Introduction Background Regression methods High level risk measures A real data example

Estimation of conditional risk measures for elliptic distributions.

Véronique Maume-Deschamps Joint work with Didier Rullière and Antoine Usseglio-Carleve.

Lisbon, October 17th, 2018

Conclusion

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					
1 In 2 Ba • •	troduction ackground Elliptic dis Risk meas	stributions Jures			
3 R • •	e <mark>gression</mark> r Quantile r Expectile	nethods regression regression			
4 H • •	i <mark>gh level ri</mark> Quantile o Expectile	sk measures case case			

- Estimation of the parameters
- 5 A real data example
- 6 Conclusion

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					

1 Introduction

- 2 Background
- 3 Regression methods
- 4 High level risk measures
- 5 A real data example
- 6 Conclusion

Consider four assets: iShares Core U.S. Aggregate Bond ETF, PowerShares DB Commodity Index Tracking Fund, WisdomTree Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial Average ETF.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion

A financial example

How to use the knowledge of the 4 variables in order to estimate risk measures for WisdomTree Japan Hedged Equity Fund.

Consider $(Z_t)_{t \in T}$ a random field observed at *n* points $t_1, ..., t_n$.

Spatial Process

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Background Regression methods High level risk measures A real data example Conclusion

A general temporal problematic

Consider $(Z_t)_{t \in T}$ a random field observed at *n* points $t_1, ..., t_n$.

Spatial Process

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A general temporal problematic

Consider $(Z_t)_{t \in T}$ a random field observed at *n* points $t_1, ..., t_n$. Using kriging ([Krige, 1951], [Matheron, 1963]) lead to estimations of the conditional mean, reliable for Gaussian processes.

How to estimate conditionnal risk measures (quantiles, expectiles, TVaR), for non necessarily gaussian random fields ?

Rainfall amounts measured at some locations $X \in \mathbb{R}$, one unknown value $Y \in \mathbb{R}$.

Source: Geographic Information Technology Training Alliance. How to estimate risk measures related to Y knowing X?

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Our pu	rpose				

- Focus on elliptic distributions,
- Consider quantile / expectile regression
- Propose an alternative estimation, for high level risk measures.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					

- 2 Background
 - Elliptic distributions
 - Risk measures
- 3 Regression methods
- 4 High level risk measures
- 5 A real data example

Introduction	Background ●○○○○○	Regression methods	High level risk measures	A real data example	Conclusion
Elliptic distribu	tions				
Definit	ion				

Definition (Representation Theorem [Cambanis et al., 1981])

A \mathbb{R}^d random vector X is elliptical with parameters μ and Σ (X ~ $\mathcal{E}_d(\mu, \Sigma)$) if it writes:

$$X \stackrel{d}{=} \mu + R\Lambda U^{(d)}$$

where $\Lambda\Lambda^T = \Sigma$, $U^{(d)}$ is a d-dimensional random vector uniformly distributed on S^{d-1} , R is a non-negative random variable, independent of $U^{(d)}$.

• *R* is called the radius of *X*.

Introduction

Regression methods

High level risk measures

A real data example

Conclusion

Elliptic distributions

Consistent Elliptic distributions

Background

00000

Definition (Kano, 1994 [Kano, 1994])

 $X \sim \mathcal{E}_d(\mu, \Sigma, R)$ has the consistency property if:

$$R \stackrel{d}{=} \chi_d \epsilon$$

where ϵ is a positive random variable unrelated to d and independent of χ_d . We shall say that X is a consistent (R, d)-elliptical random vector with parameters μ and Σ .

Remark: the above definition rewrites as

$$X \stackrel{d}{=} \mu + \epsilon \mathcal{N}(0, \Sigma)$$

with ϵ independent of the normal vector. This means that finally, an elliptical distribution is a normal distribution with random variance $\epsilon^2 \Sigma$).

 Sub-vectors of elliptical vectors are elliptical, more precisely, Let X = (X₁, X₂) be a consistent (R, d)-elliptical random vector with parameters μ and Σ. X₁ and X₂ are d₁ and d₂-dimensional subvectors of X. Let us write Σ :

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Then X_1 and X_2 are respectively (R, d_1) - and (R, d_2) -elliptical with parameters μ_1 , Σ_{11} and μ_2 , Σ_{22} , respectively.

• Conditional distributions of elliptical vectors are also elliptical.

- Sub-vectors of elliptical vectors are elliptical,
- Conditional distributions of elliptical vectors are also elliptical. More precisely,

 $X_2|(X_1 = x_1)$ is still elliptical, with radius R^* given by:

$$R^* \stackrel{d}{=} R\sqrt{1-\beta} | \left(R\sqrt{\beta} U^{(d)} = C_{11}^{-1}(x_1-\mu_1) \right),$$

where C_{11} is the Cholesky root of Σ_{11} , and $\beta \sim Beta(\frac{d_1}{2}, \frac{d_2}{2})$.

Conditional measures.

- Sub-vectors of elliptical vectors are elliptical,
- Conditional distributions of elliptical vectors are also elliptical.

Definition

A random field $(Z_t)_{t\in T}$, $t\in \mathbb{R}$ is ϵ -elliptical if

$$Z_t = \mu + \epsilon X_t$$

where $(X_t)_{t \in T}$ is a gaussian field.

Introduction	Background ○○○●○○	Regression methods	High level risk measures	A real data example	Conclusion
Elliptic distribut	ions				
Exampl	es				

• Normal distributions: $\epsilon = 1$.

Densité gaussienne

- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_d^2}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Background ○○○●○○	Regression methods	High level risk measures	A real data example	Conclusion
Elliptic distribut	tions				
Exampl	les				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_d^2}}$.

Densité Student

イロン イボン イヨン イヨン 三日

18/57

- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Background ○○○●○○	Regression methods	High level risk measures	A real data example	Conclusion
Elliptic distribu	tions				
Examp	les				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_d^2}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.

- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Background ○○○●○○	Regression methods	High level risk measures	A real data example	Conclusion
Elliptic distribu	tions				
Examp	les				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_d^2}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.

Densité Laplace

Introduction	Background ○○○○●○	Regression methods	High level risk measures	A real data example	Conclusion
Risk measures					
Quanti	les and e	expectiles			

Quantile is widely used as a risk measure (VaR). Recall: for X a random variable (a risk) with distribution function F_X ,

- $q_{\alpha}(X) = \operatorname{VaR}_{\alpha}(X) = \inf\{t \ / \ F_X(t) \ge \alpha\} = F_X^{-1}(\alpha),$
- RiskMetrics popularized the use of VaR as a risk measure (1994).
- Basel Committee : Internal approach to capital management using VaR (1996),
- formalisation of coherent risk measures [Artzner et al., 1999], VaR is not coherent (because not sub-additive in general).
 VaR is a risk threshold but does not gives information on the risk above the threshold.

TVaR / Expected shortfall: (for continuous distributions) - see e.g. [Artzner et al., 1999] -

$$\begin{aligned} \mathsf{T}\mathsf{VaR}_{\alpha}(X) &= \mathsf{ES}_{\alpha}(X) = \mathbb{E}(X|X > \mathsf{VaR}_{\alpha}(X)) \\ &= \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{u}(X) du. \end{aligned}$$

TVaR is a coherent risk measure.

The notion of ellicitability has taken some importance these last years [Bellini and Di Bernardino, 2017] in risk management.

A statistic T is ellicitable ([Gneiting, 2011, Ziegel, 2016]) if it can be written as a minimizer of a scoring function denoted $s : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$:

$$T(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E}[s(X, x)].$$

Interest:

- Ability to compare different statistical methods
- Makes backtesting procedures easier
- Allow the use of stochastic approximation tools.

Introduction	Background ○○○○●○	Regression methods	High level risk measures	A real data example	Conclusion
Risk measures					
Quanti	les and e	expectiles			

VaR is ellicitable: take

$$s(x,X) = [\alpha(X-x)_+ + (1-\alpha)(X-x)_-].$$

TVaR is not ellicitable.

Define the expectile as ([Newey and Powell, 1987]):

$$e_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left[lpha(X-x)_{+}^{2} + (1-lpha)(X-x)_{-}^{2}
ight].$$

Expectiles are:

- Ellicitable (of course),
- Coherent,
- the only risk measure which is both coherent and ellicitable ([Bellini and Bignozzi, 2015]).

Expectiles satisfy

$$\alpha \mathbb{E}\left[(X - e_{\alpha}(X))_{+}\right] = (1 - \alpha) \mathbb{E}\left[(X - e_{\alpha}(X))_{-}\right]$$

and thus take into account the risk over the threshold. 24/57

We are interested in conditional risk measures for elliptical distributions. Focus on quantiles (results also for TVaR and expectiles).

Let $X = (X_1, X_2)$ be a (R, N + 1)-elliptical random vector with parameters μ and Σ . $X_1 \in \mathbb{R}^N$ and $X_2 \in \mathbb{R}$. Calculate / estimate

 $q_{\alpha}(X_2|X_1=x_1), \ e_{\alpha}(X_2|X_1=x_1).$

イロン 不通 とうせい マヨン しゅうろう

25 / 57

Introduction	Background ○○○○●	Regression methods	High level risk measures	A real data example	Conclusio
Risk measures					
Condit	ional risk	(measures			

Proposition

Let $X = (X_1, X_2)$ a (R, N + 1)-elliptical random vector with parameters μ and Σ . Write

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Then

$$q_{\alpha}(X_2|X_1=x_1) = \mu_{2|1} + \sqrt{\Sigma_{2|1}} \Phi_{R^*}^{-1}(\alpha)$$

with $\begin{cases} \mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1) \\ \Sigma_{2|1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \end{cases}$ and for a random variable Y, Φ_Y is the distribution function of $\frac{Y - \mathbb{E}(Y)}{\sigma_Y}$.

Introduction	Background ○○○○●	Regression methods	High level risk measures	A real data example	Conclusion
Risk measures					
Conditi	ional risk	measures			

$$q_{\alpha}(X_{2}|X_{1}=x_{1})=\mu_{2|1}+\sqrt{\Sigma_{2|1}}\Phi_{R^{*}}^{-1}(\alpha)$$

Problem: the distribution of R^* is hardly accessible.

- Explicit formulas for Gaussian and Student distributions,
- First idea: quantiles regression,
- Extreme estimations (ie $\alpha \rightarrow 1$).

Plan	

- 2 Background
- Regression methods
 Quantile regression
 Expectile regression
- 4 High level risk measures
- 5 A real data example

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Quantile regres	ssion				
Quanti	le Regre	ssion			

Approximate the conditional quantile by: ([Koenker and Bassett, 1978])

$$\hat{q}_{lpha}(X_2|X_1=x_1)={eta^*}^{ op}x_1+{eta_0^*}$$

where β^* and β^*_0 are the solutions of the following minimization problem:

$$(\beta^*, \beta_0^*) = \arg\min_{\beta \in \mathbb{R}^N, \beta_0 \in \mathbb{R}} \mathbb{E}[s_\alpha (X_2 - \beta^T X_1 - \beta_0)]$$

with the scoring function s_{α} :

$$s_{\alpha}(x) = (\alpha - 1)x \mathbf{1}_{\{x < 0\}} + \alpha x \mathbf{1}_{\{x > 0\}}$$

Introduction

Background Regressi

Regression methods

High level risk measures

easures A real

A real data example Con

Conclusion

Quantile regression

Quantile Regression for elliptic distributions

Theorem

Let $X = (X_1, X_2)$ be an elliptical distribution, the optimal β^* is given by :

$$\beta^* = \Sigma_{11}^{-1} \Sigma_{12}$$

The Quantile Regression Predictor with level $\alpha \in [0,1]$ is given by:

$$\hat{q}_{lpha}(X_2|X_1=x_1)=\mu_{2|1}+\sqrt{\Sigma_{2|1}}\Phi_R^{-1}(lpha)$$

It satisfies

$$\hat{q}_{lpha}(X_2|X_1) \sim \mathcal{E}_1\left(\mu_2 + \sigma_{2|1}\Phi_R^{-1}(lpha), \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}, R
ight)$$

Recall the theoretical conditional quantile:

$$q_{\alpha}(X_{2}|X_{1}=x_{1}) = \mu_{2|1} + \sqrt{\sum_{2|1}} \Phi_{R^{*}(\alpha)}^{-1}(\alpha)$$

Introduction Background Regression methods OOOOO High level risk measures A real data example Conclusion OOOOO Quantile regression

How good is the quantile regression?

Gaussian case

$$\begin{cases} q_{\alpha}(X_{2}|X_{1} = x_{1}) = & \mu_{2|1} + \sigma_{2|1}\Phi^{-1}(\alpha) \\ \hat{q}_{\alpha}(X_{2}|X_{1} = x_{1}) = & \mu_{2|1} + \sigma_{2|1}\Phi^{-1}(\alpha) \end{cases}$$

The Quantile Regression Predictor is exactly the conditional quantile.

Introduction

Background

Regression methods

High level risk measures

easures A rea

A real data example Co

Conclusion

Quantile regression

How good is the quantile regression?

Student case

$$\begin{cases} q_{\alpha}(X_{2}|X_{1}=x_{1}) = & \mu_{2|1} + \sigma_{2|1}\sqrt{\frac{\nu}{\nu+N}}\sqrt{1 + \frac{1}{\nu}d_{1}}\Phi_{\nu+N}^{-1}(\alpha) \\ \hat{q}_{\alpha}(X_{2}|X_{1}=x_{1}) = & \mu_{2|1} + \sigma_{2|1}\Phi_{\nu}^{-1}(\alpha) \end{cases}$$

The error may be huge, especially if the Mahalanobis distance $d_1 = (x_1 - \mu_1)^T \Sigma_{11}^{-1} (x_1 - \mu_1)$ is high. Below N = 5.

Student Quantile Regression

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Expectile regre	ssion				
Conditi	ional exp	pectiles			

Recall that the α -expectile of X is defined as:

$$\underset{x \in \mathbb{R}}{\arg\min} \mathbb{E}\left[\left(1-\alpha\right)\left(x-X\right)_{+}^{2}+\alpha\left(X-x\right)_{+}^{2}\right].$$

In the elliptical case, the expectile of level α is the solution of:

$$\Psi_R(x) = \Phi_R(x) + \frac{1}{x} \int_x^{+\infty} y c_1 g_1(y^2) dy = \frac{\alpha}{2\alpha - 1}.$$

Theoretical conditional expectiles :

$$e_{\alpha}(X_2|X_1=x_1)=\mu_{2|1}+\sigma_{2|1}\Psi_{R^*}^{-1}\left(\frac{lpha}{2lpha-1}
ight).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Background	Regression methods ○○○○●○○	High level risk measures	A real data example	Conclusion
Expectile regre	ession				
Expect	ile regre	ssion			

Approximate the conditional expectile by: ([Newey and Powell, 1987])

$$\hat{e}_{\alpha}(X_2|X_1=x_1) = \beta^{*T}x_1 + \beta_0^*$$

where β^* and $\beta^*_{\rm 0}$ are the solutions of the minimization problem :

$$(\beta^*, \beta_0^*) = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^N, \beta_0 \in \mathbb{R}} \mathbb{E}[s_\alpha (X_2 - \beta^T X_1 - \beta_0)]$$

with the loss function s_{α} :

$$s_{\alpha}(x) = (1-\alpha)x^2 \mathbf{1}_{\{x<0\}} + \alpha x^2 \mathbf{1}_{\{x>0\}}$$

・ロト <
一 ト <
一 ト <
三 ト <
三 ト <
三 ト <
三 や へ ()
34 / 57
</p>

Introduction

Background Regression methods

High level risk measures

neasures A real

A real data example Cone

Conclusion

Expectile regression

Expectile Regression for elliptical distributions

Theorem

Let $X = (X_1, X_2)$ be an elliptical distribution, the optimal β^* is given by :

$$\begin{cases} \beta^* = \Sigma_{11}^{-1} \Sigma_{12} \\ \beta_0^* = \mu_2 - \Sigma_{21} \Sigma_{11}^{-1} \mu_1 + \sigma_{2|1} \Psi_R^{-1} \left(\frac{\alpha}{2\alpha - 1} \right) \end{cases}$$

The Expectile Regression Predictor $\alpha \in [0,1]$ is:

$$\hat{e}_{\alpha}(X_2|X_1=x_1) = \mu_{2|1} + \sigma_{2|1} \Psi_R^{-1}\left(\frac{\alpha}{2\alpha-1}\right).$$

Furthermore,

$$\hat{e}_{\alpha}(X_2|X_1) \sim \mathcal{E}_1\left(\mu_2 + \sigma_{2|1}\Psi_R^{-1}\left(\frac{\alpha}{2\alpha - 1}\right), \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}, R\right).$$

How good is the expectile regression?

Gaussian case The Quantile Regression Predictor is exactly the conditional quantile.

Student case Semi-explicit formula, Ψ_R^{-1} computed using MM algorithms. The error may be huge. Below N = 5.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					

- 1 Introduction
- 2 Background
- 3 Regression methods
- 4 High level risk measures
 - Quantile case
 - Expectile case
 - Estimation of the parameters
- 6 A real data example

Introduction Background Regression methods High level risk measures A real data example Conclusion

Extreme approximations

In case $\alpha \sim 1$ or $\alpha \sim 0$, alternative methods have to be proposed. In the case of quantile, we found an equivalent of $\Phi_{R^*}^{-1}(\alpha)$. In the case of expectile, we found an equivalent of $\Psi_{R^*}^{-1}(\alpha)$. Introduction

Background **Regression methods**

High level risk measures 00000

A real data example

Conclusion

Quantile case

Some asymptotic relationships

Theorem

Under some technical assumptions, their exist $0 < \ell < +\infty$ and $\eta \in \mathbb{R}$ such that :

$$\left[\Phi_{R}^{-1}\left(1-\frac{1}{\frac{\ell}{1-\alpha}+2(1-\ell)}\right)\right]^{\frac{1}{\eta}} \underset{\alpha \to 1}{\sim} \Phi_{R^{*}}^{-1}(\alpha)$$

3 39 / 57

Introduction	Background	Regression methods	High level risk measures ○●○○○	A real data example	Conclusion
Quantile case					
Exampl	es				

Property

The Gaussian, Student and Slash distributions satisfy the previous assumptions, with coefficients η and ℓ given in the table below.

Distribution	η	l
Gaussian	1	1
Student, $ u > 0$	$rac{N}{ u}+1$	$rac{\Gamma\left(rac{ u+N+1}{2} ight)\Gamma\left(rac{ u}{2} ight)}{\Gamma\left(rac{ u+N}{2} ight)\Gamma\left(rac{ u+1}{2} ight)}\left(1+rac{q_1}{ u} ight)^{rac{N+ u}{2}}rac{ u}{ u+N}$
Slash, <i>a</i> > 0	$\frac{N}{a} + 1$	$\frac{\Gamma\left(\frac{N+1+a}{2}\right)q_1^{\frac{N+a}{2}}}{\Gamma\left(\frac{N+a}{2}\right)(N+a)\chi^2_{N+a}(q_1)2^{\frac{a}{2}-1}\Gamma\left(\frac{1+a}{2}\right)}$

Introduction	Background	Regression methods	High level risk measures ○●○○○	A real data example	Conclusion
Quantile case					
Examp	les				

Extremal correction in the Student case

Student Extremal Predictor

41/57

Under some technical assumptions, their exist 0 $<\ell<+\infty$ and $\gamma\in\mathbb{R}$ such that:

$$\left\{ egin{array}{ll} \hat{\hat{e}}_{lpha\uparrow}(X_2|X_1=x_1) & \sim & e_lpha(X_2|X_1=x_1) \ \hat{\hat{e}}_{lpha\downarrow}(X_2|X_1=x_1) & \sim & e_lpha(X_2|X_1=x_1) \ & & lpha
ightarrow e_lpha(X_2|X_1=x_1) \end{array}
ight.$$

with

$$\begin{cases} \hat{\hat{e}}_{\alpha\uparrow}(X_2|X_1=x_1) &= \mu_{2|1} + \sigma_{2|1} \left[\Psi_R^{-1} \left(1 - \frac{\alpha - 1}{(2\alpha - 1)\ell} \right) \right]^{\frac{1}{\gamma}} \\ \hat{\hat{e}}_{\alpha\downarrow}(X_2|X_1=x_1) &= \mu_{2|1} - \sigma_{2|1} \left[\Psi_R^{-1} \left(1 - \frac{\alpha}{(2\alpha - 1)\ell} \right) \right]^{\frac{1}{\gamma}} \end{cases}$$

Hypothesis satisfied for Gaussian, Student, Slash distributions.

Introduction	Background	Regression methods	High level risk measures ○○○●○	A real data example	Conclusion
Expectile case					
Examp	le				

Extremal correction in the Student case

Student Extremal Predictor

Introduction	Background	Regression methods	High level risk measures ○○○○●	A real data example	Conclusion
Estimation of t	he parameters				
Estima	tions				

Under additional assumptions (heavy tail + order two condition, estimations of the parameters ℓ , η , γ + asymptotic normality of the estimators ([Usseglio-Carleve, 2017]).

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					

- 2 Background
- 3 Regression methods
- 4 High level risk measures
- 5 A real data example

6 Conclusion

Regression methods

High level risk measures

A real data example

Conclusion

Financial example

Background

[Usseglio-Carleve, 2017]. These four values are the first available every day \Rightarrow anticipate the behaviour of the return of WisdomTree Japan Hedged Equity Fund X_2 .

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Financi	ial exam	ple			

The sample size is 2520. The first 2519 days (from January 3, 2007 to December 5, 2016) = learning sample, and we focus on the 2520th day: $x_1 = (-0.0185\%, -0.4464\%, 0.9614\%, 0.1405\%)$. Estimate quantiles / expectiles / TVaR of $X_2|X_1 = x_1$.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Financi	al exam	ple			

The sample size is 2520. The first 2519 days (from January 3, 2007 to December 5, 2016) = learning sample, and we focus on the 2520th day: $x_1 = (-0.0185\%, -0.4464\%, 0.9614\%, 0.1405\%)$. Estimate quantiles / expectiles / TVaR of $X_2 | X_1 = x_1$. Data exploration:

- the daily returns can be considered as independent.
- the marginals seem symmetrical.
- the measured tail index is approximately the same for the marginals.

Could be assumed to be elliptical.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion

Financial example

E.g., for α = 0.999, the estimated VaR is 3.1%, the observed value is 0.7141%.

Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
Plan					

- Introduction
- 2 Background
- 3 Regression methods
- 4 High level risk measures
- 5 A real data example

Conclusion / perspectives

- Regression methods are not satisfactory for non gaussian distributions.
- Framework adapted to a large class of risk measures (*L^p* quantile, Haezendonck-Goovaerts risk measures).
- New technics needed in the high dimension case (*N* large), see Antoine Usseglio-Carleve (2019).
- More details in [Maume-Deschamps et al., 2017a, Maume-Deschamps et al., 2017b, Usseglio-Carleve, 2017].
- Mixed approaches for non central but non extreme risk levels?
- Non symetric distributions?

Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3):203–228. Bellini, F. and Bignozzi (2015). On elicitable risk measures. Quantitative Finance, 15(5):725â733. Bellini, F. and Di Bernardino, E. (2017). Risk management with expectiles. The European Journal of Finance, 23(6):4873506. Cambanis, S., Huang, S., and Simons, G. (1981). On the theory of elliptically contoured distributions.

Journal of Multivariate Analysis, 11:368–385.

Gneiting, T. (2011).

Making and evaluating point forecasts . Journal of the American Statistical Association. 106(494):746â762.

📕 Kano, Y. (1994).

Consistency property of elliptical probability density functions. Journal of Multivariate Analysis, 51:139–147.

Koenker, R. and Bassett, G. J. (1978). Regression quantiles. Econometrica, 46(1):33-50.

Krige, D. (1951).

A statistical approach to some basic mine valuation problems on the witwatersrand.

Journal of the Chemical, Metallurgical and Mining Society, 52:119–139.

Matheron, G. (1963).

Traité de géostatistique appliquée.

Bureau de recherches géologiques et minières (France).

Maume-Deschamps, V., Rullière, D., and Usseglio-Carleve, A. (2017a).
 Quantile predictions for elliptical random fields.
 Journal of Multivariate Analysis, 159:1 – 17.

 Maume-Deschamps, V., Rullière, D., and Usseglio-Carleve, A. (2017b).
 Spatial expectile predictions for elliptical random fields. *Methodology and Computing in Applied Probability*, 20(2):643–671.

- Newey, W. and Powell, J. (1987). Asymmetric least squares estimation and testing. *Econometrica*, (55):819–847.
- Usseglio-Carleve, A. (2017).

Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors. working paper.

Ziegel, J. (2016).

Coherence and elicitability. *Mathematical Finance*, 26(4):901–918.

(日) (個) (注) (注) (注) [

Thank you	Introduction	Background	Regression methods	High level risk measures	A real data example	Conclusion
	Thank	you				

Obrigada pela vossa atenção.