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Introduction

A financial example

Consider four assets: iShares Core U.S. Aggregate Bond ETF,
PowerShares DB Commodity Index Tracking Fund, WisdomTree
Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial
Average ETF.
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Introduction

A financial example

iShares Core U.S. Aggregate Bond ETF PowerShares DB Commodity Index Tracking Fun
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How to use the knowledge of the 4 variables in order to estimate
risk measures for WisdomTree Japan Hedged Equity Fund.
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Introduction

A general temporal problematic

Consider (Z;)teT a random field observed at n points ty, ..., t,.

Spatial Process
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Introduction

A general temporal problematic

Consider (Z;)teT a random field observed at n points ty, ..., t,.
Using kriging ([Krige, 1951], [Matheron, 1963]) lead to estimations
of the conditional mean, reliable for Gaussian processes.

Spatial Process

How to estimate conditionnal risk measures (quantiles, expectiles,
TVaR), for non necessarily gaussian random fields ?
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Introduction

A spatial example

Rainfall amounts measured at some locations X € R, one unknown

value Y € R.
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Source: Geographic Information Technology Training Alliance.

How to estimate risk measures related to Y knowing X7
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Introduction

Our purpose

@ Focus on elliptic distributions,
o Consider quantile / expectile regression

@ Propose an alternative estimation, for high level risk measures.
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Background
©000

Elliptic distributions

Definition

Definition (Representation Theorem [Cambanis et al., 1981])

A R random vector X is elliptical with parameters ;1 and ¥
(X ~ Eq(p, X)) if it writes:

X <+ RAUW@

where NNT = ¥, U9 is 2 d—dimensional random vector uniformly
distributed on S9~1, R is a non-negative random variable,
independent of U(9).

@ R is called the radius of X.
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Background
000

Elliptic distributions

Consistent Elliptic distributions

Definition (Kano, 1994 [Kano, 1994])
X ~ E4(u, X, R) has the consistency property if:
RZ Xd€

where € is a positive random variable unrelated to d and
independent of x4. We shall say that X is a consistent
(R, d)—elliptical random vector with parameters ;1 and *.

Remark: the above definition rewrites as
XL+ eN(0,X)

with € independent of the normal vector. This means that finally,
an elliptical distribution is a normal distribution with random

variance €2Y).
13/57



Background
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Elliptic distributions

Properties of elliptic distributions

@ Sub-vectors of elliptical vectors are elliptical, more precisely,
Let X = (X1, X2) be a consistent (R, d)—elliptical random
vector with parameters p and . X7 and X, are di and
d>—dimensional subvectors of X. Let us write ¥ :

211 Z12>
Y =
<221 220

Then Xj and X, are respectively (R, d1)— and
(R, d»)—elliptical with parameters 1, ¥11 and 2, Yoo,
respectively.

o Conditional distributions of elliptical vectors are also elliptical.
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Background
00®0

Elliptic distributions

Properties of elliptic distributions

@ Sub-vectors of elliptical vectors are elliptical,

o Conditional distributions of elliptical vectors are also elliptical.
More precisely,
Xo|(X1 = x1) is still elliptical, with radius R* given by:

R* 2L R\/1- (R\/BU("’) =Ci'(a— ul)) ,
d

where Ci7 is the Cholesky root of ¥11, and 8 ~ Beta(%, %).
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Elliptic distributions

Properties of elliptic distributions

@ Sub-vectors of elliptical vectors are elliptical,

e Conditional distributions of elliptical vectors are also elliptical.

Definition

A random field (Z;)ie1, t € R is e-elliptical if
Zy = pi+ Xy

where (X¢)teT is a gaussian field.
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Elliptic distributions

Examples

@ Normal distributions: € = 1.

Densité gaussienne

@ Student distributions: with v degrees of freedom: ¢ 4 .

Slash distributions: € < P(1,a).
Laplace distibution: € g E(N).
Many other.
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Background
oooe

Elliptic distributions

Examples

@ Normal distributions: € = 1.

@ Student distributions: with v degrees of freedom: ¢ 4 .

Densité Student

e Slash distributions: € < P(1,a).
@ Laplace distibution: el E(N).
e Many other.
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Background
oooe

Elliptic distributions

Examples

@ Normal distributions: € = 1.

@ Student distributions: with v degrees of freedom: ¢ 4 .

o Slash distributions: € < P(1,a).

Densité Slash

@ Laplace distibution: €
e Many other.
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Background
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Elliptic distributions

Examples

@ Normal distributions: ¢ = 1.
@ Student distributions: with v degrees of freedom: e 4 /7

X5
o Slash distributions: € < P(1, a).
@ Laplace distibution: el E(N).

Densité Laplace

e Many other.
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Background
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Risk measures

Quantiles and expectiles

Quantile is widely used as a risk measure (VaR). Recall: for X a
random variable (a risk) with distribution function Fy,

0 go(X) = VaRy(X) = inf{t / Fx(t) > a} = Fx'(a),

@ RiskMetrics popularized the use of VaR as a risk measure
(1994).

@ Basel Committee : Internal approach to capital management
using VaR (1996),

e formalisation of coherent risk measures [Artzner et al., 1999],
VaR is not coherent (because not sub-additive in general).
VaR is a risk threshold but does not gives information on the
risk above the threshold.
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Background
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Risk measures

Quantiles and expectiles

TVaR / Expected shortfall: (for continuous distributions) - see e.g.
[Artzner et al., 1999] -

TVaRa(X)

ESa(X) = E(X|X > VaRa(X))

1
1
- ,(X)du.
1_a/q( )du

TVaR is a coherent risk measure.
The notion of ellicitability has taken some importance these last
years [Bellini and Di Bernardino, 2017] in risk management.
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Risk measures

Quantiles and expectiles

A statistic T is ellicitable ([Gneiting, 2011, Ziegel, 2016]) if it can
be written as a minimizer of a scoring function denoted
s : RxR—=R:

T(X) = arxgg;gin E[s(X, x)].

Interest:
@ Ability to compare different statistical methods
o Makes backtesting procedures easier

@ Allow the use of stochastic approximation tools.
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Risk measures

Quantiles and expectiles

VaR is ellicitable: take
s(x,X) = [a(X = x)+ + (1 — a)(X — x)_].
TVaR is not ellicitable.
Define the expectile as ([Newey and Powell, 1987]):
ea(X) = argmin E [a(X — x)3 + (1 —a)(X - x)2_] .
xeR

Expectiles are:

e Ellicitable (of course),

@ Coherent,

@ the only risk measure which is both coherent and ellicitable

([Bellini and Bignozzi, 2015]).

Expectiles satisfy

O [(X ~ ea(X))4] = (1~ Q)E[(X — ea(X))-].

and thus take into account the risk over the threshold. 2 )51



Background
oe

Risk measures

Conditional risk measures

We are interested in conditional risk measures for elliptical
distributions. Focus on quantiles (results also for TVaR and
expectiles).

Let X = (X1, X2) be a (R, N + 1)—elliptical random vector with
parameters ; and ¥. X; € RV and X, € R.

Calculate / estimate

Ga(X2| X1 = x1), ea(X2|X1 = x1).
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Risk measures

Conditional risk measures

Proposition

Let X = (X1, X2) a (R, N + 1)—elliptical random vector with
parameters p and .. Write

PRT z12>
Yy —
<221 22

o (Xol X1 = x1) = piopn + 1/ To1 PR ()

Then

_ -1
with { tap= 2+ raly (Xl #1) and for a random

Yop= T TIu¥iYi

variable Y, ®y is the distribution function of Y= E(Y)
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Risk measures

Conditional risk measures

o (Xo| X1 = x1) = piopp + 1/ To1 P (@)
Problem: the distribution of R* is hardly accessible.
@ Explicit formulas for Gaussian and Student distributions,

o First idea: quantiles regression,

@ Extreme estimations (ie v — 1).
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Regression methods

© Regression methods
@ Quantile regression
@ Expectile regression
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Regression methods
000

Quantile regression

Quantile Regression

Approximate the conditional quantile by:
([Koenker and Bassett, 1978])

Go(Xo| X1 = x1) = B Tx1 + 5§

where 3* and 3 are the solutions of the following minimization
problem:

(B*,85) = argmin E[sy(Xo — BT X1 — Bo)]
BERN BoeR

with the scoring function s,:

sa(x) = (o = 1)x1 <oy + axlixso)
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Regression methods
oeo

Quantile regression

Quantile Regression for elliptic distributions

Theorem
Let X = (X1, X2) be an elliptical distribution, the optimal 3* is
given by :

B =315,

The Quantile Regression Predictor with level o € [0, 1] is given by:

da(X2| X1 = x1) = pop + 1/ Zon PR (av)
It satisfies

Go(X2|X1) ~ &1 (p2 + 02|1¢El(04)» Y1511 12, R)

Recall the theoretical conditional quantile:

o (Xa|X1 = x1) = 2 + 1/ Top Ppt (@)
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Regression methods
ooe

Quantile regression

How good is the quantile regression?

Gaussian case

{ 9o (Xo| X1 = x1) = g1 + U2|1¢'_1(a)
Go(Xo| X1 = x1) = g1 + 0917 ()

The Quantile Regression Predictor is exactly the conditional
quantile.
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Regression methods
ooe

Quantile regression

How good is the quantile regression?

Student case

{ Go(Xo| X1 =x1) = pop +oouy/ w1+ 75 Lot (o)
Go(X2| X1 = x1) = pioy + 0219y (a)
The error may be huge, especially if the Mahalanobis distance
di = (x1 — p1) "X (31 — pa) is high. Below N = 5.

Student Quantile Regression

.
o

I .
'3

Quantile Regression
0
I

Theoretical Quantiles 32/57



Regression methods
®000

Expectile regression

Conditional expectiles

Recall that the a—expectile of X is defined as:

arg min & [(1 —a) (x = X2 +a(X - x)i] .

In the elliptical case, the expectile of level « is the solution of:

+o00
Vel = 0r() + ¢ [ vy =

X

a
2a0 —1°

Theoretical conditional expectiles :

_ (6%
ea(Xa| X1 = x1) = piopp + ooVt <2a_1) :
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Regression methods
000

Expectile regression

Expectile regression

Approximate the conditional expectile by:
([Newey and Powell, 1987])

&(Xo| X1 = x1) = B*Tx1 + B
where 8* and f3; are the solutions of the minimization problem :

(B*,85) = argmin E[so(Xo — BT X1 — Bo)]
BERN BoeR

with the loss function s,:

Sa(x) = (1 = a)x*1cop + axPlieqy
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Regression methods
00®0

Expectile regression

Expectile Regression for elliptical distributions

Let X = (X1, X2) be an elliptical distribution, the optimal 3* is
given by :

p* = YT
By = m2—Taa¥ifpn +oopVg! (ﬁ)

The Expectile Regression Predictor o € [0, 1] is:

~ _ «
8a(Xa| X1 = x1) = piopp + ooVt (204—1) :

Furthermore,

A _ (67 _
8. (Xa|X1) ~ & <u2 + oo VR (2(1_1> 1Y 1 Y1, R> :
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Regression methods
oooe

Expectile regression

How good is the expectile regression?

Gaussian case The Quantile Regression Predictor is exactly the
conditional quantile.

Student case Semi-explicit formula, KIJEI computed using MM
algorithms. The error may be huge. Below N = 5.

Student Expectile Regression

Expectile Regression

e
A T T T T T
4 2 0 2 4

Theoretical Expectiles
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High level risk measures

@ High level risk measures
@ Quantile case
@ Expectile case
@ Estimation of the parameters
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High level risk measures

Extreme approximations

In case o ~ 1 or a ~ 0, alternative methods have to be proposed.
In the case of quantile, we found an equivalent of CDE}(a).
In the case of expectile, we found an equivalent of ng(a).
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High level risk measures
®0

Quantile case

Some asymptotic relationships

Under some technical assumptions, their exist 0 < £ < +oo and
n € R such that :

1
—il 1 K =il
[¢R (1 ; 1éa+2(1—f)>} a1 Pre(a)
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High level risk measures
oe

Quantile case

Examples

Property

The Gaussian, Student and Slash distributions satisfy the previous
assumptions, with coefficients ) and £ given in the table below.

Distribution 7 7
Gaussian 1 1
|—( 1/+N+1)|—(£) [T
Student, v >0 | N1 | o )UE) (g L a) T w
! r()r(44) ( &;3 AN
r(M)qT
Slash, a > 0 N4 1 Lt
’ (M52 Y (V+a)x.,(0)22 ~tr(42)
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Quantile case

Examples

Extremal

Extremal Predictor

9

-6

High level risk measures
oe

correction in the Student case

Student Extremal Predictor

Theoretical Quantiles
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High level risk measures
®0

Expectile case

Some asymptotic relationships

Under some technical assumptions, their exist 0 < ¢ < 400 and
~ € R such that:

éaT(Xz\Xl = X1) ol ea(X2| X1 = x1)
&0 (Xl X1 = x1) ot ea(X2| X1 = x1)

with

2=

b (XalXe = 1) = pa + o2 |V (1 - iy |

€al(Xol X1 = 1) = popp — o2t ["’El <1 - ﬁ)}

-

2

Hypothesis satisfied for Gaussian, Student, Slash distributions.
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High level risk measures
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Expectile case

Example

Extremal correction in the Student case

Student Extremal Predictor

Extremal Predictor

Theoretical Expectiles
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High level risk measures
°

Estimation of the parameters

Estimations

Under additional assumptions (heavy tail 4+ order two condition,
estimations of the parameters ¢, i, v + asymptotic normality of
the estimators ([Usseglio-Carleve, 2017]).
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A real data example

O A real data example
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A real data example

Financial example

iShares Core U.S. Aggregate Bond ETF PowerShares DB Commodity Index Tracking Fun
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[Usseglio-Carleve, 2017]. These four values are the first available
every day = anticipate the behaviour of the return of WisdomTree
Japan Hedged Equity Fund X5.
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A real data example

Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x; = (—0.0185%, —0.4464%,0.9614%, 0.1405%).
Estimate quantiles / expectiles / TVaR of X3| X1 = x3.
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A real data example

Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x; = (—0.0185%, —0.4464%,0.9614%, 0.1405%).
Estimate quantiles / expectiles / TVaR of X3/ X1 = x1.

Data exploration:

@ the daily returns can be considered as independent.
o the marginals seem symmetrical.

@ the measured tail index is approximately the same for the
marginals.

Could be assumed to be elliptical.
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Financial example

A real data example

Quantile estimation Expectile estimation TVaR estimation
H £. %
5 g = 2
H H 3
4 £ 5,
H HE HES]
oe oss oso 0ss 100 Iy oes 0% 0ss 100 oe os os0 0ss 100
Quanie evel Expecie vel VaRieve

E.g., for « = 0.999, the

estimated VaR is 3.1%, the observed value
is 0.7141%.
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Conclusion

@ Conclusion
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Conclusion

Conclusion / perspectives

@ Regression methods are not satisfactory for non gaussian
distributions.

e Framework adapted to a large class of risk measures (LP
quantile, Haezendonck-Goovaerts risk measures).

@ New technics needed in the high dimension case (N large),
see Antoine Usseglio-Carleve (2019).

@ More details in [Maume-Deschamps et al., 2017a,
Maume-Deschamps et al., 2017b, Usseglio-Carleve, 2017].

@ Mixed approaches for non central but non extreme risk levels?

@ Non symetric distributions?
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Thank you

Obrigada pela vossa atencao.
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