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Véronique Maume-Deschamps
Joint work with Didier Rullière and Antoine Usseglio-Carleve.

Lisbon, October 17th, 2018

1 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

Plan

1 Introduction

2 Background
Elliptic distributions
Risk measures

3 Regression methods
Quantile regression
Expectile regression

4 High level risk measures
Quantile case
Expectile case
Estimation of the parameters

5 A real data example

6 Conclusion

2 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

Plan

1 Introduction

2 Background

3 Regression methods

4 High level risk measures

5 A real data example

6 Conclusion

3 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

A financial example

Consider four assets: iShares Core U.S. Aggregate Bond ETF,
PowerShares DB Commodity Index Tracking Fund, WisdomTree
Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial
Average ETF.
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A financial example

How to use the knowledge of the 4 variables in order to estimate
risk measures for WisdomTree Japan Hedged Equity Fund.
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A general temporal problematic

Consider (Zt)t∈T a random field observed at n points t1, ..., tn.
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A general temporal problematic

Consider (Zt)t∈T a random field observed at n points t1, ..., tn.
Using kriging ([Krige, 1951], [Matheron, 1963]) lead to estimations
of the conditional mean, reliable for Gaussian processes.

How to estimate conditionnal risk measures (quantiles, expectiles,
TVaR), for non necessarily gaussian random fields ?
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A spatial example

Rainfall amounts measured at some locations X ∈ R, one unknown
value Y ∈ R.

Source: Geographic Information Technology Training Alliance.
How to estimate risk measures related to Y knowing X?
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Our purpose

Focus on elliptic distributions,

Consider quantile / expectile regression

Propose an alternative estimation, for high level risk measures.
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Elliptic distributions

Definition

Definition (Representation Theorem [Cambanis et al., 1981])

A Rd random vector X is elliptical with parameters µ and Σ
(X ∼ Ed(µ,Σ)) if it writes:

X
d
= µ+ RΛU(d)

where ΛΛT = Σ, U(d) is a d−dimensional random vector uniformly
distributed on Sd−1, R is a non-negative random variable,
independent of U(d).

R is called the radius of X .
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Elliptic distributions

Consistent Elliptic distributions

Definition (Kano, 1994 [Kano, 1994])

X ∼ Ed(µ,Σ,R) has the consistency property if:

R
d
= χdε

where ε is a positive random variable unrelated to d and
independent of χd . We shall say that X is a consistent
(R, d)−elliptical random vector with parameters µ and Σ.

Remark: the above definition rewrites as

X
d
= µ+ εN (0,Σ)

with ε independent of the normal vector. This means that finally,
an elliptical distribution is a normal distribution with random
variance ε2Σ).
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Elliptic distributions

Properties of elliptic distributions

Sub-vectors of elliptical vectors are elliptical, more precisely,
Let X = (X1,X2) be a consistent (R, d)−elliptical random
vector with parameters µ and Σ. X1 and X2 are d1 and
d2−dimensional subvectors of X . Let us write Σ :

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then X1 and X2 are respectively (R, d1)− and
(R, d2)−elliptical with parameters µ1, Σ11 and µ2, Σ22,
respectively.

Conditional distributions of elliptical vectors are also elliptical.
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Elliptic distributions

Properties of elliptic distributions

Sub-vectors of elliptical vectors are elliptical,

Conditional distributions of elliptical vectors are also elliptical.
More precisely,
X2|(X1 = x1) is still elliptical, with radius R∗ given by:

R∗
d
= R

√
1− β|

(
R
√
βU(d) = C−1

11 (x1 − µ1)
)
,

where C11 is the Cholesky root of Σ11, and β ∼ Beta(d1
2 ,

d2
2 ).

Conditional measures.
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Elliptic distributions

Properties of elliptic distributions

Sub-vectors of elliptical vectors are elliptical,

Conditional distributions of elliptical vectors are also elliptical.

Definition

A random field (Zt)t∈T , t ∈ R is ε-elliptical if

Zt = µ+ εXt

where (Xt)t∈T is a gaussian field.
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Elliptic distributions

Examples

Normal distributions: ε = 1.

Student distributions: with ν degrees of freedom: ε
d
=
√

ν
χ2
d

.

Slash distributions: ε
d
= P(1, a).

Laplace distibution: ε
d
=
√
E(λ).

Many other.
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Risk measures

Quantiles and expectiles

Quantile is widely used as a risk measure (VaR). Recall: for X a
random variable (a risk) with distribution function FX ,

qα(X ) = VaRα(X ) = inf{t / FX (t) ≥ α} = F−1
X (α),

RiskMetrics popularized the use of VaR as a risk measure
(1994).

Basel Committee : Internal approach to capital management
using VaR (1996),

formalisation of coherent risk measures [Artzner et al., 1999],
VaR is not coherent (because not sub-additive in general).
VaR is a risk threshold but does not gives information on the
risk above the threshold.
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Risk measures

Quantiles and expectiles

TVaR / Expected shortfall: (for continuous distributions) - see e.g.
[Artzner et al., 1999] -

TVaRα(X ) = ESα(X ) = E(X |X > VaRα(X ))

=
1

1− α

1∫
α

qu(X )du.

TVaR is a coherent risk measure.
The notion of ellicitability has taken some importance these last
years [Bellini and Di Bernardino, 2017] in risk management.
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Risk measures

Quantiles and expectiles

A statistic T is ellicitable ([Gneiting, 2011, Ziegel, 2016]) if it can
be written as a minimizer of a scoring function denoted
s : R× R→ R:

T (X ) = argmin
x∈R

E[s(X , x)].

Interest:

Ability to compare different statistical methods

Makes backtesting procedures easier

Allow the use of stochastic approximation tools.
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Risk measures

Quantiles and expectiles

VaR is ellicitable: take

s(x ,X ) = [α(X − x)+ + (1− α)(X − x)−] .

TVaR is not ellicitable.
Define the expectile as ([Newey and Powell, 1987]):

eα(X ) = argmin
x∈R

E
[
α(X − x)2

+ + (1− α)(X − x)2
−
]
.

Expectiles are:

Ellicitable (of course),
Coherent,
the only risk measure which is both coherent and ellicitable
([Bellini and Bignozzi, 2015]).

Expectiles satisfy

αE [(X − eα(X ))+] = (1− α)E [(X − eα(X ))−] .

and thus take into account the risk over the threshold.
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Risk measures

Conditional risk measures

We are interested in conditional risk measures for elliptical
distributions. Focus on quantiles (results also for TVaR and
expectiles).
Let X = (X1,X2) be a (R,N + 1)−elliptical random vector with
parameters µ and Σ. X1 ∈ RN and X2 ∈ R.
Calculate / estimate

qα(X2|X1 = x1), eα(X2|X1 = x1).
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Risk measures

Conditional risk measures

Conditional distribution.

Proposition

Let X = (X1,X2) a (R,N + 1)−elliptical random vector with
parameters µ and Σ. Write

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then

qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗ (α)

with

{
µ2|1 = µ2 + Σ21Σ−1

11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ−1
11 Σ12

and for a random

variable Y , ΦY is the distribution function of Y−E(Y )
σY

.
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Risk measures

Conditional risk measures

qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗ (α)

Problem: the distribution of R∗ is hardly accessible.

Explicit formulas for Gaussian and Student distributions,

First idea: quantiles regression,

Extreme estimations (ie α→ 1).
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Quantile regression

Quantile Regression

Approximate the conditional quantile by:
([Koenker and Bassett, 1978])

q̂α(X2|X1 = x1) = β∗T x1 + β∗0

where β∗ and β∗0 are the solutions of the following minimization
problem:

(β∗, β∗0) = arg min
β∈RN ,β0∈R

E[sα(X2 − βTX1 − β0)]

with the scoring function sα:

sα(x) = (α− 1)x1{x<0} + αx1{x>0}
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Quantile regression

Quantile Regression for elliptic distributions

Theorem

Let X = (X1,X2) be an elliptical distribution, the optimal β∗ is
given by :

β∗ = Σ−1
11 Σ12

The Quantile Regression Predictor with level α ∈ [0, 1] is given by:

q̂α(X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R (α)

It satisfies

q̂α(X2|X1) ∼ E1

(
µ2 + σ2|1Φ−1

R (α),Σ21Σ−1
11 Σ12,R

)
Recall the theoretical conditional quantile:

qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗ (α)
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Quantile regression

How good is the quantile regression?

Gaussian case{
qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α)
q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α)

The Quantile Regression Predictor is exactly the conditional
quantile.
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Quantile regression

How good is the quantile regression?

Student case{
qα(X2|X1 = x1) = µ2|1 + σ2|1

√
ν

ν+N

√
1 + 1

ν d1Φ−1
ν+N(α)

q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
ν (α)

The error may be huge, especially if the Mahalanobis distance
d1 = (x1 − µ1)TΣ−1

11 (x1 − µ1) is high. Below N = 5.
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Expectile regression

Conditional expectiles

Recall that the α−expectile of X is defined as:

arg min
x∈R

E
[
(1− α) (x − X )2

+ + α (X − x)2
+

]
.

In the elliptical case, the expectile of level α is the solution of:

ΨR(x) = ΦR(x) +
1

x

+∞∫
x

yc1g1(y2)dy =
α

2α− 1
.

Theoretical conditional expectiles :

eα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1
R∗

(
α

2α− 1

)
.
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Expectile regression

Expectile regression

Approximate the conditional expectile by:
([Newey and Powell, 1987])

êα(X2|X1 = x1) = β∗T x1 + β∗0

where β∗ and β∗0 are the solutions of the minimization problem :

(β∗, β∗0) = arg min
β∈RN ,β0∈R

E[sα(X2 − βTX1 − β0)]

with the loss function sα:

sα(x) = (1− α)x21{x<0} + αx21{x>0}

34 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

Expectile regression

Expectile Regression for elliptical distributions

Theorem

Let X = (X1,X2) be an elliptical distribution, the optimal β∗ is
given by :{

β∗ = Σ−1
11 Σ12

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Ψ−1

R

(
α

2α−1

)
The Expectile Regression Predictor α ∈ [0, 1] is:

êα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1
R

(
α

2α− 1

)
.

Furthermore,

êα(X2|X1) ∼ E1

(
µ2 + σ2|1Ψ−1

R

(
α

2α− 1

)
,Σ21Σ−1

11 Σ12,R

)
.
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Expectile regression

How good is the expectile regression?

Gaussian case The Quantile Regression Predictor is exactly the
conditional quantile.
Student case Semi-explicit formula, Ψ−1

R computed using MM
algorithms. The error may be huge. Below N = 5.
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Extreme approximations

In case α ∼ 1 or α ∼ 0, alternative methods have to be proposed.
In the case of quantile, we found an equivalent of Φ−1

R∗ (α).
In the case of expectile, we found an equivalent of Ψ−1

R∗ (α).

38 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

Quantile case

Some asymptotic relationships

Theorem

Under some technical assumptions, their exist 0 < ` < +∞ and
η ∈ R such that :[

Φ−1
R

(
1− 1

`
1−α+2(1−`)

)] 1
η

∼
α→1

Φ−1
R∗ (α)
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Quantile case

Examples

Property

The Gaussian, Student and Slash distributions satisfy the previous
assumptions, with coefficients η and ` given in the table below.

Distribution η `

Gaussian 1 1

Student, ν > 0 N
ν
+ 1

Γ( ν+N+1
2 )Γ( ν

2 )
Γ( ν+N

2 )Γ( ν+1
2 )

(
1 + q1

ν

) N+ν
2 ν

N
2

+1

ν+N

Slash, a > 0 N
a
+ 1

Γ( N+1+a
2 )q

N+a
2

1

Γ( N+a
2 )(N+a)χ2

N+a
(q1)2

a
2
−1

Γ( 1+a
2 )
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Quantile case

Examples

Extremal correction in the Student case
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Expectile case

Some asymptotic relationships

Under some technical assumptions, their exist 0 < ` < +∞ and
γ ∈ R such that:

ˆ̂eα↑(X2|X1 = x1) ∼
α→1

eα(X2|X1 = x1)

ˆ̂eα↓(X2|X1 = x1) ∼
α→0

eα(X2|X1 = x1)

with
ˆ̂eα↑(X2|X1 = x1) = µ2|1 + σ2|1

[
Ψ−1

R

(
1− α−1

(2α−1)`

)] 1
γ

ˆ̂eα↓(X2|X1 = x1) = µ2|1 − σ2|1

[
Ψ−1

R

(
1− α

(2α−1)`

)] 1
γ

Hypothesis satisfied for Gaussian, Student, Slash distributions.
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Expectile case

Example

Extremal correction in the Student case
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Estimation of the parameters

Estimations

Under additional assumptions (heavy tail + order two condition,
estimations of the parameters `, η, γ + asymptotic normality of
the estimators ([Usseglio-Carleve, 2017]).
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Financial example

[Usseglio-Carleve, 2017]. These four values are the first available
every day ⇒ anticipate the behaviour of the return of WisdomTree
Japan Hedged Equity Fund X2.

46 / 57



Introduction Background Regression methods High level risk measures A real data example Conclusion

Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x1 = (−0.0185%,−0.4464%, 0.9614%, 0.1405%).
Estimate quantiles / expectiles / TVaR of X2|X1 = x1.
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Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x1 = (−0.0185%,−0.4464%, 0.9614%, 0.1405%).
Estimate quantiles / expectiles / TVaR of X2|X1 = x1.
Data exploration:

the daily returns can be considered as independent.

the marginals seem symmetrical.

the measured tail index is approximately the same for the
marginals.

Could be assumed to be elliptical.
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Financial example

E.g., for α = 0.999, the estimated VaR is 3.1%, the observed value
is 0.7141%.
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Conclusion / perspectives

Regression methods are not satisfactory for non gaussian
distributions.

Framework adapted to a large class of risk measures (Lp

quantile, Haezendonck-Goovaerts risk measures).

New technics needed in the high dimension case (N large),
see Antoine Usseglio-Carleve (2019).

More details in [Maume-Deschamps et al., 2017a,
Maume-Deschamps et al., 2017b, Usseglio-Carleve, 2017].

Mixed approaches for non central but non extreme risk levels?

Non symetric distributions?
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Thank you

Obrigada pela vossa atenção.
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