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Main context

The notion of risk

Lisboa’s earthquake in 1755 marks (at
least in Europe) the beginning of the
concept of risk and random behavior of
natural phenomenon.

Nowadays, the notion of risk is strongly related with probabilistic
models and occurs in various domains such as:

environnement (calibration of buildings such as dams, extreme
events forecast),
insurance (claim amonts estimation),
finance (portefolio’s evaluation)
...
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Main context

Risk assessment

Risk is related with a random outcome, Risk can be measured -
theory of risk measures, Risk can be managed - theory of decision
making under risk.

Regulatory rules in insurance or finance impose norms on risk
assessing.
Environmental risk assessment in order to minimize the effects
of human activities on the environment.
Decision makers of ecological policy require measures on the
environmental risk.
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Generalities on risk measures

Univariate risk measures

Consider a random variable X on Ω, it may be the wind speed, the
temperature, a claim amount.... FX is its distribution function.
A Risk measure is a function of X , valued in R. The choice of a
risk measure depends on the purpose.
First examples:

Expected value: E(X ) gives information of the mean behavior.
Variance: Var = E ((X − E (X ))2) measures the average
deviation of X with respect to its mean.
Median: Me = inf{t, FX (t) ≥ 0.5}, this is the value that X
should not exceed with probability 1

2 .
Quantiles: let α ∈]0, 1[, the α-quantile is
qα = inf{t, FX (t) ≥ α}, this is the value that X should not
exceed with probability α.
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Generalities on risk measures

Univariate risk measures

Expected value: E(X ) gives information of the mean behavior.
Variance: Var = E ((X − E (X ))2) measures the average
deviation of X with respect to its mean.
Median: Me = inf{t, FX (t) ≥ 0.5}, this is the value that X
should not exceed with probability 1

2 .
Quantiles: let α ∈]0, 1[, the α-quantile is
qα = inf{t, FX (t) ≥ α}, this is the value that X should not
exceed with probability α.

Remark: if X  N (µ, σ2), the alpha quantile is given by
qα = µ+ σφ−1(α) with φ the distribution function of a N (0, 1)
law.
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Generalities on risk measures

An example

Consider X  Γ(a, b), i.e. it has density:

ba

Γ(a)
e−bxxa−11IR+(x), E(X ) =

a

b
, Var(X ) =

a

b2

.

In case a = 2, b = 0.05, we
have

E(X ) = 40,
Me = 33.57,
Var = 800,
q0.95 = 94.88, compare
with
µ+ σφ−1(0.95) = 86.53.
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Generalities on risk measures

Properties of univariate risk measures

A risk measure ρ is:
invariant by translation if for any a ∈ R, ρ(X + a) = ρ(X ) + a.
It means that adding a constant risk increases the risk with
that constant amount.
positive homogeneous if for any a > 0, ρ(aX ) = aρ(X ). The
measure is not affected by a change of unity.
sub-additivite, if for any random variables X and Y ,
ρ(X + Y ) ≤ ρ(X ) + ρ(Y ). Diversification effect.
a.s. monotone, if X ≤ Y a.s. then ρ(X ) ≤ ρ(Y ).

Following Artzen et al (1999), a risk measure is coherent if it
satisfies the four above axioms.
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Generalities on risk measures

Coherent risk measures

X  E(X ) and X  Var(X ) are coherent.
X  qα(X ) is not coherent (it is not sub-additive).

Nevertheless, the quantile function is much used (imposed by
regulatory rules in finance / insurance, it is called Value at Risk =
VaR), related to return time in environnement.

Remark: α qα(X ) is increasing.
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Generalities on risk measures

Relationship with return time

Consider an event E whose occurence probability is p, e.g., E is:
the river level is greater than 5m. If the occurences of E in time are
independent, the law of the appearing time of E is
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Generalities on risk measures

Relationship with return time

Consider an event E whose occurence probability is p, e.g., E is:
the river level is greater than 5m. If the occurences of E in time are
independent, the law of the appearing time of E is geometric with
parameter p :

the probability that E appears for the first time after n repetitions
is p(1− p)n−1 (probability that the river level is above 5m for the
first time after n years).
The expectation of this law is

τ =
1
p
,

this is the mean time required to observe E , it is called return time
of E . In mean, one has to wait 1

p years to see the river level above
5m.
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Generalities on risk measures

Relationship with return time

Consider a 99%-quantile
q0.99 of a random vari-
able X , E the event X is
above q0.99, P(E ) = 1%
and the associated return
time is 100. If the scale
time is the year, X ex-
ceeds q0.99 in mean once
each 100 years (centen-
nial flood).
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Vectorial / Spatial risk

Vectorial / spatial context

Multivariate problematics: X = (X1, . . . ,Xd) a random vector e.g.
different lines of business in insurance or finance,
rainfall amount and duration, flow in case of flood,
height of waves H, duration of storm D, direction of waves A
to study see storms.

The different coordinates may be aggregated ⇒ univariate random
variable if meaningful (aggregate portfolio, magnitude of storm
proportional to H × D...).
In any case a multivariate modelisation is required to take the
dependencies into account.
Many ways to define multi-variate risk measure, depend on the
purpose.
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Vectorial / Spatial risk

Vectorial / spatial context

Spatial contexts S a region of interest. X (s), s ∈ S random
variable at each location s ⇒ spatial process (X (s))s∈S , e.g.

precipitation at each location,
temperature...

Stationary spatial processes:

(X (s1), . . . ,X (sk))
L
= (X (s1 + h), . . . ,X (sk + h))

for any si ∈ S, i = 1, . . . , k and h with si + h ∈ S.
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Vectorial / Spatial risk

Vectorial / spatial context

Spatial contexts S a region of interest. X (s), s ∈ S random
variable at each location s ⇒ spatial process (X (s))s∈S
Stationary spatial processes:

(X (s1), . . . ,X (sk))
L
= (X (s1 + h), . . . ,X (sk + h))

for any si ∈ S, i = 1, . . . , k and h with si + h ∈ S.
Models for the dependence structure, with

Covariogram: Cov(X (s),X (s + h)) = γ(h), depends only on
‖h‖ in the isotropic case.
Bivariate exponent measure Vh:
P(X (s) ≤ x ,X (s + h) ≤ y) = e−Vh(x ,y).
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Vectorial / Spatial risk

Our purpose

Considering a spatial process (X (s))s∈S and an area A ⊂ S,
define a risk measure R(A,X ),
study its axiomatic properties.

For different spatial processes Gaussian processes, max-stable
processes, max-mixture processes,

compute R(A,X ),
study the behavior of R(A,X ),
evaluate the impact of the dependence structure on the risk
measure.
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Definitions

Normalized loss function

Previous work from Keef et al. (2009) or Koch (2015) where the
risk is evaluated by the expectation of an integrated loss function.
Let DX be a positive function of X called a damage function e.g.
DX ,u = (X − u)+ or DνX = X ν .

Definition (Normalized loss function)

Let A ⊂ S,
L(A,DX ) =

1
|A|

∫
A
DX (s) ds.
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Definitions

Spatial risk measure

Spatial risk measure composed from two components: the
expectation and variance of the normalized loss,

R(A,DX ) = {E[L(A,DX )],Var
(
L(A,DX )

)
},

=: {R0(A,DX ),R1(A,DX )}

For stationary processes, E[L(A,DX )] gives informations on the
severity of the phenomenon.
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Definitions

Spatial risk measure

Spatial risk measure composed from two components: the
expectation and variance of the normalized loss,

R(A,DX ) = {E[L(A,DX )],Var
(
L(A,DX )

)
},

=: {R0(A,DX ),R1(A,DX )}

For stationary processes, E[L(A,DX )] gives informations on the
severity of the phenomenon.

E[L(A,DX )] =
1
|A|

∫
A

E(DX (s))ds = E(DX (s)) does not depend onA.
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Definitions

Spatial risk measure

Spatial risk measure composed from two components: the
expectation and variance of the normalized loss,

R(A,DX ) = {E[L(A,DX )],Var
(
L(A,DX )

)
},

=: {R0(A,DX ),R1(A,DX )}

For stationary processes, E[L(A,DX )] gives informations on the
severity of the phenomenon.
Var
(
L(A,DX )

)
is impacted by the dependence structure.

Remark:

Var
(
L(A,DX )

)
=

1
|A|2

∫
A×A

Cov
(
DX (s),DX (t)

)
dsdt.
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Axiomatic properties

Axioms for risk measures

Natural axioms for risk measures (extension of coherence axioms by
Artzner et al. (1999) and the work by Koch (2015)).
A, A1, A2 subsets of S.

1 Invariance by translation. Let v ∈ S, R(A+ v ,D) = R(A,D).
2 Anti-monotonicity If |A1| ≤ |A2|, then R(A2,D) ≤ R(A1,D).
3 Sub-additivity If A1 ∩ A2 = ∅, then
R(A1 ∪ A2,D) ≤ R(A1,D) +R(A2,D).

4 Super sub-additivity If A1 ∩ A2 = ∅, then
R(A1 ∪ A2,D) ≤ mini=1,2 [R(Ai ,D)].
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Axiomatic properties

Axiomatic properties of R1(A,D)

Invariance by translation directly follows from the stationarity:

R1(A,D) =
1
|A|2

∫
A×A

Cov
(
DX (s),DX (t)

)
dsdt

=
1
|A|2

∫
(A+v)×(A+v)

Cov
(
DX (s + v),DX (t + v)

)
dsdt

(change of variable)

=
1

|A+ v |2

∫
(A+v)×(A+v)

Cov
(
DX (s),DX (t)

)
dsdt

by stationarity (X (s),X (t))
L
= (X (s + v),X (t + v))

= R1(A+ v ,D).
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Axiomatic properties

Axiomatic properties of R1(A,D)
Sub-additivity follows from Cauchy-Schwarz inequality:

R1(A1 ∪ A2,DX ) = Var
(
L(A1 ∪ A2,DX )

)
=

1
(|A1|+ |A2|)2

[
|A1|2R1(A1,DX ) + |A2|2R1(A2,DX )

+ 2Cov

∫
A1

DX (s)ds,

∫
A2

DX (s)ds


 .

≤ 1
(|A1|+ |A2|)2

[
|A1|2R1(A1,DX ) + |A2|2R1(A2,DX )

+ 2|A1||A2|
√
R1(A1,DX )

√
R1(A2,DX )

]
by using the Cauchy-Schwarz inequality,

≤ R1(A1,DX ) +R1(A2,DX ).
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Axiomatic properties

Axiomatic properties of R1(A,D)

Anti-monotonicity (equivalent to super sub-additivity) is more
difficult to get.
May be obtained for specific models and for A either a disk or a
square.

From now one, we consider isotropic processes.
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General form

If A is either a disk or a square

If A is either a disk or a square, R1(A,DX ) rewrites:
When A is a disk of radius R

R1(A,DX ) =

∫ 2R

h=0
fdisk(h,R)Cov

(
DX (s),DX (s + h)

)
dh.

Where fdisk(h,R) is the density of distance between two points
uniformly drawn on a disk (see Moltchanov (2012) ), that is

fdisk(h,R) =
2h
R2

(
2
π

acos(
h

2R
)− h

πR

√
1− h2

4R2

)
.
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General form

If A is either a disk or a square

If A is either a disk or a square, R1(A,DX ) rewrites:
When A is a square with side R

R1(A,DX ) =

∫ √2R

h=0
fsquare(h,R)Cov

(
DX (s),DX (s + h)

)
dh.

Where fsquare(h,R) is given by: for h ∈ [0,R],

fsquare(h,R) = 2πh
R2 − 8h2

R3 + 2h3

R4 , and for h ∈ [R,
√
2R], let b = h2

R2

fsquare(h,R) =
2h
R2

{
−2− b + 3

√
b − 1 +

b + 1√
b − 1

+ 2arcsin(
2− b

b
)− 4

b
√

1− (2−b)2
b2

 ,
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General form

If A is either a disk or a square

These two formulas show that if you can compute
Cov

(
DX (s),DX (s + h)

)
, then the risk measure reduces to a one

dimensional integration.
This can be achieved in some cases.
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Gaussian processes

The process (X (s))s∈S is a Gaussian process if and only if, for any
any d ∈ N, (s1, . . . , sd) ∈ Sd , the random vector
(X (s1), . . . ,X (sd)) is a Gaussian vector.
⇒ a stationary Gaussian process is determined by:

µ = E(X (s)), σ2 = Var(X (s)),
the covariance structure: γ(h) = Cov(X (s),X (s + h)) or
equivalently the correlation function
ρ(h) = Corr(X (s),X (s + h)).

In what follows, ϕ is the density of a standard normal law and Φ its
distribution function, Φ = 1− Φ its survival distribution function.

31 / 56



Introduction Spatial risk measures Gaussian processes Max-stable and max-mixture processes Conclusion

Explicit forms

The excess risk measure

Consider a fixed threshold u, DX ,u = (X − u)+.
This means that R1(A,D+

X ,u) is the variance of the average of X
over the threshold u on the area A.
We consider a standard Gaussian process (i.e. µ = 0 and σ = 1),
with positive auto-correlation function ρ, a simple calculation gives:

R0(A,D+
X ,u) = E(L(A,D+

X ,u)) = ϕ(u)− u(Φ(u).
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Explicit forms

The excess risk measure

The variance of L(A,D+
X ,u) may be obtained by using results from

Rosenbaum (1961) on moments of truncated bivariate normal
distributions. If A is a disk,

R1(A,D+
X ,u) = Var(L(A,D+

X ,u)) =

∫ 2R

h=0
fdisk(h,R)G(h, u)dh.,

with

G(h, u) =`
(
u, u, ρ(h)

)(
ρ(h) + u2)− 2uϕ(u)Φ

(
u(1− ρ(h))

(1− ρ2(h))1/2

)
+
(
1− ρ2(h)

)1/2
ϕ

(
u

(1 + ρ(h))1/2

)2

−
(
ϕ(u)− uΦ(u)

)2
;

and `
(
u, v , ρ(h)

)
is the total probability of a truncated bivariate

standard normal distribution with correlation function ρ.

`
(
u, v , ρ(h)

)
=

1
2π(1− ρ2(h))1/2

∫ ∞
u

∫ ∞
v

e

{
−1

2(1−ρ(h))2 [x
2−2ρ(h)xy+y2]

}
dxdy .
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Explicit forms

The excess risk measure

Change of variables to get the risk measure for general isotropic
Gaussian processes. Let Y be an isotropic Gaussian process with
mean µ and variance σ2. X = Y−µ

σ is an isotropic and standard
Gaussian process.

Corollary

The spatial risk measure R(A,D+
Y ,u) statisfies

R(A,D+
Y ,u) =

{
σE[L(A,D+

X ,u0
)], σ2Var

(
L(A,D+

X ,u0
)
)}
,

with u0 = (u − µ)/σ.
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Explicit forms

Behaviour of R1
(
A,D+

X ,u

)
The previous formula provides the behavior of λ R1(λA,D+

X ,u)
and it implies anti-monotonicity for disk or square.

Corollary

Let X be an isotropic Gaussian process with auto-correlation
function ρ. Let A ⊂ S be either a disk or a square.
The mapping λ 7→ R1(λA,D+

X ,u) is non-increasing if and only if
h 7→ ρ(h), h > 0 is non-increasing and non-negative.
If h 7→ ρ(h) is decreasing to 0 as h goes to infinity,

lim
λ→∞

R1(λA,D+
X ,u) = 0.

Let A1, A2 be either squares or disks with |A1| ≤ |A2| then

R1(A2,D+
X ,u) ≤ R1(A1,D+

X ,u).
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Explicit forms

Behavior for different correlation functions

Gaussian processes behave differently, according to their correlation
function h ρ(h). Five Gaussian models

1 Spherical correlation function:

ρsphθ (h) =

[
1− 1.5

(
h

θ

)
+

1
2

(
h

θ

)3]
1{h>θ}.

2 Cubic correlation function :

ρcubθ (h) =

[
1−7

(
h

θ

)
+
35
2

(
h

θ

)2

− 7
2

(
h

θ

)5

+
3
5

(
h

θ

)7]
1{h>θ}.

3 Exponential correlation functions:

ρexpθ (h) = exp
[
− h

θ

]
,

4 Gaussian correlation functions:
5 Matérn correlation function:
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Explicit forms

Behavior for different correlation functions

Gaussian processes behave differently, according to their correlation
function h ρ(h). Five Gaussian models

1 Spherical correlation function:
2 Cubic correlation function :
3 Exponential correlation functions:
4 Gaussian correlation functions:

ρgauθ (h) = exp
[
−
(h
θ

)2]
;

5 Matérn correlation function:

ρmat(h) =
1

Γ(κ)2κ−1 (h/θ)κKκ(h/θ),

where Γ is the gamma function, Kκ is the modified Bessel function
of second kind and order κ > 0, κ is a smoothness parameter and θ
is a scaling parameter. 37 / 56
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Explicit forms

Behavior for different correlation functions
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Application to environmental data

Environmental data

Data on pollution in Piemonte data,
measured by the concentration in
PM10. The observed values of PM10
are frequently larger than the legal
level fixed by the European directive
2008/50/EC .

The log of PM10 has been fitted
on an isotropic Gaussian process
with Matérn auto-correlation function
(previous work from Bande et al.
2006), with parameters κ = 1,
θ = 100, µ = 3.69 and σ2 = 1.2762.
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Application to environmental data

Risk measure for the PM concentration

(
R0(A,D+

Y ,log u),R1(A,D+
Y ,log u)

)
,

with Y = logPM10, A a square of side 10km and u the legal level,
i.e. u = 50.

R0(A,D+
Y ,log u) = E(L(A,D+

Y ,log u)) = 0.3483621,

R1(A,D+
Y ,log u) = Var(L(A,D+

Y ,log u)) = 0.4119461.

L(A,D+
Y ,log u) is the average over the square A of the values of Y

that exceed the legal threshold log u.
The standard deviation of L(A,D+

Y ,log u) (∼ 0.6) is large with
respect to its expectation ⇒ the dependence structure of the
underlying process highly impacts the random variable
L(A,D+

Y ,log u).
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

The process is isotopic if Vs,t(x1, x2) depends only on h = ‖t − s‖.
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Extreme spatial processes

Max-stable spatial processes

Gaussian processes not well suited for e.g. rainfall, wind... ⇒
max-stable processes, unit Fréchet margins, dependence structure
given by the exponent measure function V , that is:

P(X (s) ≤ x) = e−
1
x , P

(
X (s) ≤ x1,X (t) ≤ x2

)
= exp(−Vs,t(x1, x2)).

The process is isotopic if Vs,t(x1, x2) depends only on h = ‖t − s‖.

Max-stable processes are Asymptotically Dependent in the sense
that either X (s) and X (s + h) are independent or

χ(h) = lim
u→1

P
(
F (X (s)) > u|F (X (s + h)) > u

)
> 0.

See the course by Jean-Noël Bacro for more details.
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Extreme spatial processes

Examples of max-stable processes

Smith Model (Gaussian extreme value model)

Vh(x1, x2) =
1
x1

Φ

(
τ(h)

2
+

1
τ(h)

log
x2

x1

)
+

1
x2

Φ

(
τ(h)

2
+

1
τ(h)

log
x1

x2

)
;

τ(h) =
√
hTΣ−1h and Φ(·) the standard normal cumulative

distribution function.

Schlather Models (Extremal Gaussian Model)

Vh(x1, x2) =
1
2

(
1
x1

+
1
x2

)[
1 +

√
1− 2(ρ(h) + 1)

x1x2

(x1 + x2)2

]
.
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Extreme spatial processes

Inverse max-stable processes

Let X ′ be a max-stable process as above margin, consider

X (s) = g(X ′(s)) = − 1
log{1− e−1/X ′(s)}

s ∈ S.

Then X has unit Fréchet margin and bivariate survivor function

P
(
X (s1) > x1,X (s + h) > x2

)
= exp

(
− Vh

(
g(x1), g(x2)

))
.

Defined by Ledford and Tawn.
Inverse max-stable processes are Asymptotically Independent in the
sense that χ(h) = 0 for any h.
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Extreme spatial processes

Max-mixture processes

Wadsworth and Tawn proposed to mix max-stable and inverse
max-stable processes, studied also by Bacro et al.: Let X be a
max-stable process, with exponent measure function V X

h . Let Y be
an inverse max-stable process with and exponent measure function
V Y
h . Let a ∈ [0, 1] and define

Z (s) = max{aX (s), (1− a)Y (s)}, s ∈ S.

Z has unit Fréchet marginals. Its bivariate distribution function is
given by P

(
Z (s) ≤ z1,Z (s + h) ≤ z2

)
=

e−aV
X
h (z1,z2)

[
e
−(1−a)

z1 + e
−(1−a)

z2 − 1 + e−V
Y
h (ga(z1),ga(z2))

]
,

where ga(z) = g( z
1−a).
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Spatial risk measure for extreme processes

Damage function

We shall consider the damage function

DνX (s) = |X (s)|ν ,

for 0 < ν < 1
2 (so that the order two moment exists).

Used e.g. in analyzing the negative effects due to the wind speed.
Koch 2015, computed the risk measure associated to DνX for Smith
processes.
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Spatial risk measure for extreme processes

Damage function

We shall consider the damage function

DνX (s) = |X (s)|ν ,

for 0 < ν < 1
2 (so that the order two moment exists).

Used e.g. in analyzing the negative effects due to the wind speed.
Koch 2015, computed the risk measure associated to DνX for Smith
processes.
Properties of moments of Fréchet distributions give that is X as
unit Fréchet marginal distributions,

E(L(A,DνX ) = Γ(1− ν).
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Spatial risk measure for extreme processes

Computation of the risk measure

Computation using the formula when A is a square:

R1(A,DνX ) =

∫ √2R

h=0
Q(h, ν)fsquare(h,R)dh,

with

Q(h, ν) = ν2
∫ ∞

0

∫ ∞
0

xν−1
1 xν−1

2
[
GX
h (x1, x2)− F (x1)F (x2)

]
dx1dx2

and GX
h = P(X (s) ≤ x1,X (s + h) ≤ x2).
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Spatial risk measure for extreme processes

Properties of the risk measure

The asymptotic dependence properties are reflected in the risk
measure.

Property
Let Z be an isotropic and stationary max-mixture spatial process.
Assume that the mappings h 7→ V X

h (x1, x2) and V Y
h (x1, x2) are non

decreasing for any (x1, x2) ∈ R2
+. Moreover, we assume that

V X
h (x1; x2) −→ 1

x1
+

1
x2

and V Y
h (x1, x2) −→ 1

x1
+

1
x2

as h→∞

∀x1, x2 ∈ R+. Let A ⊂ S be either a disk or a square,

lim
λ→∞

R1(λA,DνZ ) = 0.
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Spatial risk measure for extreme processes

Properties of the risk measure

The asymptotic dependence properties are reflected in the risk
measure.

Property
Let Z be an isotropic and stationary max-mixture spatial process.
Assume that the mappings h 7→ V X

h (x1, x2) and V Y
h (x1, x2) are non

decreasing for any (x1, x2) ∈ R2
+. If there exists V0 (resp. V1) an

exponent measure function of a non independent max-stable (resp.
inverse max-stable) bivariate random vector, such that V X

h −→ V0
and V Y

h −→ V1 as h→∞, then

lim
λ→∞

R1(λA,DνZ ) > 0.
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Conclusion

We have propose several risk measures for different spatial
processes. These spatial risk measures take into account the
spatial dependence structure of the processes.

We have provided computational tools to calculate these
measures.

Risk measure might be useful for detection / attribution
purposes.

Renormalization of L(λA,DνZ ) so that it converges to a non
trivial distribution ?
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Thank you

Gracias por vuestra atención.

Thank you for your attention.

Merci pour votre attention.
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