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Modeling environmental data

We are interested in the modelization of environmental data. e.g.

precipitation,

temperature,

wind speed,

...

S is a region of interest. X (s), s ∈ S random variable at each
location s ⇒ spatial process (X (s))s∈S ,
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Spatial processes

Stationary spatial processes:

(X (s1), . . . ,X (sk))
L
= (X (s1 + h), . . . ,X (sk + h))

for any si ∈ S, i = 1, . . . , k and h with si + h ∈ S.
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Spatial processes

Stationary spatial processes:

(X (s1), . . . ,X (sk))
L
= (X (s1 + h), . . . ,X (sk + h))

for any si ∈ S, i = 1, . . . , k and h with si + h ∈ S.

In the Gaussian case, the dependence structure, is caracterised by
the covariogram: Cov(X (s),X (s + h)) = γ(h), depends only on
‖h‖ in the isotropic case.
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

V is homogeneous of degree −1.
The process is isotropic if Vs,t(x1, x2) depends only on h = ‖t − s‖.
Max-stable processes have been defined by De Haan (1984).
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

V is homogeneous of degree −1.
The process is isotropic if Vs,t(x1, x2) depends only on h = ‖t − s‖.
Max-stable processes have been defined by De Haan (1984).

Spectral representation (De Haan):

X (s) = max
i≥1

Wi (s)/ξi ,

where {ξi , i ≥ 1} is an i.i.d unit rate Poisson point process on
(0,∞) and {Wi , i ≥ 1} are i.i.d copies of a positive random field
W , independent of ξi .
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

V is homogeneous of degree −1.
The process is isotropic if Vs,t(x1, x2) depends only on h = ‖t − s‖.
Max-stable processes have been defined by De Haan (1984).

Max-stable processes are Asymptotically Dependent in the sense
that either X (s) and X (s + h) are independent or

χ(h) = lim
u→1

P
(
F (X (s)) > u|F (X (s + h)) > u

)
> 0.
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

V is homogeneous of degree −1.
The process is isotropic if Vs,t(x1, x2) depends only on h = ‖t − s‖.
Max-stable processes have been defined by De Haan (1984).

Max-stable processes are Asymptotically Dependent in the sense
that either X (s) and X (s + h) are independent or

χ(h) = lim
u→1

P
(
F (X (s)) > u|F (X (s + h)) > u

)
> 0.

Our purpose:
Semi / non-parametric estimations for models allowing various
dependence structures.
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Extreme spatial processes

Multivariate distribution function

The multivariate distribution function of a max-stable process X
has following expression:

P
(
X (s1) ≤ x1, ...,X (sk) ≤ xk

)
= exp{−V (x1, ..., xk)},

where V is called the exponent measure and homogeneous of order
−1.
The density function writes in terms of the derivatives of V .
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Extreme spatial processes

Extreme coefficient

For any pair (X (s),X (s + h)), the bivariate distribution function
satisfies for any x > 0:

P
(
X (s) ≤ x ,X (s + h) ≤ x

)
= exp{−Θ(h)/x},

where, Θ(h) = V (1, 1) ∈ [1, 2] is the Extremal coefficient function
introduced in Schlather and Tawn (2002).
Θ is related to the χ function:

χ(h) = 2−Θ(h).
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Extreme spatial processes

Examples of max-stable processes I.

Smith (1990) Model

Vh(x1, x2) =
1

x1
Φ

(
τ(h)

2
+

1

τ(h)
log

x2

x1

)
+

1

x2
Φ

(
τ(h)

2
+

1

τ(h)
log

x1

x2

)
;

τ(h) =
√
hTΣ−1h and Φ(·) the standard normal cumulative

distribution function.

Schlather (2002) Model

Vh(x1, x2) =
1

2

(
1

x1
+

1

x2

)[
1 +

√
1− 2(ρ(h) + 1)

x1x2

(x1 + x2)2

]
.

+ parametric models for ρ.
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Extreme spatial processes

Examples of max-stables processes II.

Extremal-t process proposed in Opitz (2013) and Ribatet & Sedki
(2013)

Vh(x1, x2) =

1

x1
Tv+1

(
αρ(h) + α

(
x2

x1

)1/v
)

+
1

x2
Tv+1

(
αρ(h) + α

(
x1

x2

)1/v
)

where Tv is the Student distribution with v degrees of freedom
and α(h) = [v + 1/{1− ρ2(h)}]1/2.
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Extreme spatial processes

Inverse max-stable processes

Let X ′ be a max-stable process as above, consider

X (s) = g(X ′(s)) = − 1

log{1− e−1/X ′(s)}
s ∈ S.

X is called inverse max-stable process, defined by Ledford and
Tawn (1996).It has unit Fréchet margin and its bivariate survivor
function satisfies:

P
(
X (s1) > x1,X (s + h) > x2

)
= exp

(
− Vh

(
g(x1), g(x2)

))
.

Inverse max-stable processes are Asymptotically Independent in the
sense that χ(h) = 0 for any h.
The exponent measure of X ′ is called the exponent measure of X
and denoted VX . The extremal coefficient of X ′ is called the
extremal coefficient of X and denoted ΘX .
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Extreme spatial processes

Max-mixture processes

Wadsworth and Tawn (1997) proposed to mix max-stable and
inverse max-stable processes, studied also by Bacro et al. (2016):
Let X be a max-stable process, with exponent measure function
V X
h . Let Y be an inverse max-stable process with and exponent

measure function V Y
h . Let a ∈ [0, 1] and define

Z (s) = max{aX (s), (1− a)Y (s)}, s ∈ S.
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Extreme spatial processes

Max-mixture processes

Wadsworth and Tawn (1997) proposed to mix max-stable and
inverse max-stable processes, studied also by Bacro et al. (2016):
Let X be a max-stable process, with exponent measure function
V X
h . Let Y be an inverse max-stable process with and exponent

measure function V Y
h . Let a ∈ [0, 1] and define

Z (s) = max{aX (s), (1− a)Y (s)}, s ∈ S.

Z has unit Fréchet marginals. Its bivariate distribution function is
given by P

(
Z (s) ≤ z1,Z (s + h) ≤ z2

)
=

e−aV
X
h (z1,z2)

[
e
−(1−a)

z1 + e
−(1−a)

z2 − 1 + e−V
Y
h (ga(z1),ga(z2))

]
,

where ga(z) = g( z
1−a).
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Extreme spatial processes

Max-mixture processes

Wadsworth and Tawn (1997) proposed to mix max-stable and
inverse max-stable processes, studied also by Bacro et al. (2016):
Let X be a max-stable process, with exponent measure function
V X
h . Let Y be an inverse max-stable process with and exponent

measure function V Y
h . Let a ∈ [0, 1] and define

Z (s) = max{aX (s), (1− a)Y (s)}, s ∈ S.
Examples: (Plots on the logarithm scale with different values of

a. X is an isotropic Smith process and Y is an isotropic inverted
extremal-t process)
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Extreme spatial processes

Max-mixture processes

Wadsworth and Tawn (1997) proposed to mix max-stable and
inverse max-stable processes, studied also by Bacro et al. (2016):
Let X be a max-stable process, with exponent measure function
V X
h . Let Y be an inverse max-stable process with and exponent

measure function V Y
h . Let a ∈ [0, 1] and define

Z (s) = max{aX (s), (1− a)Y (s)}, s ∈ S.
Examples: (Plots on the logarithm scale according different

values of mixing coefficient a. X is an isotropic extremal-t process
and Y is an isotropic inverted extremal-t process)
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The λ madogram

Definition of the λ-madogram

When Gaussian processes are involved, the variogram is a useful
and widely used tool:

γ(h) =
1

2
var(X (s)− X (s + h)).

The processes that we are studying have Fréchet marginal laws
=⇒ no finite variance. The λ-madogram, proposed e.g. in Cooley
et al. is used instead: for λ > 0,

νλ(h) =
1

2
E(|Fλ(X (s + h))− Fλ(X (s))|),

where F is the unit Fréchet distribution function (so that
F (X (s)) ∼ U([0, 1])).
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The λ madogram

λ-madogram for max-mixture processes

Property

Let X be a max-stable process, with extremal coefficient function
ΘX (h), and Y be an inverted max-stable process with extremal
coefficient function ΘY (h). Let a ∈ [0, 1] and
Z = max(aX , (1− a)Y ). Then, the Fλ-madogram of the spatial
max-mixture process Z (s) is given by

νλ(h) =
λ

1 + λ
− 2λ

a(ΘX (h)− 1) + 1 + λ
+

λ

aΘX (h) + λ
− λΘY (h)

(1− a)ΘY (h) + aΘX (h) + λ
×

β

(
aΘX (h) + λ

1− a
,ΘY (h)

)
.

Non parametric.
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Least squared methods

We consider Zi , i = 1, ...,N copies of Z ,

Q̃i (h, λ) =
1

2
|Fλ(Zi (s))− Fλ(Zi (s + h))|,

Qi (h, λ) =
1

2
|F̂λ(Zi (s))− F̂λ(Zi (s + h))|,

where F̂ denotes the empirical distribution function (or any
consistent estimator of the distribution function F ).
We have E[Q̃i (h, λ)] = νλ(h). We shall estimate either

the parameters of the max-mixture model (for a given model)
or
give non parametric estimations of ΘX (h), ΘY (h) and provide
a decision criterium for the parameter a.

It will be based on the minimization of
N∑
i=1

(Qi (h, λ)− νλ(h))2.
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Estimation of the parameters

Parametric max-mixture models

Z = max(aX , (1− a)Y ) =⇒ chose a model for X and for Y .
Recall that the bivariate distribution function is given by

e−aV
X
h (z1,z2)

[
e
−(1−a)

z1 + e
−(1−a)

z2 − 1 + e−V
Y
h (ga(z1),ga(z2))

]
.

You may also write a formula for all the finite dimensional joint
distribution functions =⇒ theoretically you may compute the
density function but it is practically untracktable, so that
maximum likelihood estimation is not an option.
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Estimation of the parameters

Estimation of parameters

Method usually used (developped by Padoan et al. (2010)) :
Maximum Composite Likelihood Estimation. The composite
likelihood is the product of the pairwise likelihood. Then the
parameter estimation is done by maximizing

`N =
∑

(sk ,sj )

N∑
i=1

log f (Zi (sk),Zi (sj)) =⇒ ψ̂L,

where Zi , i = 1, ...,N are independent (or α-mixing) copies of Z ,
observed at locations sk , k = 1, . . . ,M.
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Estimation of the parameters

Estimation of parameters

Method usually used (developped by Padoan et al. (2010)) :
Maximum Composite Likelihood Estimation. The composite
likelihood is the product of the pairwise likelihood. Then the
parameter estimation is done by maximizing

`N =
∑

(sk ,sj )

N∑
i=1

log f (Zi (sk),Zi (sj)) =⇒ ψ̂L,

where Zi , i = 1, ...,N are independent (or α-mixing) copies of Z ,
observed at locations sk , k = 1, . . . ,M.
Adjust several models and retain the one with the smallest CLIC:

CLIC = −2
(
`N(ψ̂L)− tr [J (ψ̂L)H−1(ψ̂L)]

)
where H is the sensitivity matrix and J is the variability matrix.

Both intervene in the asymptotic variance of the estimator.
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Estimation of the parameters

Estimation of parameters

Alternatively, we propose to minimize the squared madogram
difference:

LN =
∑
h

∑
‖sk−sj‖=h

N∑
i=1

(Qi (h, 1)− ν(h))2 =⇒ ψ̂M .

Consistency of the estimators, under additional identifiability
assumption.
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Estimation of the parameters

Estimation of parameters

Alternatively, we propose to minimize the squared madogram
difference:

LN =
∑
h

∑
‖sk−sj‖=h

N∑
i=1

(Qi (h, 1)− ν(h))2 =⇒ ψ̂M .

Consistency of the estimators, under additional identifiability
assumption.
Adjust several models and retain the one with the smallest
selection criterium:

SC = logLN +
2k(k + 1)

(N − k − 1)

where k is the number of parameters in the model.
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Estimation of the parameters

Simulation study

Simutation of a max-mixture between a truncated Schlater process
X and an inverse Smith process Y. N = 1000 i.i.d observations on
50 sites. This experiment is replicated J = 100 times.
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Estimation of the parameters

Simulation study

Simutation of a max-mixture between a truncated Schlater process
X and an inverse Smith process Y. N = 1000 i.i.d observations on
50 sites. This experiment is replicated J = 100 times.
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Estimation of the parameters

Real data example

Rainfall in east cost of Australia, also used in Bacro et al.

1

2

3

Daily rainfall
amounts at 39
locations over years
1982-2016 occur-
ing during April -
September.
The data exploration
shows no anisotopy
nor temporal depen-
dence.

Models.
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Estimation of the parameters

Real data example

Model a θX rX θY σY SC

MM1 CL 0.262 1217.3 1364.5 3102.4 3.457 6807406
LS 0.259 1285.7 1390.0 5794.8 2.013 1.917034

MM2 CL 0.248 31.16 70.15 998.84 7924609
LS 0.185 35.51 48.14 871.19 1.917234

θX rX
M1 CL 931 307.86 7926261

LS 1270 255.64 1.945177

θX σX θY σY

M2 CL 931.02 3.078663 7926261
LS 361.36 1.90816 1.96165

M3 CL 1644.76 2.702282 7918643
LS 1383.08 1.394928 1.924574

M4 CL 85.34 8016633
LS 193.43 1.988753

M5 CL 256.39 7988838
LS 334.60 1.929235
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Selection criterium for the mixing coefficient a

A model free procedure

First, for a fixed a, estimate non parametrically ΘX (h) and ΘY (h)
using the λ-madogram with two different values of λ.
We may write the λ-madogram as a function of a, λ, ΘX and ΘY ,
that is νFλ(h) = Φ(a, λ,ΘX (h),ΘY (h)).

Madogram.

Θ̂a
NLS(h) = arg min

θ∈[1,2]2

∑
i=1,...,N

[Qi (h, λ1)− Φ(a, λ1, θ1, θ2)]2

+
[
Qi (h, λ

′
1)− Φ(a, λ′1, θ1, θ2)

]2
.
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Selection criterium for the mixing coefficient a

A model free procedure

Secondly, chose a realizing the least squared difference between
empirical and theoretical λ-madogram, with a third value of λ.
Assume that the Zi ’s are observed at locations s1, . . . , sK and let
hj be the pairwise distances between the sj ’s.

ν̂λ(hj) =
1

2N

N∑
i=1

Qi (hj , λ).

DC(a) =
∑
hj

[
ν̂λ2(hj)

Φ(a, λ2, Θ̂X (hj), Θ̂Y (hj))
− 1

]2

Estimate a as the argmin of DC(a). Consistent under additional
identifiability assumption.
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Selection criterium for the mixing coefficient a

Simulation study
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First line: max-mixture between a truncated Schlater and an
inverted truncated Schlater.
Second line: max-mixture between a truncated Schlater and an
inverted extremal-t process.
50 sites, N = 2000 independent replications. Each experiment is
repeated 100 times.
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Selection criterium for the mixing coefficient a

Real data example

Rainfall data in the same region as before.

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.30

0.35

0.40

a

D
C

Daily rainfall data at 38 sites
occuring during April - Spetem-
ber over the years 1972 - 2016.

â = 0.34.
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Selection criterium for the mixing coefficient a

Prediction with non parametric estimation

3 unused stations s∗ in the estimation.

1

2

3
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Selection criterium for the mixing coefficient a

Prediction with non parametric estimation

Compare the estimations of P(Z (s∗) > z |Z (s) > z) by adjusting a
parametric model vs the non parametric estimations of a, ΘX and
ΘY .

P[Z (s∗0 ) > z |Z (s0) > z ] =

1− 2e−
1
z + e−

aΘX (h0)

z

{
−1 + 2e−

1−a
z +

[
1− e−

1−a
z

]ΘY (h0)
}

1− e−
1
z

.

Where h0 = ‖s∗0 − s0‖.
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Selection criterium for the mixing coefficient a

Prediction with non parametric estimation
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Figure: Diagnostic P-P plots for threshold excess conditional probabilities
for the three unused sites obtained by both approaches; the best
parametric model as judged by the CLIC and our nonparametric
approach. Green: site 1; red: site 2; blue: site 3.
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Conclusion

Importance of the dependence structure for spatial processes.

The λ-madogram captures the main dependence informations
of max-mixture processes.

We have used it as an alternative to composite likelihood
estimation.

It is also useful in model-free estimation.

Our estimations are consistent.

To Do Extension to spatio-temporal processes.

To Do Asymptotic normallity of the estimators.
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Thank you

Merci pour votre attention.
N’oubliez pas qu’AMIES peut vous aider dans vos collaborations

avec les entreprises
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Models

Back.

MM1: max-mixture between a truncated Schlater and a
Brown-Resnik.

MM2: max-mixture between a truncated Schlater and an
inverted Smith.

M1: a truncated Schlater.

M2: a Brown-Resnik.

M3: an inverted Brown-Resnik.

M4: a Smith process.

M5: an inverted Smith.
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