless, an asymptotic as u → ∞ is reachable. We begin
with a general result for independent variables.

Theorem 1.4. Let X1 and X2 be two independent, continuous and non
negative random variables such thatb FX1(x) = Θ(FX2(x)) as x→∞. The
solution (u1, u2) to Equation (1.1), under the constraint u1 + u2 = u is
equivalent, as u→∞ to

FX1(u1) = FX2(u2).

Proof. First, we start with the proof of the existence of two real numbers κ1

and κ2 such that 0 < κ1 < κ2 < 1 and for u large enough,

(1.4) κ1 ≤
u1

u
≤ κ2.

Let β(u) = u1

u . If (1.4) was not satisfied then taking if necessary a sequence
uk → ∞, we could assume that either β → 0 or β → 1. If β → 0 then
FX1(u1)→ 0 and FX2(u2)→ 1. Remark that

P(X1 > u1, X1 +X2 ≤ u) = FX1(u1)− P(X1 > u1, X1 +X2 > u),

so that (1.1) rewrites:

FX1(u1)−P(X1 > u1, X1+X2 > u) = FX2(u2)−P(X2 > u2, X1+X2 > u).

Both terms P(X1 > u1, X1 + X2 > u) and P(X2 > u2, X1 + X2 > u) go
to 0 as u → ∞, so that we can not have FX1(u1) → 0 and FX2(u2) → 1.

bRecall that f(x) is said to be Θ(g(x)) as x → ∞ if the ratio f(x)
g(x)

is bounded (from

below and from above) as x → ∞.
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and thus β can not go to 0. The same reasoning proves that β cannot go to
1 and thus (1.4) is satisfied.
Now,

P(X1 > u1, X1 +X2 > u) = P(X1 > u1, X2 >
√
u, X1 +X2 > u)︸ ︷︷ ︸

(1)

+P(X1 > u1, X2 <
√
u, X1 +X2 > u)︸ ︷︷ ︸

(2)

.

The term (1) is less than P(X1 > u1)P(X2 >
√
u) = o(FX1(u1)). The

term (2) is less than FX2(
√
u)FX1(u−

√
u). Thus, (1.4) leads to

FX1(u−
√
u) ≤ FX1(u1)

for u large enough, so that

P(X1 > u1, X1 +X2 > u) = o
(
FX1(u1)

)
and

P(X2 > u2, X1 +X2 > u) = o
(
FX2(u2)

)
.

The fact that FX1(x) = Θ(FX2(x)) yields the desired result. �

Proposition 1.5. The unique solution to (1.3) satisfies

lim
u→∞

β(u) =
α

α+ 1
,

where β(u) = u1

u .

Proof. The proof is a straightforward consequence of Theorem 1.4 together
with the resolution of FX1(u1) = FX2(u2). �

1.5. Correlated Pareto. In this section, we consider a model inspired from
[2]. Let X be a random variable with exponential distribution E(Θ), where
the parameter Θ is Γ(a, b) distributed. Recall that the resulting mixed
survival function of X is given by

1− FX(x) =

∫ ∞
0

e−θxfΘ(θ)dθ =
(

1 +
x

b

)−a
, x ≥ 0.

In other words, X has a Generalized Pareto distribution (GPD).

1.5.1. Explicit solution for fixed u. Let X1 and X2 be two GPD according
to the above model. Conditionally to µ1, we assume that X1 ∼ E(µ1),
X2 ∼ E(αµ1) with 1 < α, X1 and X2 are independent. We assume moreover
that µ1 ∼ Γ(a, b), a, b > 0. Following [2], we have that the dependence
structure of the Xi’s is given by a survival Clayton copula.
Conditionally to µ1 equation (1.1) leads to:

(α−1)h(β)−αh(1)+h(α−αβ+β) = (α−1)h(α(1−β))−αh(α−αβ+β)+h(α).

We now integrate with respect to µ1 and get the same equation replacing
the function h by s(x) = (1 + xub )−a. Hence this equation can be rewritten
as f(α, β, u) = 0 with

f(α, β, u) = (α− 1) (s(β)− s (α(1− β)))

−αs(1) + (α+ 1)s (α− αβ + β)− s(α).(1.5)
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Proposition 1.6. There exists a unique β = Φ(α, u, a, b) ∈ [0, 1] satisfying
equation (1.5). Moreover, 0 < Φ(α, u, a, b) ≤ α

α+1 .

Proof. We remark that f(α, 0, u) = −f(α, 1, u) = (α−1)+s(α)−αs(1) ≥ 0
as by convexity of s, one has

s(α)− s(1)

α− 1
≥ s(1)− s(0) .

Moreover one has
b

a(α− 1)u

∂f

∂β
= −g(β) + (α+ 1)g(α− αβ + β)− αg(α(1− β))

= −g(β) + g(α− αβ + β) + αg(α− αβ + β)− αg(α(1− β))(1.6)

≤ 0

with g(x) = (1 + xub )−(a+1), as g is decreasing. Hence there exists a unique
β0 ∈ [0, 1] such that f(α, β0, u) = 0. We also have

(1.7) f(α,
α

α+ 1
, u) = s(γ)− s(α) + αs(γ)− αs(1)

with γ = 2α
α+1 . We remark that 1 < γ < α, hence using the convexity of s

we have

s(γ)− s(α) ≤ (s(1)− s(γ))
α− γ
γ − 1

which implies that f(α, α
α+1 , u) ≤ 0 hence β0 ≤ α

α+1 . �

1.5.2. Asymptotic as the capital u goes to infinity. One gets the following
result, considering the asymptotic as u goes to ∞ :

Proposition 1.7. For α > 1, limu→∞Φ(α, u, µ1) = Φ0 is the solution to:

(1.8) (α−1)
(
Φ−a0 − (α(1− Φ0))−a

)
−α+(α+1)(α−αΦ0+Φ0)−a−α−a = 0.

We have Φ0 <
α
α+1 .

Proof. Equation (1.5) is equivalent, when u→∞ to

(1.9) (α−1)
(
β−a − (α(1− β))−a

)
−α+(α+1) (α− αβ + β)−a−α−a = 0.

One wants to prove that the solution of (1.9) above satisfies β < α
α+1 when

α > 1. Indeed, define

g(β) = (α−1)β−a−α+(α+1)(α−αβ+β)−a− (α−1)α−a(1−β)−a−α−a.
One has g(0+) = +∞ and g(1−) = −∞. Straightforward computations
prove that g is decreasing in β and that g( α

α+1) < 0. This proves that the

solution Φ0 of (1.9) satisfies Φ0 <
α
α+1 . �

2. Comparison with an indicator designed for crisis

Recall that the violet area is given by the indicator

J(u1, . . . , ud) =

p∑
j=1

d∑
k=1

E
(
|Rkj |11{Rk

j<0}11{R1
j+···+Rd

j≤0}
)

under the constraint u1 + · · · + ud = u. As mentioned in the introduction,
this corresponds to a more classical economic capital allocation principle,
closely related, in spirit, to the TVaR based allocation.
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In this section, we consider the capital allocation that minimizes this vi-
olet area. As the computations are similar to the ones corresponding to the
orange area, we do not go into the details. Firstly, we focus on the inde-
pendent exponential distributions case and on the conditionally exponential
independent distributions one. Then, we give asymptotic results for the
independent GPD case. For this last purpose, we study the asymptotic be-
havior of probabilities for subexponential distributions. An easy calculation
leads to the convexity of the function J since

(u1, . . . , ud) 7→
∣∣∣Rkj ∣∣∣ 11{Rk

j<0}11{∑d
k=1R

k
j≤0}

is a convex function on the set {(v1, . . . , vd) ∈ (R+)d , v1 + . . . + vd = u}
and the sum and expectation of convex functions is convex. Moreover, since
x 7→ |x| is strictly convex so does the function J . Thus there exists a unique
minimum u∗ to the optimal allocation problem with the indicator J . It is
reached for u1 + u2 = u with

(2.1) P(X1 ≥ u1, X1 +X2 ≥ u) = P(X2 ≥ u2, X1 +X2 ≥ u).

We have the following implicit solutions to the optimal allocation issue (re-
call that u1 = βu):

• Independent exponential distributions:

(2.2) (α+ 1)e−uµ
1(α−αβ+β) − αe−uµ1 − e−αuµ1 = 0.

• Conditionally exponential independent distributions:

(2.3) (α+ 1)

(
1 +

u(α− αβ + β)

b

)−a
− α

(
1 +

u

b

)−a
−
(

1 +
uα

b

)−a
= 0.

Going through the limit u→∞ in equation (2.2) leads to β → 1 while in
equation (2.3) it leads to

α+ α−a − (α+ 1)(α− αβ + β)−a = 0.

These asymptotic behaviors are illustrated on Figure 2 below. The bold
lines are for the independent exponential model, with parameter µ1 = 1

20 ,
the simple lines are for the conditionally independent model with parameter
a = 1 and b = 20, in both cases, α = 5. The violet lines are for the J
indicator and the orange ones for the I2 indicator.

2.1. Some general results for independent and subexponential dis-
tributions. In this section, we give some results for the asymptotic behavior
of the allocation with respect to the violet area, in the case where the two
distributions are subexponential and independent. For results on subexpo-
nential distributions, we refer to Asmussen [1].
Recall that a distribution is subexponential if it is concentrated on [0,∞[
and its distribution function F satisfies:

(2.4)
F
∗2

(x)

F (x)

x→∞−→ 2,

where F ∗2 is the convolution square, that is, the distribution function of two
independent variables with distribution function F . The class of subexpo-
nential distributions is denoted by S. In [1] (Chapter IX, Proposition 1.4),
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Figure 2. Asymptotic behavior for the independent expo-
nential and conditionally independent exponential models

it is proven that regularly varying distributions are subexponential and the
following result.

Proposition 2.1 ([1]). Let F ∈ S then for any y0 ∈ R+,

F (x− y)

F (x)

x→∞−→ 1

uniformly in y ∈]0, y0].

We derive the following result from the properties of the subexponential
class.

Theorem 2.2. Let X and Y be two independent random variables, concen-
trated on R+. Let FX be the distribution function of X, u, v ∈ R+, v ≤ u.
Assume that

(1) v
u → β with 0 < β < 1,

(2) FX ∈ S,

(3) for any t > 0,
FX(tu)

FX(u)

u→∞
= O(1).

Then

(2.5) lim
u→∞

P(X ≥ v, X + Y ≥ u)

FX(u)
= 1.

Proof. We closely follow ideas from [1], Chapter IX. The fact that

lim inf
u→∞

P(X ≥ v, X + Y ≥ u)

FX(u)
≥ 1
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follows from

P(X ≥ v, X + Y ≥ u) ≥ P(X ≥ v, max(X,Y ) ≥ u)

and

P(X ≥ v, max(X,Y ) ≥ u) = P(X ≥ u) + P(X ≥ v, Y ≥ u)− P(X ≥ u, Y ≥ u)

= FX(u) + FX(v)F Y (u)− FX(u)F Y (u).

Now, we shall prove that

lim sup
u→∞

P(X ≥ v, X + Y ≥ u)

FX(u)
≤ 1.

Let w ∈ R+ be fixed. We have

P(X ≥ v, X+Y ≥ u) = P(X ≥ v, Y ≤ w, X+Y ≥ u)+P(X ≥ v, Y ≥ w, X+Y ≥ u).

For u large enough,

P(X ≥ v, Y ≤ w, X + Y ≥ u) =

w∫
0

FY (dy)FX(max(v, u− y))

=

w∫
0

FY (dy)FX(u− y).

Now, Proposition 2.1 gives

lim
u→∞

P(X ≥ v, Y ≤ w, X + Y ≥ u)

FX(u)
= FY (w).

On the other hand,

P(X ≥ v, Y ≥ w, X + Y ≥ u) =

u−v∫
w

FY (dy)FX(u− y)

+

∞∫
u−v

FY (dy)FX(v)

≤ FX(u− w)F Y (w) + FX(v)F Y (u− v).

So that

lim sup
u→∞

P(X ≥ v, Y ≥ w, X + Y ≥ u)

FX(u)
≤ F Y (w).

�

We deduce the following result for independent GPD.

Corollary 2.3. If X1 and X2 are like in Section 1.4, then the unique solu-
tion to (2.1) satisfies

β(u)
u→∞−→ 1

where β(u) = u1

u .



RISK INDICATORS AND OPTIMAL RESERVE ALLOCATION 13

Proof. We apply Theorem 2.2 to X1 and X2 independent GPD with re-
spective parameters ( 1

a ,
b
a) and ( 1

a ,
b
αa), a, b > 0, α > 1. We consider the

quantities

`1 =
P(X1 ≥ u1, X1 +X2 ≥ u)

P(X1 ≥ u1)
and `2 =

P(X2 ≥ u2, X1 +X2 ≥ u)

P(X1 ≥ u1)
.

If u1 + u2 = u and (2.1) is satisfied then `1 = `2.

If β(u) = u1

u is bounded away from 0 and 1, then up to considering a sequence
of real numbers u going to infinity, we may assume that

u1

u
→ β with 0 < β < 1.

In that case, applying Theorem 2.2 gives

lim
u→∞

`1 = βa and lim
u→∞

`2 =

(
β

α

)a
which is contradictory with the fact that `1 = `2.
So that, up to considering a sequence of real numbers u going to infinity, we

have that either u1

u → 0 or u1

u → 1.

Let us assume that u1

u → 0. Following the lines of the proof of Theorem 2.2,
we prove that

lim
u→∞

P(X1 ≥ u1, X1 +X2 ≥ u)

FX1(u)
= 1 +

1

αa

and

lim
u→∞

P(X2 ≥ u2, X1 +X2 ≥ u)

FX1(u)
=

1

αa
.

This is in contradiction with the fact that the two above expressions are
equal. We conclude that β(u)→ 1 as u→∞. �

2.2. Summary of comparisons. Below is summarized the asymptotic be-
havior for the three models: (M1) independent exponential, (M2) indepen-
dent GPD, (M3) conditionally independent exponential and the two indica-
tors (I) orange area, (J) violet area. The asymptotic of β is expressed with
respect to α and to the parameters of the model.

M1 M2 M3

I
α

α+ 1

α

α+ 1
(α− 1)β−a − α+ (α+ 1)(α− αβ + β)−a − (α−
1)(α(1− β))−a − α−a = 0

J 1 1 α+ α−a − (α+ 1)(α− αβ + β)−a = 0

The algorithm given in [4] can be easily adapted to the estimation of alloca-
tion minimizing the violet area. The keystone for the proof of convergence
of this algorithm relies in the strong convexity of the auxiliary function used
in the mirror algorithm, in the properties of the Legendre transform and
in martingales techniques. The violet area as well as the stopped orange
area satisfy the hypothesis of convergence of the algorithm (in [4], it has
been verified for the orange area). The stochastic algorithm is developed
in order to estimate the optimal solution (u1, . . . , ud) under the constraint
u1 + · · · + ud = u. This algorithm is distribution free and is efficient even
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when d is quite large (d = 30 or d = 50). This is a Kiefer-Wolfowitz version
of the stochastic mirror algorithm.

2.3. Rapid description of the algorithm. The procedure may be sum-
marized in the following picture:

0 1 2
ζn−1ζn

α

Slope: 1/γn

Gradient descent

xn−1

xn

Wβ

The algorithm constructs two random sequences:

. (χn) in C = {x ∈ Rd, xi ≥ 0, x1 + · · ·+ xd = u},

. (ξn) in the dual space E∗ of Rd

Algorithm 2.4.

. Initialization: ξ0 = 0 ∈ E∗, χ0 ∈ C

. Update: for n = 1 to N do
• ξn = ξn−1 − γnψ(χn−1)
• χn = ∇Wβn(ξn)

. Output:

SN =

∑N
n=1 γnχn−1∑N

n=1 γn

where ψ is the discrete gradient of the vector I ∈ Rd whose kth coordinate
is

Ik =

 p∑
j=1

gk(R
k
j )11{Rk

j<0}11{∑d
i=1R

i
j≥0}


and respectively of the vector J ∈ Rd whose kth coordinate is

Jk =

 p∑
j=1

gk(R
k
j )11{Rk

j<0}11{∑d
i=1R

i
j≤0}

 ,

W stands for an auxiliary function whose gradient maps E∗ into C (see [4]
for details as well as the proof of the consistency of the estimator SN of the
argmin of I1, I2 or J).
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3. Simulations for p = 1, d = 2

We shall perform simulations for p = 1 and d = 2 for the models de-
scribed above (exponential independent = IE, conditionally exponential=
CIE, independent GPD = IGPD). Recall that the IGPD and CIE models
have the same margins. For the IE and CIE models, we compare the sim-
ulated results with the theoretical ones. The simulations are done for the
non crisis indicator (orange area) as well as for the crisis indicator (violet
area). Then, we have performed simulations in higher dimension (d > 2).

3.1. A comparison of our three models. We have chosen µ1 = 1
20 for

the IE model, a = 3 and b = 60 for the CIE model and ξ = 1
a , σ = b

a
for the IGPD model. In order to get the estimation of the minimum, we
have performed 10 times the stochastic algorithm on data of length 15 000.
The mean and the standard deviation over the 10 estimations are given
below. For α = 5 and α = 10, we have taken u = 50, we compare with
the theoretical value using the relative mean squared error (rmse) and the
mean squared error (mse) for the IE and CIE models. Recall that if ûik is

the estimated value of ui on the kth sample, then

rmse(ui) =
1

k

k∑
j=1

(
ûik − ui

ui

)2

,

and

mse(ui) =
1

k

k∑
j=1

(
ûik − ui

)2
.

3.2. The indicator I2: the orange area.

α = 5
IE model CIE model IGPD model

û1 û2 β û1 û2 β û1 û2 β
mean 38.37 11.63 0.767 36.8 13.2 0.735 35.83 14.17 0.717
sd dev 0.085 0.085 . . . 0.115 0.115 . . . 0.133 0.133 . . .

th. 38.46 11.54 0.769 36.84 13.16 0.737 non available√
rmse 0.0032 0.0105 . . . 0.0032 0.009 . . . non available√
mse 0.121 0.121 . . . 0.119 0.119 . . . non available

α = 10
mean 42.64 7.36 0.852 40.95 9.05 0.819 40.05 9.48 0.801
sd dev 0.161 0.161 . . . 0.138 0.138 . . . 0.164 0.164 . . .

th. 42.96 7.04 0.859 41.22 8.78 0.824 non available√
rmse 0.0085 0.0516 . . . 0.0073 0.0342 . . . non available√
mse 0.364 0.363 . . . 0.301 0.3 . . . non available

This table shows that, for the three models, the more the first branch is risky,
the more we allocate capital to it. Also, we recall that, asymptotically, the
capital allocated to the riskiest branch for the IGPD model is higher than
for the CIE model (see Figure 2) . In the table above, the values of u are
(relatively) small, we conclude that the asymptotic has not been reached.
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3.3. The indicator J : the violet area.

α = 5
IE model CIE model IGPD model

û1 û2 β û1 û2 β û1 û2 β
mean 46.83 3.17 0.94 47.18 2.81 0.94 48.13 1.87 0.96
sd dev 0.35 0.35 . . . 0.136 0.136 . . . 0.114 0.114 . . .

th. 49.08 0.92 0.98 48.36 1.64 0.967 non available√
rmse 0.046 2.49 . . . 0.025 0.722 . . . non available√
mse 2.28 2.28 . . . 1.19 1.19 . . . non available

α = 10
mean 47.62 2.38 0.95 48.68 1.32 0.819 49.16 0.84 0.98
sd dev 0.43 0.43 . . . 0.083 0.083 . . . 0.063 0.063 . . .

th. 49.77 0.23 0.995 49.6 0.39 0.99 non available√
rmse 0.044 9.7 . . . 0.019 2.32 . . . non available√
mse 2.19 2.19 . . . 0.92 0.92 . . . non available

The fact that the rmse and mse are larger than in the case of the orange

area is due to the fact that less data satisfy the condition
∑d

k=1R
k
j ≤ 0 and

thus the estimation is less accurate.

4. Large number of lines of business

We consider 10 lines, with different situations. We begin with some gen-
eralization of the previous models and then propose a model for which we
have a block of 5 correlated lines of business, and a block of lines which are
mutually independent.

4.1. Generalizations of the previous models in dimension 10.

• Independent exponential: X1
1 ; E(µ1), for i = 2, . . . , 7, Xi

1 ;

E(α1µ1) and for i = 8, . . . , 10, Xi
1 ; E(α2µ1).

• Conditional exponential: X1
1 ; E(Θ), for i = 2, . . . , 7, Xi

1 ; E(α1Θ)
and for i = 8, . . . , 10, Xi

1 ; E(α2Θ), where Θ ; Γ(α, b).

• Independent GPD:X1
1 ; GPD( 1

a ,
b
a), for i = 2, . . . , 7, Xi

1 ; GPD( 1
a ,

b
α1a

)

and for i = 8, . . . , 10, Xi
1 ; GPD( 1

a ,
b
α2a

).

The last two models have the same margins. We have chosen α1 = 5 and
α2 = 8 and u = 80. We have performed our stochastic algorithm 10 times
on data sets of length 20 000 for the orange area.

IE CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

u1 27.04 0.095 0.338 25.68 0.194 0.321 22.38 0.178 0.28
u2 6.7 0.031 0.084 6.85 0.05 0.086 7.17 0.044 0.09
u3 6.69 0.039 0.084 6.83 0.083 0.085 7.26 0.06 0.091
u4 6.69 0.037 0.084 6.87 0.054 0.086 7.24 0.054 0.09
u5 6.7 0.051 0.084 6.88 0.079 0.086 7.18 0.061 0.09
u6 6.71 0.078 0.084 6.85 0.066 0.086 7.21 0.087 0.09
u7 6.72 0.021 0.084 6.86 0.063 0.086 7.19 0.081 0.09
u8 4.23 0.026 0.053 4.41 0.028 0.055 4.79 0.034 0.06
u9 4.26 0.032 0.053 4.4 0.057 0.055 4.77 0.059 0.06
u10 4.26 0.028 0.053 4.38 0.057 0.055 4.81 0.036 0.06
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The same observations as in dimension 2 can be done. Moreover unsurpris-
ingly, the allocation is identical for the branches 2 to 7 and for the branches
8 to 10.

4.2. A block of correlated GPD and a block of independent GDP,
in dimension 10. In this section, we consider a block of 5 conditionally
exponential variables and an independent block of 5 independent GPD vari-
ables, with the same margins as the 5 correlated GPD variables of the first
block. We refer this model to the mixed model (MM).

• Conditional exponential: X1
1 ; E(Θ) and for i = 2, . . . , 5,

Xi
1 ; E(α1Θ), where Θ ; Γ(α, b).

• Independent GPD: X1
1 ; GPD( 1

a ,
b
a) and for i = 6, . . . , 10,

Xi
1 ; GPD( 1

a ,
b
α1a

).

The MM model has to be compared with the IGPD and CIE models with
the same margins. We have chosen α1 = 5 and u = 80. We have performed
our stochastic algorithm 10 times on data sets of length 20 000.

MM CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

u1 20.56 0.15 0.257 21.48 0.23 0.269 18.42 0.219 0.23
u2 5.78 0.043 0.072 6.49 0.123 0.081 6.88 0.138 0.086
u3 5.77 0.05 0.072 6.52 0.133 0.082 6.88 0.151 0.086
u4 5.8 0.059 0.072 6.49 0.116 0.081 6.82 0.16 0.085
u5 5.79 0.052 0.072 6.52 0.116 0.082 6.82 0.132 0.085
u6 7.25 0.059 0.091 6.5 0.11 0.081 6.81 0.113 0.085
u7 7.25 0.071 0.091 6.5 0.085 0.081 6.89 0.154 0.086
u8 7.31 0.071 0.091 6.5 0.13 0.081 6.82 0.14 0.085
u9 7.25 0.066 0.091 6.49 0.121 0.081 6.82 0.143 0.085
u10 7.26 0.078 0.091 6.49 0.121 0.081 6.83 0.153 0.085

This example illustrates the fact that for the expected orange area, lines
correlated to the most dangerous one receive less capital that lines with the
same marginal distributions but independent from the riskiest line. This is
in accordance with the basic example presented in the introduction. If line 1
is insolvent, then it is likely that the group is ruined (the aggregate reserves
are likely to be negative). Consequently, a greater part of the insolvencies
of lines 2 to 5 than the ones of lines 6 to 10 will not contribute to the orange
area because the sum of reserves is negative. Once again, the orange area
should not be used for economic capital allocation, as it encourages to take
additional risks that are correlated to the main source of risk. Logically, the
effect is reversed if one uses the expected violet area. In that case, a greater
part of insolvencies of lines 6 to 10 will not contribute, and consequently the
required capital for lines 2 to 5 will be higher than for lines 6 to 10, as in
the TVaR allocation principle.

Below are the results for the same models as above, in the case of the violet
area (indicator J). We have performed 10 simulations of length 23 000.
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MM CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

u1 41.4 0.23 0.52 37.68 0.31 0.47 41.99 0.254 0.52
u2 5.2 0.07 0.065 4.68 0.068 0.058 4.19 0.044 0.052
u3 5.19 0.08 0.065 4.72 0.076 0.059 4.23 0.046 0.053
u4 5.18 0.07 0.065 4.67 0.069 0.058 4.2 0.073 0.053
u5 5.16 0.07 0.065 4.73 0.063 0.059 4.2 0.094 0.052
u6 3.57 0.08 0.045 4.68 0.053 0.059 4.22 0.048 0.053
u7 3.56 0.06 0.044 4.72 0.094 0.059 4.23 0.069 0.053
u8 3.58 0.05 0.045 4.69 0.046 0.058 4.24 0.07 0.053
u9 3.56 0.05 0.045 4.69 0.04 0.059 4.25 0.064 0.053
u10 3.59 0.06 0.045 4.72 0.069 0.059 4.24 0.051 0.053

As expected, the optimal allocation with respect to the violet area leads to
penalize all the branches correlated to the more risky one; the independent
branches are less penalized.

5. Time horizon p > 1, d lines of business

We finish our simulation series with several multi-periodic simulations.
We shall consider p = 2, p = 3, p = 4 and d = 3 lines of business. We
have performed simulation only for models with independence in time. As
already mentioned, for multi-periodic cases, the premium c has to be taken
into account. We fix it for each branch as 5% of the expectation of the
branch. We have performed 10 simulations of length 15 000, for our three
models, with α = 5, u = 30, a = 3, b = 60. The simulations are done for the
orange area (indicator I2) then for the orange area with the stopping time
(indicator I1) and finally for the violet area (indicator J). It is expected
that the behavior of the stopped and the non stopped orange area are quite
similar because in both cases, the indicator does not take into the event
which lead to global insolvency.

5.1. The orange area, the I2 indicator.

IE CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

p = 2
u1 17.06 0.11 0.586 13.67 0.26 0.456 11.87 0.19 0.396
u2 6.49 0.1 0.216 8.16 0.13 0.272 9.1 0.22 0.303
u3 6.45 0.07 0.215 8.16 0.24 0.272 9.03 0.18 0.301

p = 3
u1 16.5 0.1 0.55 12.85 0.18 0.428 10.52 0.22 0.351
u2 6.75 0.08 0.225 8.56 0.15 0.285 9.76 0.15 0.325
u3 6.74 0.11 0.225 8.58 0.1 0.286 9.72 0.15 0.324

p = 4
u1 15.99 0.12 0.533 11.8 0.16 0.393 9.48 0.16 0.316
u2 7.01 0.08 0.234 9.1 0.12 0.303 10.27 0.16 0.342
u3 6.99 0.09 0.233 9.1 0.08 0.303 10.25 0.11 0.342

These multi-periodic simulations show the same kind of behavior than for
p = 1. Nevertheless, we remark that for the IGPD model, with p = 4, the
more risky branch becomes less allocated. This is a quite surprising result
which may be explained by the fact that u = 30 in this context is quite
small (recall that the premiums are added at each time n = 1, . . . , p). For
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larger values of u, this phenomenon does not appear anymore as it can be
seen below (u = 80).

IE CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

u1 53.77 0.17 0.672 46.02 0.24 0.575 43.98 0.29 0.55
u2 13.12 0.12 0.164 16.99 0.11 0.212 18.03 0.26 0.225
u3 13.11 0.09 0.164 16.98 0.23 0.212 17.99 0.21 0.225

As in dimension 10, the case of mixed models is more interesting. We
have done a last simulation with p = 4, d = 5, u = 80. The first 3 lines
are conditionally exponential and the last two lines are independent GPD
(parameters are the same as above).

mean sd dev. ui

u

u1 31.33 0.36 0.392
u2 10.63 0.16 0.133
u3 10.6 0.24 0.133
u4 13.74 0.27 0.172
u5 13.7 0.27 0.171

It has to be compared with the correlated Pareto and independent GPD
models with the same margin. This is summarized below.

IE CIE IGPD
mean sd dev. mean sd dev. mean sd dev.

u1 41.1 0.23 32.68 0.28 30.1 0.31
u2 9.69 0.09 11.86 0.14 12.49 0.17
u3 9.71 0.08 11.78 0.24 12.51 0.23
u4 9.78 0.12 11.83 0.15 12.4 0.14
u5 9.72 0.09 11.85 0.12 12.5 0.2

5.2. The stopped orange area, the I1 indicator. If there is only one
period (p = 1), there is no difference between the I2 and the I1 indicators. In
order to compare the optimization with the I1 indicator with respect to the
I2, we have performed simulation with p = 5 and d = 5 on the same models
as above (independent exponential, conditionally independent exponential,
independent GPD, mixed GPD).

IE CIE IGPD MM
mean sd dev. mean sd dev. mean sd dev. mean sd dev.

u1 41.13 0.22 32.9 0.3 30.12 0.22 27.34 0.38
u2 9.73 0.1 11.79 0.15 12.44 0.14 11.25 0.22
u3 9.72 0.08 11.79 0.15 12.51 0.21 11.15 0.15
u4 9.72 0.1 11.79 0.19 12.52 0.2 15.1 0.26
u5 9.71 0.12 11.72 0.19 12.42 0.17 15.16 0.23

We remark that the only notable difference is observed for the mixed model.

5.3. The violet area, the J indicator. As already noticed, for the violet
area, more data is needed because for less of the aggregate loss go over u.
The simulation below are done on data of length 16 000, 10 times.
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IE CIE IGPD

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

p = 3
u1 45.35 2.91 0.567 70.2 1.2 0.877 77.81 0.7 0.972
u2 8.54 0.82 0.107 2.42 0.34 0.03 0.53 0.19 0.007
u3 8.72 0.59 0.109 2.52 0.39 0.032 0.56 0.21 0.007
u4 8.65 0.92 0.108 2.34 0.29 0.029 0.54 0.19 0.007
u5 8.74 0.68 0.109 2.52 0.35 0.032 0.56 0.17 0.007

p = 4
u1 62.63 2.37 0.78 73.63 0.326 0.92 79.6 0.157 0.995
u2 4.31 0.6 0.053 1.62 0.119 0.02 0.1 0.041 0.001
u3 4.34 0.6 0.054 1.52 0.194 0.019 0.11 0.042 0.001
u4 4.41 0.68 0.055 1.58 0.327 0.02 0.09 0.033 0.001
u5 4.3 0.59 0.054 1.65 0.203 0.021 0.11 0.045 0.002

p = 5
u1 55.12 3.26 0.689 71.61 0.79 0.895 78.41 0.52 0.98
u2 6.23 0.83 0.078 2.06 0.3 0.026 0.37 0.12 0.005
u3 6.29 0.95 0.079 1.96 0.41 0.024 0.41 0.15 0.005
u4 6.18 0.91 0.077 2.24 0.24 0.028 0.42 0.17 0.005
u5 6.18 0.89 0.077 2.13 0.17 0.027 0.4 0.14 0.005

We have also performed simulations for the mixed model (the first 3 lines
are conditionally exponential and the last two lines are independent GPD
with the parameters are the same as above).

p = 3 p = 4 p = 5

mean sd dev. ui

u mean sd dev. ui

u mean sd dev. ui

u

u1 74.74 0.76 0.934 77.64 0.24 0.971 76.3 0.85 0.954
u2 2.32 0.34 0.029 1.11 0.11 0.014 1.74 0.36 0.022
u3 2.18 0.47 0.027 1.1 0.23 0.014 1.56 0.49 0.019
u4 0.38 0.12 0.005 0.066 0.02 0.001 0.21 0.07 0.003
u5 0.37 0.09 0.005 0.072 0.02 0.001 0.2 0.08 0.003

6. Conclusion

In this article, we have presented some results for the allocation of capi-
tal with respect to the minimization of some risk indicators. In dimension
d = 2 for one period (p = 1), explicit formulas and some asymptotics are
given for specific models, a simulation study is done, it allows to bench-
mark the parameters of the optimization algorithm. Then, simulations are
done in higher dimension and for several periods (p > 1). It emphasizes
the fact that minimization driven allocations require to chose the right risk
indicator. As an example, we would recommend to use the orange area for
free capital allocation, while the violet area is more consistent for economic
capital allocation.
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Université de Lyon, Université Lyon 1, Laboratoire SAF EA 2429
E-mail address: veronique.maume@univ-lyon1.fr
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