On the estimation of aggregated quantiles with marginal and dependence informations.

Véronique Maume-Deschamps, université Lyon 1 - Institut Camille Jordan (ICJ),

Joint Work with Andrés Cuberos (SCOR) and Esterina Masiello (Université Lyon 1).

Mathematical Sciences, Liverpool October, 5th 2015.

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Plan

- Introduction
- Copulas
- 2 Using information on the dependence
- 3 Estimation procedure and simulation results
- 4 Concluding remarks

Introduction Copulas

Using information on the dependence Estimation procedure and simulation results Concluding remarks

General problematic

 (X_1, \ldots, X_d) random vector of risks. Write

$$S = \sum_{i=1}^{d} X_i$$
, the aggregated risk.

Regulatory rules, Risk management purposes, Environmental risks $\dots \implies$ need to estimate / approximate high level quantiles of *S*:

$${\sf F}_{{\sf S}}^{-1}(lpha)={\sf VaR}_{lpha}({\sf S}),\,\,{\sf for}\,\,lpha\,\,{\sf near}\,\,1,$$

where F_S is the distribution function of S.

Introduction Copulas

Why we consider quantiles?

If X is a random variable, its distribution function is

$$F_X(t) = \mathbb{P}(X \leq t).$$

 F_X^{-1} is the generalized inverse of F_X or the quantile function: for $\alpha \in]0,1[$,

$$F_X^{-1}(\alpha) = \inf\{t \in \mathbb{R}, F_X(t) \ge \alpha\}.$$

If X is a continuous random variable, then $\mathbb{P}(X \le u) = \alpha$ if $u = F_X^{-1}(\alpha)$. So, quantiles give a thresholds which X may exceed with probability $1 - \alpha$.

Introduction Copulas

Using information on the dependence Estimation procedure and simulation results Concluding remarks

Examples

- Insurance: X describes the distribution of the claim amonts, regulatory rules impose to insurance companies to estimate $F_X(\alpha)$ for α near to 1. The quantiles $F_X^{-1}(\alpha)$ are called Value at Risk and denoted VaR $_{\alpha}(X)$.
- Hydrology: X may describe a flood level. Computing F_X⁻¹(α) is required to calibrate a barage e.g. (or a dam).
- Many other field: finance, wind electricity...

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Our purpose

 (X_1, \ldots, X_d) random vector of risks.

The X_i may be different lines of business in insurance contexts.

$$S=\sum_{i=1}^d X_i.$$

 \implies Estimation of VaR_{α}(S).

The law of S (and thus $VaR_{\alpha}(S)$) depends on the law of (X_1, \ldots, X_d) (marginal laws and dependence structure).

Using information on the dependence Estimation procedure and simulation results Concluding remarks

Toy example

 X_1 and X_2 are normally distributed ($\mathcal{N}(0,1)$) with different dependence structures:

- X_1 and X_2 are independent, $S_1 = X_1 + X_2 \rightsquigarrow \mathcal{N}(0, 2)$.
- $X_1 = X_2$ (perfect dependence), $S_2 = X_1 + X_2 \rightsquigarrow \mathcal{N}(0, 4)$.

イロト 不得下 イヨト イヨト 二日

7 / 50

X = (X₁, X₂) is a gaussian vecteur with correlation 0.5 (moderate dependence), S₂ = X₁ + X₂ → N(0, 3).

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Toy example

Quantiles at different levels for the three models.

α	0.7	0.9	0.95	0.99	0.995
Quantiles for S_1	0.74	1.81	2.33	3.29	3.64
Quantiles for S_2	1.05	2.56	3.29	4.65	5.15
Quantiles for S_3	0.91	2.22	2.85	4.03	4.46

Introduction Copulas

High quantiles of aggregated risks

- High dimensional problem (d may be large),
- Marginal laws (laws of the X_i's) are usually known (or well estimated), some information on the dependence is available,
- Even if the law of (X_1, \ldots, X_d) is known, the effective computation of

 $VaR_{\alpha}(S)$, for α near 1,

9 / 50

may be difficult to do,

Introduction Copulas

High quantiles of aggregated risks

• Even if the law of (X_1, \ldots, X_d) is known, the effective computation of

 $VaR_{\alpha}(S)$, for α near 1,

may be difficult to do, the distribution function of *S* is given by:

$$F_{\mathcal{S}}(t) = \int_{\mathbb{R}^d} \mathbf{1}_{\{x_1 + \dots + x_d \leq t\}} f_X(x_1, \dots, x_d) dx_1 \dots dx_d.$$

 \implies Efficient methods are still welcome.

3

Introduction Copulas

Using information on the dependence Estimation procedure and simulation results Concluding remarks

One proposition

Assume that the X_i 's laws are known. Information on the dependence is available through

- a (quite small) (X_1, \ldots, X_d) sample and
- some expert opinion (e.g the dependence structure between X₁ and X₂ is completely known) and / or
- some knowledge of the join tail $(\mathbb{P}(X_1 \ge u_1, \dots, X_d \ge u_d))$ is known for some (u_1, \dots, u_d) .

We use checkerboard copulas to estimate $VaR_{\alpha}(S)$.

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Copulas

Recall that if F is the distribution function of $X = (X_1, \ldots, X_d)$, Sklar's Theorem implies that there exists a distribution function Cin $[0,1]^d$ whose marginal laws are uniformely distributed on [0,1], such that

$$F(x_1,\ldots,x_d)=C(F_1(x_1),\ldots,F_d(x_d)),$$

where F_i is the distribution function of X_i and F is the distribution function of the vector X.

If the marginals of X are absolutely continuous then C is unique. It is the copula associated to X.

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introductio Copulas

13 / 50

Modeling dependence with copulas

Below are some simple examples of copulas.

• Independent copula: $C(u_1, \ldots, u_d) = u_1 \times \cdots \times u_d$, $u_i \in [0, 1]$. If X_1, \ldots, X_d are independent then $F(x_1, \ldots, x_d) = F_1(x_1) \times \cdots \times F_d(x_d)$.

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Modeling dependence with copulas

Below are some simple examples of copulas.

- Independent copula: $C(u_1, \ldots, u_d) = u_1 \times \cdots \times u_d$, $u_i \in [0, 1]$. If X_1, \ldots, X_d are independent then $F(x_1, \ldots, x_d) = F_1(x_1) \times \cdots \times F_d(x_d)$.
- Comonotonic copula: C(u₁,..., u_d) = min(u₁,..., u_d), u_i ∈ [0, 1]. The X_i are comonotonic if there exists increasing functions f_i such that X_i = f_i(U) with U → [0, 1], in that case, F(x₁,...,x_d) = min(f_i⁻¹(x_i)).

Using information on the dependence Estimation procedure and simulation results Concluding remarks Introduction Copulas

Modeling dependence with copulas

Below are some simple examples of copulas.

- Independent copula: $C(u_1, \ldots, u_d) = u_1 \times \cdots \times u_d$, $u_i \in [0, 1]$. If X_1, \ldots, X_d are independent then $F(x_1, \ldots, x_d) = F_1(x_1) \times \cdots \times F_d(x_d)$.
- Comonotonic copula: $C(u_1, \ldots, u_d) = \min(u_1, \ldots, u_d)$, $u_i \in [0, 1]$. The X_i are comonotonic if there exists increasing functions f_i such that $X_i = f_i(U)$ with $U \rightsquigarrow [0, 1]$, in that case, $F(x_1, \ldots, x_d) = \min(f_i^{-1}(x_i))$.
- Clayton copula: for $\theta > 0$,

$$C_{\theta}(u_1, \ldots, u_d) = \left(u_1^{-\frac{1}{\theta}} + \cdots + u_d^{-\frac{1}{\theta}} - (d-1)\right)^{-\theta}$$
. Useful for strong dependence for $u_i \sim 0$.

Introduction Copulas

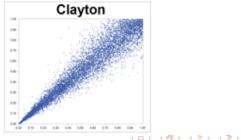
Modeling dependence with copulas

Below are some simple examples of copulas.

- ۲
- ۰
- Clayton copula: for $\theta > 0$,

$$C_{ heta}(u_1,\ldots,u_d) = \left(u_1^{-rac{1}{ heta}} + \cdots + u_d^{-rac{1}{ heta}} - (d-1)
ight)^{- heta}$$
. Useful for

strong dependence for $u_i \sim 0$.



16 / 50

Introduction Copulas

Modeling dependence with copulas

Below are some simple examples of copulas.

•

- Clayton copula: for $\theta > 0$, $C_{\theta}(u_1, \dots, u_d) = \left(u_1^{-\frac{1}{\theta}} + \dots + u_d^{-\frac{1}{\theta}} - (d-1)\right)^{-\theta}$. Useful for strong dependence for $u_i \sim 0$.
- Survival Clayton copula (dual of the Clayton copula): for $\theta > 0$, $C_{\theta}^*(u_1, \ldots, u_d) = \mathbb{P}(U_1 > 1 u_1, \ldots, U_d > 1 u_d)$ with (U_1, \ldots, U_d) having C_{θ} as distribution function. Useful for strong dependence for $u_i \sim 1$.

Introducti Copulas

Using information on the dependence Estimation procedure and simulation results Concluding remarks

Useful property on copulas

Lemma

If C is a distribution function on $[0,1]^d$, then C is a copula if and only if $C(x) = x_k$ for all $x \in [0,1]^d$ with $x_i = 1$, $i \neq k$.

The condition above is necessary and sufficient to have uniform marginal laws.

The checkerboard coupla Additional information

1 Context

Plan

Using information on the dependence
The checkerboard coupla
Additional information

3 Estimation procedure and simulation results

4 Concluding remarks

The checkerboard coupla Additional information

The checkerboard copula: definition

The cherckerboard copula, introduced by Mikusinski (2010) is an approximation of a copula C.

 μ is the probability measure associated to C on $[0, 1]^d$:

$$\mu([0,x]) = C(x), x = (x_1, \ldots, x_d) \in [0,1]^d, \ [0,x] = \prod_{i=1}^d [0,x_i].$$

Consider $(I_{i,m})_{i \in \{1,...,m\}^d}$ the partition (modulo a 0 measure set) of $[0,1]^d$ given by the m^d squares:

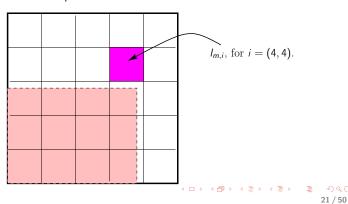
$$l_{i,m} = \prod_{j=1}^{d} \left[\frac{i_j - 1}{m}, \frac{i_j}{m} \right], \ i = (i_1, \dots, i_d).$$

The checkerboard coupla Additional information

The checkerboard copula: definition

The cherckerboard copula of order m is defined on $[0, 1]^d$ by: (λ is the Lebesgue measure)

$$C_m^*(x) = \sum_i m^d \mu(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$



The checkerboard coupla Additional information

The checkerboard copula: definition

The cherckerboard copula of order m is defined on $[0,1]^d$ by: (λ is the Lebesgue measure)

$$C_m^*(x) = \sum_i m^d \mu(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$

From a probabilistic point of view,

$$C_m^*(x) = \sum_i \mu(I_{i,m}) \mathbb{P}(U \leq x | U \in I_{i,m}).$$

with U a random vector of \mathbb{R}^d of i.i.d. uniform laws on [0, 1].

The checkerboard coupla Additional information

Approximation by the checkerboard copula

Proposition

 C_m^* is a copula which approximate C:

$$\sup_{x\in[0,1]^d}|C_m^*(x)-C(x)|\leq \frac{d}{2m}.$$

Proof:

To prove that C_m^* is a copula, it suffices to notice that $C_m^*(x) = x_k$ if $x_i = 1$ for $j \neq k$, this is an simple computation.

The checkerboard coupla Additional information

Approximation by the checkerboard copula

Proposition

 C_m^* is a copula which approximate C:

$$\sup_{x\in[0,1]^d}|C_m^*(x)-C(x)|\leq \frac{d}{2m}.$$

Proof:

For any
$$x \in [0, 1]^d$$
 with $x = \frac{i}{m}$, $i \in \{1, ..., m\}^d$, $C_m^*(x) = C(x)$.
For $a \in \{1, ..., m\}$ and $k \in \{1, ..., d\}$,

$$B_{a}^{k+} = \left\{ x \in [0,1]^{d}, \ \frac{a}{m} - \frac{1}{2m} < x_{k} \le \frac{a}{m} \right\} \text{ and}$$
$$B_{a}^{k-} = \left\{ x \in [0,1]^{d}, \ \frac{a-1}{m} < x_{k} \le \frac{a}{m} - \frac{1}{2m} \right\}.$$

The checkerboard coupla Additional information

Approximation by the checkerboard copula

Proposition

 C_m^* is a copula which approximate C:

$$\sup_{\mathsf{x}\in[0,1]^d}|C_m^*(x)-C(x)|\leq \frac{d}{2m}.$$

Proof:

Denote by μ_m^* the probability measure on $[0,1]^d$, associated to C_m^* . If $x \in I_{i,m}$, $i = (1_1, \ldots, i_d)$ then,

$$|C_{m}^{*}(x) - C(x)| \leq \sum_{k=1}^{d} |\mu_{m}^{*}(B_{i_{k}}^{k-}) - \lambda(B_{i_{k}}^{k-})|\mathbf{1}_{B_{i_{k}}^{k-}}(x) + \sum_{k=1}^{d} |\mu_{m}^{*}(B_{i_{k}}^{k+}) - \lambda(B_{i_{k}}^{k+})|\mathbf{1}_{B_{i_{k}}^{k+}}(x) + \sum_{k=1}^{d} |\mu_{m}^{*}(B_{i_{k}}^{k+}) - \lambda$$

The checkerboard coupla Additional information

Approximation by the checkerboard copula

Proposition

 C_m^* is a copula which approximate C:

$$\sup_{x\in[0,1]^d}|C_m^*(x)-C(x)|\leq \frac{d}{2m}.$$

Proof:

$$\mu_m^*(B_{i_k}^{k-}) = \lambda(B_{i_k}^{k-}) = \mu_m^*(B_{i_k}^{k+}) = \lambda(B_{i_k}^{k+}) = \frac{1}{2m}.$$

<□▶ <□▶ <□▶ <三▶ <三▶ <三▶ 三 のQ(?) 26/50

The checkerboard coupla Additional information

Approximation by the checkerboard copula

Proposition

 C_m^* is a copula which approximate C:

$$\sup_{\mathbf{x}\in[0,1]^d}|C_m^*(\mathbf{x})-C(\mathbf{x})|\leq \frac{d}{2m}.$$

Proof:

$$\begin{aligned} |C_m^*(x) - C(x)| &\leq \sum_{k=1}^d \min(\mu_m^*(B_{i_k}^{k-}), \lambda(B_{i_k}^{k-})) \mathbf{1}_{B_{i_k}^{k-}}(x) + \\ &\sum_{k=1}^d \min(\mu_m^*(B_{i_k}^{k+}), \lambda(B_{i_k}^{k+})) \mathbf{1}_{B_{i_k}^{k+}}(x) = \frac{d}{2m}. \end{aligned}$$

The checkerboard coupla Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

The copula of a subvector \mathbf{X}^J , $J \subset \{1, \dots, d\}$, C^J is known, |J| = k < d.

The checkerboard coupla Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

The copula of a subvector \mathbf{X}^J , $J \subset \{1, \dots, d\}$, C^J is known, |J| = k < d.

Let μ^J be the probability measure on $[0,1]^k$ associated to C^J . For $i = (i_1, \ldots, i_d)$, let $x = (x_1, \ldots, x_d) \in [0,1]^d$, $x^J = (x_j)_{j \in J}$, $x^{-J} = (x_j)_{j \notin J}$ and

$$I_{i,m}^{J} = \left\{ x \in [0,1]^{k} / x_{j} \in \left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], \ j \in J \right\},$$
$$I_{i,m}^{-J} = \left\{ x \in [0,1]^{d-k} / x_{j} \in \left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], \ j \notin J \right\}.$$

The checkerboard coupla Additional information

Checkerboard with information on a sub-vector

Define

$$\mu_m^J([0,x]) = \sum_{i \in \{1,...,m\}^d} \frac{m^{d-k}}{\mu^J(I_{i,m}^J)} \mu(I_{i,m}) \lambda([0,x^{-J}] \cap I_{i,m}^{-J}) \mu^J([0,x^J] \cap I_{i,m}^J).$$

Let $C_m^J(x) = \mu_m^J([0, x])$. From a probabilistic point of view,

$$C_m^J(x) = \sum_i \mu(I_{i,m}) \mathbb{P}(U^{-J} \leq x^{-J}, \ U^J \leq x^J | U \in I_{i,m}).$$

with U a random vector of \mathbb{R}^d , with U^{-J} and U^J independent, U^{-J} a random vector of \mathbb{R}^{d-k} of i.i.d. uniform laws on [0, 1] and U^J distributed as C^J .

The checkerboard coupla Additional information

Checkerboard with information on a sub-vector

Define

$$\mu_m^J([0,x]) = \sum_{i \in \{1,\dots,m\}^d} \frac{m^{d-k}}{\mu^J(I_{i,m}^J)} \mu(I_{i,m}) \lambda([0,x^{-J}] \cap I_{i,m}^{-J}) \mu^J([0,x^J] \cap I_{i,m}^J).$$

Let
$$C_m^J(x) = \mu_m^J([0, x]).$$

Proposition

$$C_m^J$$
 is a copula, it approximates C : $\sup_{x \in [0,1]^d} |C_m^J(x) - C(x)| \le \frac{a}{2m}$.

If X^{J} and X^{-J} are independent then,

$$\sup_{x\in[0,1]^d}|C_m^J(x)-C(x)|\leq \frac{d-k}{2m}.$$

31 / 50

The checkerboard coupla Additional information

Information on the tail

We may also add information on the tail.

Definition

Let
$$t \in]0,1[$$
 and $E = \left(\prod_{i=1}^{d} [0,t]^d\right)^c$, assume that $\mu_C(E)$ is

known (information on the tail).

The checkerboard copula with extra information on the tail is defined by:

$$C_m^{\mathcal{E}}(x) = \mu_C(E^c)C_m^*(x/t)\mathbf{1}_{E^c}(x) + \frac{\mu_C(E)}{\lambda(E)}\lambda([0,x]\cap E),$$

where C_m^* is the checkerboard copula with partition: $J_{i,m} = t \cdot I_{i,m}$.

 $C_m^{\mathcal{E}}$ is a copula, it approximates C.

Estimation A test model Simulations

Plan

2 Using information on the dependence

3 Estimation procedure and simulation results

- Estimation
- A test model
- Simulations

4 Concluding remarks

Estimation A test model Simulations

An estimation procedure

a

Assume the marginal laws are known, a (quite small sample) of ${\bf X}$ is available.

- **1** Estimate μ by $\hat{\mu}$ using the empirical copula. Empirical copula.
- **2** Construct the empirical checkerboard copula:

$$\widehat{C}_m^*(x) = \sum_i m^d \widehat{\mu}(I_{i,m}) \lambda([0,x] \cap I_{i,m})$$

or if subvector information is available:

$$\widehat{C}_{m}^{J}(x) = \sum_{i \in \{1, \dots, d\}} \frac{m^{d-k}}{\mu^{J}(I_{i,m}^{J})} \widehat{\mu}(I_{i,m}) \lambda([0, x^{-J}] \cap I_{i,m}^{-J}) \mu^{J}([0, x^{J}] \cap I_{i,m}^{J}).$$

イロト イポト イヨト イヨト

34 / 50

Estimation A test model Simulations

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is available.

1 2

Simulate a sample of size N from the copula C_m, (or C_m^J) for N large:

$$(u_1^{(1)}, \ldots, u_d^{(1)}), \ldots, (u_1^{(N)}, \ldots, u_d^{(N)})$$

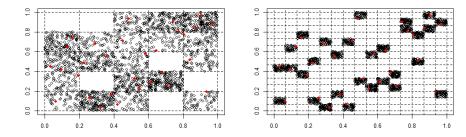
4 Get a sample of S using the marginals transform:

$$\sum_{i=1}^{d} F_i^{-1}(u_i^{(1)}), \ldots, \sum_{i=1}^{d} F_i^{-1}(u_i^{(N)}).$$

• Estimate the distribution function F_S of S empirically using the sample above $\Rightarrow \hat{F}_S$.

Estimation A test model Simulations

An estimation procedure



・ロ ・ ・ (語 ・ ・ 注 ・ ・ 注 ・ う へ ()
36 / 50

Estimation A test model Simulations

An estimation procedure

Let X_n^* be a random vector with the same marginal laws as X and whose dependence structure is given by the empirical checkerboard copula. Let F_S^* be the distribution function of S.

Proposition

Let $A\sqrt{n} \le m \le n$, assume that S is absolutely continuous and C has continuous partial derivatives (Fermanian et al (2004)),

$$\|F_{\mathcal{S}}-F_{\mathcal{S}}^*\|_{\infty}=O_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right).$$

Proposition

If m divides n, then \widehat{C}_m^* is a copula.

Estimation A test model Simulations

An estimation procedure

Proposition

If m divides n, then \widehat{C}_m^* is a copula.

Sketch of proof: prove that $\widehat{C}_m^*(x) = x_1$ for any $x \in [0,1]^d$ with $x_j = 1$ for $j \neq 1$. For $\ell \in \{1, \ldots, m\}$, consider:

$$B^1_{\ell} = \left\{ x \in [0,1]^d, \ \frac{\ell-1}{m} < x_1 \le \frac{\ell}{m} \right\} = \left\lfloor \frac{\ell-1}{m}, \frac{\ell}{m} \right\rfloor imes [0,1]^{d-1}.$$

 C_n is concentrated on n points of $[0, 1]^d$ whose coordinates are of the form $\frac{j}{n}$, j = 1, ..., n. If k = n/m, the number of masses of C_n on each strip B_{ℓ}^1 , $\ell = 1, ..., m$ is exactly $k \implies \widehat{\mu}(B_{\ell}^1) = \frac{k}{n} = \frac{1}{m}$. The result follows by a simple computation.

Estimation A test model Simulations

The Pareto - Clayon model

A model for which Δ may be calculated will serve as a benchmark.

$$\mathbb{P}(X_1 > x_1, \ldots, X_d > x_d | \Lambda = \lambda) = \prod_{i=1}^d e^{-\lambda x_i},$$

that is, conditionally on the value of Λ the marginals of ${\bf X}$ are independent and exponentially distributed.

A Gamma distributed $\Rightarrow X_i$ are Pareto distributed with dependence given by a survival Clayton copula.

These models have been initially studied by Oakes (1989) and Yeh (2007) .

Exact formula for $VaR_{\alpha}(S)$ using the so-called Beta prime distribution (see Dubey (1970)).

Estimation A test model Simulations

The Pareto - Clayton model: exact formula

 $\Lambda \rightsquigarrow \Gamma(\alpha, \beta)$, so that the X_i are Pareto (α, β) distributed with the dependence structure is described by a survival Clayton copula with parameter $1/\alpha$.

 \Rightarrow *S* is the so-called Beta prime distribution (see Dubey (1970)):

$$F_{\mathcal{S}}(x) = F_{\beta}\left(\frac{x}{1+x}\right).$$

where F_{β} is the c.d.f. of the Beta($d\beta$, α) distribution.

The inverse of F_S (or VaR function of S) can also be expressed in function of the inverse of the Beta distribution

$$F_{S}^{-1}(p) = rac{F_{eta}^{-1}(p)}{1 - F_{eta}^{-1}(p)}.$$

40 / 50

Estimation A test model Simulations

Simulations

Pareto-Clayton model:

- in dimension 2, with parameter $\alpha = 1$. The size of the multivariate sample is 30,
- in dimension 3, with information on the sub-vector (X_1, X_2) , the size of the multivariate sample is 30,
- in dimension 10, with parameter $\alpha = 2$. The size of the multivariate sample is 75 and 150.

Comparaison with the direct estimation.

Estimation A test model Simulations

Dimension 2

Mean and relative mean squared error for different quantile levels, N = 1000, several value of m|n tested.

	Quantile	Quantile	Quantile	Quantile	Quantile	Quantile
	80%	90%	95%	99%	99.5%	99.9%
Exact value	2.5	4.1	6.4	16.0	23.2	53.4
Empirical	2.5	4.0	6.1	12.2	13.2	14.0
	(26%)	(31%)	(39%)	(72%)	(70%)	(78%)
ECBC (m=6)	2.6	4.4	6.6	14.8	20.8	45.7
	(9%)	(8%)	(6%)	(8%)	(11%)	(15%)
ECBC (m=15)	2.5	4.2	6.8	15.5	21.5	46.4
	(12%)	(13%)	(11%)	(9%)	(10%)	(14%)
ECBC (m=30)	2.5	4.2	6.6	15.8	22.0	47.0
	(13%)	(15%)	(17%)	(13%)	(12%)	(14%)

42 / 50

Estimation A test model Simulations

Dimension 3

- $X = (X_1, \ldots, X_3)$ with
 - $X_1 = X_2 = Y/2$,
 - X_3 distributed as Y, a Pareto r.v. with parameter $\alpha = 2$.
 - The copula of (Y, X₃) is assumed to be a survival Clayton of parameter 1/2.

So that $S = X_1 + X_2 + X_3 \stackrel{\mathcal{L}}{=} Y_1 + Y_2$ with $Y = (Y_1, Y_2)$ a Pareto-Clayton vector defined above.

Simulations without and with the additional information on (X_1, X_2) (comonotonic copula).

Estimation A test model Simulations

Dimension 3

	Quantile	Quantile	Quantile	Quantile	Quantile	Quantile
	80%	90%	95%	99%	99.5%	99.9%
Exact	2.5	4.1	6.4	16.0	23.2	53.4
ECBC (m=6)						
No information	2.7	4.6	6.6	14.0	19.1	40.7
	(13%)	(13%)	(7%)	(13%)	(18%)	(24%)
Information on	2.6	4.4	6.6	14.8	20.8	45.7
(X_1, X_2)	(9%)	(8%)	(6%)	(8%)	(11%)	(15%)
ECBC (m=10)						
No information	2.5	4.6	7.0	14.5	19.8	41.3
	(12%)	(13%)	(12%)	(11%)	(15%)	(23%)
Information on	2.5	4.3	6.7	15.2	21.2	46.1
(X_1, X_2)	(11%)	(9%)	(9%)	(8%)	(10%)	(15%)
ECBC (m=30)						
No information	2.5	4.2	6.8	15.9	21.4	43.3
	(14%)	(16%)	(19%)	(14%)	(14%)	(21%)
Information on	2.5	4.2	6.6	15.8	. ≡ , 21.9	<u>∎</u> 47,1
(X_1, X_2)	(13%)	(16%)	(17%)	(13%)	(13%)	(414%)

Estimation A test model Simulations

Dimension 10

Mean and relative standard deviation for different quantile levels, N = 1000.

	VaR	VaR	VaR	VaR	VaR	VaR
	80%	90%	95%	99%	99.5%	99.9%
Exact value	12.2	19.2	29	70.1	100.8	230.5
Empirical, $n = 75$	12.6	20	29.9	62.2	75.8	86.7
	(12%)	(15%)	(19%)	(39%)	(58%)	(71%)
Checkerboard, $n = 75$	12.5	20.1	31.2	74.8	92.4	152.6
	(10%)	(13%)	(14%)	(20%)	(20%)	(16%)
Empirical, $n = 150$	12.4	19.6	30.3	67.3	89.9	121
	(8%)	(11%)	(14%)	(27%)	(38%)	(59%)
Checkerboard, $n = 150$	12.4	19.6	29.8	75.4	107.6	173.9
	(7%)	(9%)	(12%)	(16%)	(21%)	(19%)

45 / 50

Estimation A test model Simulations

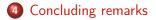
Using information on the tail (dimension 2)

Same dimension 2 model as above. m = 6, information on the tail added.

	Quantile	Quantile	Quantile	Quantile	Quantile	Quantile
	80%	90%	95%	99%	99.5%	99.9%
Exact value	2.5	4.1	6.4	16.0	23.2	53.4
Empirical	2.5	4.0	6.1	12.2	13.2	14.0
	(26%)	(31%)	(39%)	(72%)	(70%)	(78%)
ECBC (m=6)						
t=1	2.6	4.4	6.6	14.8	20.8	45.7
	(9%)	(8%)	(6%)	(8%)	(11%)	(15%)
t=0.99	2.6	4.4	6.4	14.2	22.7	49.5
	(9%)	(8%)	(5%)	(11%)	(3%)	(8%)
t=0.95	2.7	4.1	6.1	15.6	21.8	46.8
	(10%)	(5%)	(4%)	(3%)	(6%)	(13%)

46 / 50

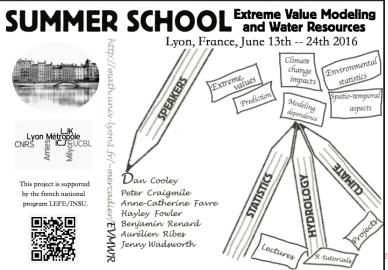
- 2 Using information on the dependence
- 3 Estimation procedure and simulation results



Conclusion

- Efficient methods to estimate the aggregated VaR.
- Efficient even in (relatively) high dimension with (relatively) small samples.
- Additional information / expert opinion may be taken into account: dependence structure on a sub-vector or on the tail.
- ToDo Determine optimally m.
- ToDo Quantify the information gain.
- ToDo Develop efficient procedures to simulate a sample from the checkerboard copula with partial information (tailor copula of a sub-vector).

Thank you for your attention



୬ ୯ ୯ 49 / 50

Empirical Copula

Deheuvels (1979) defined the empirical copula.

Definition

Let $X^{(1)}, \ldots X^{(n)}$ be *n* independent copies of **X** and $R_i^{(1)}, \ldots, R_i^{(n)}$, $i = 1, \ldots, d$ their marginals ranks, i.e.,

$$R_i^{(j)} = \sum_{k=1}^n 1\{X_i^{(j)} \ge X_i^{(k)}\}, i = 1, \dots, d, j = 1, \dots, n.$$

The empirical copula C_n of $X^{(1)}, \ldots X^{(n)}$ is defined as

$$C_n(u) = \frac{1}{n} \sum_{k=1}^n 1\left\{\frac{1}{n} R_1^{(k)} \le u_1, \dots, \frac{1}{n} R_d^{(k)} \le u_d\right\}.$$