Global sensitivity analysis and quantification of uncertainty

Véronique Maume-Deschamps, université Lyon 1 - Institut Camille Jordan (ICJ),

Joint Work with Areski Cousin, Alexandre Janon and Ibrahima Niang.

Journée MultiRisk à Grenoble 24 juin 2014.

Plan

Context

- 2 Tools: Sobol indices and stochastic orders
 - Sobol indices
 - Stochastic orders
- 3 Results
 - Case with no interactions
 - Product of convex functions

Illustrations and conclusion

- Concluding remarks
- Appendix

General problematic

Inputs variables - parameters - X_1, \ldots, X_k .

Ouput $Y = f(X_1, \ldots, X_k)$.

How does the uncertainty on the X_i 's impact the uncertainty on Y?

Some examples

- Y is be the water high or the first time that the water level is above some threshold in hydrology,
- Y is the flood level,
- Y is the price of an option or the default probability in credit risk.

 X_1, \ldots, X_k are the parameters of the model (wind strength, nature of the soil, precipitation, volatility, mean return, ...). Y could be obtained by solving an EDS or a PDE or by optimization procedures ...

Sobol indices Stochastic orders

Notations

Let $Y = f(X_1, ..., X_k)$ be the output with $X_1, ..., X_k$ independent random variables.

Denote

 $X_{\alpha} = (X_i, i \in \alpha)$ for $\alpha \subset \{1, \ldots, k\}$.

Sobol indices Stochastic orders

Sobol's decomposition of the output

Y = f(X) can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$f(X_1,\ldots,X_k) = \sum_{\alpha \subset \{1,\ldots,k\}} f_{\alpha}(X_{\alpha}),$$

with

1
$$f_{\varnothing} = \mathbb{E}(f(X)),$$

2 $\int f_{\alpha} d\mu_{X_i} = 0$ if $i \in \alpha$,
3 $\int f_{\alpha} \cdot f_{\beta} d\mu_X = 0$ if $\alpha \neq \beta$.

Sobol indices Stochastic orders

Sobol's decomposition of the output

Y = f(X) can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$f(X_1,\ldots,X_k) = \sum_{lpha \subset \{1,\ldots,k\}} f_lpha(X_lpha),$$

The functions f_{α} are defined inductively:

 $f_{\varnothing} = \mathbb{E}(f(X)),$

イロト イロト イヨト イヨト 二日

7/47

Sobol indices Stochastic orders

Sobol's decomposition of the output

Y = f(X) can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$f(X_1,\ldots,X_k)=\sum_{\alpha\subset\{1,\ldots,k\}}f_{\alpha}(X_{\alpha}),$$

The functions f_{α} are defined inductively:

$$f_{\varnothing} = \mathbb{E}(f(X)),$$

for $i \in \{1, \ldots, k\}$

 $f_i(X_i) = \mathbb{E}(f(X) \mid X_i) - f_{\varnothing}.$

◆□ → < 部 → < 目 → < 目 → < 目 → ○へ ○ 8/47

Sobol indices Stochastic orders

Sobol's decomposition of the output

Y = f(X) can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$f(X_1,\ldots,X_k) = \sum_{\alpha \subset \{1,\ldots,k\}} f_{\alpha}(X_{\alpha}),$$

The functions f_{α} are defined inductively:

 $f_{\varnothing} = \mathbb{E}(f(X)),$

for $i \in \{1, \ldots, k\}$

 $f_i(X_i) = \mathbb{E}(f(X) \mid X_i) - f_{\varnothing}.$

For $\alpha \in \{1, \dots, k\}$, $f_{\alpha}(X_{\alpha}) = \mathbb{E}(f(X) \mid X_{\alpha}) - \sum_{\beta \subsetneq \alpha} f_{\beta}(X_{\beta}).$

Sobol indices Stochastic orders

Decomposition of the variance

A direct application of the above definitions leads to the decomposition:

 $\operatorname{var}(Y) = \operatorname{var}(f(X)) =$ $\sum_{\alpha \subset \{1, \dots, k\}} \operatorname{var}(f_{\alpha}(X_{\alpha})) =$ $\sum_{\alpha \subset \{1, \dots, k\}} \mathbb{E}(f_{\alpha}(X_{\alpha})^{2}).$

Sobol indices Stochastic orders

Simple indices

The impact of the variation of X_i on the variation of Y = f(X) may be measured by the Sobol index:

$$S_i = \frac{\operatorname{var}(\mathbb{E}(f(X) \mid X_i))}{\operatorname{var}(Y)} = \frac{\mathbb{E}(f_i(X_i)^2)}{\operatorname{var}(Y)}$$

It is the relative impact of X_i on the variation of Y = f(X).

We have:

$$\sum_{i\in\{1,\ldots,k\}}S_i\leq 1$$

The equality is achieved when there is no interactions.

Sobol indices Stochastic orders

Total indices

Interactions between the variables X_1, \ldots, X_k , they are identified by the f_{α} , with $|\alpha| \ge 2$. Total Sobol indices take into account the impact of the interactions:

$$S_{T_i} = \frac{\sum_{\alpha \ni i} \operatorname{var}(f_\alpha(X_\alpha))}{\operatorname{var}(Y)} = \frac{\sum_{\alpha \ni i} \mathbb{E}((f_\alpha(X_\alpha)^2))}{\operatorname{var}(Y)}.$$

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・) へ ()
12 / 47

Sobol indices Stochastic orders

Total indices

Interactions between the variables X_1, \ldots, X_k , they are identified by the f_{α} , with $|\alpha| \ge 2$. Total Sobol indices take into account the impact of the interactions:

$$S_{\mathcal{T}_i} = \frac{\sum_{\alpha \ni i} \operatorname{var}(f_\alpha(X_\alpha))}{\operatorname{var}(Y)} = \frac{\sum_{\alpha \ni i} \mathbb{E}((f_\alpha(X_\alpha)^2))}{\operatorname{var}(Y)}$$

Our aim is to study the impact of a replacement $X_i \rightarrow X_i^*$ on the Sobol indices S_i and S_{T_i} . The more X_i is uncertain, the greater S_i and S_{T_i} ?

Sobol indices Stochastic orders

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.

Sobol indices Stochastic orders

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.

- X_1 and X_1^* two random variables.
 - X_1^* is smaller than X_1 for the standard stochastic order $(X_1^* \leq_{st} X_1)$ if and only if, for any bounded non decreasing function f,

 $\mathbb{E}(f(X_1^*)) \leq \mathbb{E}(f(X_1)).$

 X₁^{*} is smaller than X₁ for the convex order (X₁^{*} ≤_{CX} X₁) if and only if, for any bounded convex function f,

 $\mathbb{E}(f(X_1^*)) \leq \mathbb{E}(f(X_1)).$

Sobol indices Stochastic orders

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.

• X_1^* is smaller than X_1 for the standard stochastic order $(X_1^* \leq_{st} X_1)$ if and only if, for any bounded non decreasing function f,

 $\mathbb{E}(f(X_1^*)) \leq \mathbb{E}(f(X_1)).$

 X₁^{*} is smaller than X₁ for the convex order (X₁^{*} ≤_{CX} X₁) if and only if, for any bounded convex function f,

 $\mathbb{E}(f(X_1^*)) \leq \mathbb{E}(f(X_1)).$

These are not location free orders. Remark that

$$\begin{array}{rcl} X_1^* \leq_{\mathsf{st}} X_1 & \Rightarrow & \mathbb{E}(X_1^*) \leq \mathbb{E}(X_1). \\ X_1^* \leq_{\mathsf{CX}} X_1 & \Rightarrow & \mathbb{E}(X_1^*) = \mathbb{E}(X_1). \end{array}$$

16 / 47

Sobol indices Stochastic orders

Some variability orders

We shall consider orders designed to take into account the variability and are location free.

Sobol indices Stochastic orders

Some variability orders

We shall consider orders designed to take into account the variability and are location free.

 X_1^* and X_1 two random variables.

- F_* and F their distribution functions,
- F_*^{-1} and F^{-1} their generalized inverse (or the quantile function),
- $\overline{F}_* = 1 F_*$, $\overline{F} = 1 F$ their survival functions.

Sobol indices Stochastic orders

Some variability orders

We shall consider orders designed to take into account the variability and are location free.

- X_1^* is smaller than X_1 for the dilatation order $(X_1^* \leq_{\mathsf{dil}} X_1)$ if and only if $(X_1^* - \mathbb{E}(X_1^*)) \leq_{\mathsf{CX}} (X_1 - \mathbb{E}(X_1))$,
- X₁^{*} is smaller than X₁ for the dispersive order (X₁^{*} ≤_{disp} X₁) if and only if F⁻¹ − F_{*}⁻¹ is non decreasing,
- If X_1^* and X_1 have finite means, then X_1^* is smaller than X_1 for the excess wealth order $(X_1^* \leq_{\mathsf{ew}} X_1)$ if and only if, for all $p \in]0, 1[$,

$$\int_{[F_*^{-1}(\rho),\infty[}\overline{F}_*(x)dx\leq \int_{[F^{-1}(\rho),\infty[}\overline{F}(x)dx.$$

<ロト < 部 > < 言 > < 言 > 言 の < で 19/47

Sobol indices Stochastic orders

Scale invariant orders

X₁^{*} is smaller than X₁ for the star order (X₁^{*} ≤_{*} X₁) if and only if

$$\frac{F^{-1}}{F_*^{-1}}$$
 is non decreasing,

X₁^{*} is smaller than X₁ for the Lorenz (X₁^{*} ≤_{Lorenz} X₁) if and only if

$$rac{X_1^*}{\mathbb{E}(X_1^*)} \leq_{\mathsf{CX}} rac{X_1}{\mathbb{E}(X_1)}.$$

Sobol indices Stochastic orders

Properties and relationships I.

Property (see eg the book *Stochastic orders* by Shaked-Shanthikumar 2007)

- $\bullet \leq_{disp} \Longrightarrow \leq_{ew} \Longrightarrow \leq_{dil}.$
- $2 \leq * \Longrightarrow \leq_{Lorenz}$
- $X_1^* \leq_* X_1 \Longleftrightarrow \log X_1^* \leq_{disp} \log X_1.$
- If X₁^{*} and X₁ are random variables with X₁^{*} ≤_{disp} X₁ and X₁^{*} ≤_{st} X₁ then for all non decreasing and convex or non increasing concave function φ, φ(X₁^{*}) ≤_{disp} φ(X₁).

Sobol indices Stochastic orders

Properties and relationships II.

As a corollary, we have that

$$X_1^* \leq_{\mathsf{disp}} X_1 \text{ and } X_1^* \leq_{\mathsf{st}} X_1 \ \Rightarrow \mathsf{var}(\varphi(X_1^*)) \leq \mathsf{var}(\varphi(X_1))$$

for any non decreasing and convex or non increasing concave function $\varphi.$

More properties on stochastic orders.

イロト イポト イヨト イヨト

3

22 / 47

Case with no interactions Product of convex functions

(日) (周) (日) (日) (日)

23 / 47

Sketch of results

For which order and under which conditions on f,

 $X_i^* \leq X_i \Longrightarrow S_i^* \leq S_i$

or

$$X_i^* \leq X_i \Longrightarrow S_{T_i}^* \leq S_{T_i}?$$

Where S_{i}^{*} and $S_{T_{i}}^{*}$ are Sobol indices for $Y^{*} = f(X_{1}, ..., X_{i-1}, X_{i}^{*}, X_{i+1}, ..., X_{k}).$ Write $X^{*} = (X_{1}, ..., X_{i-1}, X_{i}^{*}, X_{i+1}, ..., X_{k}).$

Case with no interactions Product of convex functions

Result when there is no interactions

No interactions, Sobol's decomposition writes:

$$f(X) = \sum_{i=1}^k f_i(X_i) + f_{\varnothing}.$$

Theorem

Assume

- f is convex and componentwise non decreasing (or concave and componentwise non increasing).
- X_i^* is independent of (X_1, \ldots, X_k) .
- X_i^{*} ≤_{ew} X_i and −∞ < ℓ_{*} ≤ ℓ, where ℓ and ℓ_{*} are the left end points of the support of X_i^{*} and X_i.

Then $S_i^* \leq S_i$.

24 / 47

Case with no interactions Product of convex functions

Idea of the proof

Write $\varphi_j(X_j) = \mathbb{E}(f(X)|X_j)$, so that $f_j = \varphi_j - f_{\emptyset}$, $\varphi_j(X_j)$ is non decreasing and convex. $f(X^*)$ writes:

$$f(X^*) = \sum_{j \neq i} f_j(X_j) + f_i(X_i^*) + f_{\varnothing}.$$

 $\operatorname{var}(Y^*) = \sum_{j \neq i} \mathbb{E}(f_j(X_j)^2) + \operatorname{var}(f_i(X_i^*)) = \sum_{j \neq i} \operatorname{var}(\varphi_j(X_j)) + \operatorname{var}(\varphi_i(X_i^*)).$

Finally,

$$S_i^* = \frac{\operatorname{var}(\varphi_i(X_i^*))}{\sum_{j \neq i} \operatorname{var}(\varphi_j(X_j)) + \operatorname{var}(\varphi_i(X_i^*))}$$

Case with no interactions Product of convex functions

Idea of the proof

Write $\varphi_j(X_j) = \mathbb{E}(f(X)|X_j)$, so that $f_j = \varphi_j - f_{\emptyset}$, $\varphi_j(X_j)$ is non decreasing and convex. $f(X^*)$ writes:

$$f(X^*) = \sum_{j \neq i} f_j(X_j) + f_i(X_i^*) + f_{\varnothing}.$$

$$\operatorname{var}(Y^*) = \sum_{j \neq i} \mathbb{E}(f_j(X_j)^2) + \operatorname{var}(f_i(X_i^*)) = \sum_{j \neq i} \operatorname{var}(\varphi_j(X_j)) + \operatorname{var}(\varphi_i(X_i^*)).$$

Also, we have

$$S_{i} = \left[1 + \frac{\sum_{j \neq i} \operatorname{var}(\varphi_{j}(X_{j}))}{\operatorname{var}(\varphi_{i}(X_{i}))}\right]^{-1} S_{i}^{*} = \left[1 + \frac{\sum_{j \neq i} \operatorname{var}(\varphi_{j}(X_{j}))}{\operatorname{var}(\varphi_{i}(X_{i}^{*}))}\right]^{-1} \cdot \operatorname{var}(\varphi_{i}(X_{i}^{*})) \leq \operatorname{var}(\varphi_{i}(X_{i})), \implies S_{i}^{*} \leq S_{i}.$$

26 / 47

Case with no interactions Product of convex functions

Products of convex functions

Theorem

If f writes:

$$f(X_1,\ldots,X_k) = g_1(X_1) \times \cdots \times g_k(X_k) + K$$

with $K \in \mathbb{R}$ and the $\log g_i$'s convex and non decreasing functions. Let X_i^* be independent of X and $X_i^* \leq_{disp} X_i$ and $X_i^* \leq_{st} X_i$. Then $S_{T_i}^* \leq S_{T_i}$.

Case with no interactions Product of convex functions

Products of convex functions

Theorem

If f writes:

$$f(X_1,\ldots,X_k) = g_1(X_1) \times \cdots \times g_k(X_k) + K$$

with $K \in \mathbb{R}$ and the $\log g_i$'s convex and non decreasing functions. Let X_i^* be independent of X and $X_i^* \leq_{disp} X_i$ and $X_i^* \leq_{st} X_i$. Then $S_{T_i}^* \leq S_{T_i}$.

Remark: If X_i^* and X_i have ℓ_* and ℓ as finite left end points of their support then $X_i^* \leq_{\text{disp}} X_i$ and $\ell_* = \ell \implies X_i^* \leq_{\text{st}} X_i$.

Idea of the proof.

Case with no interactions Product of convex functions

Extensions

The previous result holds in some extended cases described below. • Let $\{I_a\}_{a \in A}$ be a partition of $\{1, \ldots, k\}$ and assume that

$$f(X) = \sum_{a \in A} \prod_{j \in I_a} g_j(X_j)$$

with log g_i non decreasing and convex. If X_i^* is independent of X and $X_i^* \leq_{\text{disp}} X_i$ and $X_i^* \leq_{\text{st}} X_i$. Then $S_{\mathcal{T}_i}^* \leq S_{\mathcal{T}_i}$.

Case with no interactions Product of convex functions

Extensions

The previous result holds in some extended cases described below. • Let $\{I_a\}_{a \in A}$ be a partition of $\{1, \ldots, k\}$ and assume that

$$f(X) = \sum_{a \in A} \prod_{j \in I_a} g_j(X_j)$$

with $\log g_i$ non decreasing and convex. If X_i^* is independent of X and $X_i^* \leq_{\mathsf{disp}} X_i$ and $X_i^* \leq_{\mathsf{st}} X_i$. Then $S_{\mathcal{T}_i}^* \leq S_{\mathcal{T}_i}$.

2 Let $f(X) = \varphi_1(X_i) \prod_{j \neq i} g_j(X_j) + \varphi_2(X_i)$ with $\log g_j$, $\log \varphi_1$ and

 $\log \varphi_2$ non decreasing and convex. If

- X_i^* is independent of X and $X_i^* \leq_{\text{disp}} X_i$ and $X_i^* \leq_{\text{st}} X_i$.
- $\frac{\operatorname{var}(\varphi_2(X_i^*))}{\mathbb{E}(\varphi_1(X_i^*))^2} \leq \frac{\operatorname{var}(\varphi_2(X_i))}{\mathbb{E}(\varphi_1(X_i))^2} \text{ and } \frac{\operatorname{cov}(\varphi_1(X_i^*), \varphi_2(X_i^*))}{\mathbb{E}(\varphi_1(X_i^*))^2} \leq \frac{\operatorname{cov}(\varphi_1(X_i), \varphi_2(X_i))}{\mathbb{E}(\varphi_1(X_i))^2}.$ Then $S^*_{\mathcal{T}_i} \leq S_{\mathcal{T}_i}$.

Concluding remarks Appendix

Examples

- Flood event (river stage in Shopshire, UK).
- Value at Risk in the classical Black and Sholes model.
- Price of zero coupon in the Vasicek model.

Concluding remarks Appendix

Flood event

©H.L. Cloke, F. Pappenberger, P.-P Renaud, *Multi-method global* sensitivity analysis for modelling floodplain hydrological processes. Hydrological processes, **22**, (2008).

Table I. Specified ranges and distributions of factors. Factors 4 and 5 are exchangeable between the two soil moisture algorithms (Brooks-Corey and van Genuchten)

Factor	Description	Symbol	Unit	Distribution	Mean	Min (0-001 quantile)	Max (0.999 quantile)
1	Saturated moisture content	θ_{S}	_	Normal ($\sigma = 0.09$)	0.41	0.132	0.688
2	Residual moisture content	θ_R		Normal ($\sigma = 0.01$)	0.0954	0.065	0.125
3	Saturated hydraulic conductivity	$K_{\rm S}$	ms ⁻¹	Log normal (A = -14.82 , B = 1.24)	9.93×10^{-7}	1.51×10^{-10}	$1{\cdot}01 \times 10^{-4}$
4a	Brooks-Corey, pore size distribution index	λ	_	Normal ($\sigma = 0.1$)	0.318	0.017	0.619
5a	Brooks-Corey, air entry pressure	$h_{\rm S}$	m	Log normal (A = -0.382 , B = 0.710)	0.880	0.074	6.275
4b	van Genuchten alpha	α	m^{-1}	Log normal (A = -4.22 , B = 0.719)	1.9	0.16	13.56
5b	van Genuchten, n	n	_	Normal ($\sigma = 0.1$)	1.32	1.02	1.62
6	Storage parameter	S		Uniform	0.1×10^{-3}	0.1×10^{-4}	0.1×10^{-2}
7	Upslope pressure	UP	m	Uniform	Measured value	-0.5	0.5
8	River stage	$R_{\rm S}$	m	Uniform	Measured value	-0.5	0.5
9	Rainfall (precipitation)	PPT	m	Uniform	Measured value	90%	100%

Concluding remarks Appendix

Flood event

©H.L. Cloke, F. Pappenberger, P.-P Renaud, *Multi-method global* sensitivity analysis for modelling floodplain hydrological processes. Hydrological processes, **22**, (2008).

Concluding remarks Appendix

Sensibility of the VaR

Simplest model (Black-Sholes). *L* is a loss of a portfolio of the form $L = S_T - K$ where *K* is positive and where S_T is the value at time *T* of a geometric brownian motion:

 $dS_t = \mu S_t dt + \sigma S_t dB_t, \ t \in [0, T].$

The Value at Risk is given by

$$VaR_{\alpha}(L) = S_0 \exp\left(\mu T + \sigma \sqrt{T} \mathcal{N}^{-1}(\alpha)\right) - K.$$

The parameters are μ and σ . This is a case of a product of *log* non decreasing and convex functions.

We have chosen for σ and μ several uniform, truncated normal and truncated exponential laws (ordered with respect to the dispersive and stochastic orders).

Concluding remarks Appendix

Sensibility of the VaR

Results for $\alpha = 0.9$.

 \mathcal{N}_T stands for a truncated, on [0,2] normal law.

 $\mathcal{E}_{\mathcal{T}}$ stands for a truncated, on [0,1] exponential law.

μ^*	μ	σ^*	σ	$S^*_{T_{\mu}}$	$S_{T_{\mu}}$	$S^*_{T_{\sigma}}$	$S_{T_{\sigma}}$
$\mathcal{U}[0,1]$	-	$\mathcal{U}[0,1]$	$\mathcal{U}[0,2]$	0.41	0.2	0.64	0.87
$\mathcal{U}[0,2]$	-	$\mathcal{U}[0,1]$	$N_{T}(0.5, 2)$	0.73	0.48	0.36	0.69
$\mathcal{U}[0,1]$	-	$\mathcal{E}_{T}(5)$	$\mathcal{E}_{T}(1)$	0.53	0.4	0.52	0.66
$\mathcal{U}[0,1]$	$\mathcal{N}_{T}(0.5,2)$	$\mathcal{U}[0,1]$	-	0.4	0.73	0.65	0.35

Concluding remarks Appendix

Vasicek model

Vasicek model: model for short interest rate (or for default intensity) given by the solution of an Ornstein Ulenbeck type stochastic differential equation i.e:

 $dr_t = a(b - r_t)dt + \sigma dW_t$

where a, b and σ positive parameters and W_t is a standard brownian motion.

Concluding remarks Appendix

Vasicek model

Vasicek model: model for short interest rate (or for default intensity) given by the solution of an Ornstein Ulenbeck type stochastic differential equation i.e:

$dr_t = a(b - r_t)dt + \sigma dW_t$

The price at time t of a zero coupon bond with maturity T (or the survival probability in a credit risk model) is given by :

$$P(t, T) = A(t, T)e^{-r(t)B(t,T)}$$

with

$$B(t,T) = \frac{1 - e^{-a(T-t)}}{a}$$

$$A(t,T) = \exp\left((b - \frac{\sigma^2}{2a^2})(B(t,T) - T + t) - \frac{\sigma^2}{4a}B^2(t,T)\right)$$

Concluding remarks Appendix

Vasicek model

Results for the initial rate $r_0 = 0.1$.

param.	law	ST	param.	law	ST	param.	law	ST
а	$\mathcal{U}[0,1]$	0.41	а	$\mathcal{U}[0,1]$	0.48	а	$\mathcal{U}([0,1])$	0.25
Ь	$\mathcal{U}[0,1]$	0.52	b*	$\mathcal{U}[0,2]$	0.57	b	$\mathcal{U}([0,1])$	0.13
σ	$\mathcal{U}[0,1]$	0.18	σ	$\mathcal{U}[0,1]$	0.06	σ^*	$\mathcal{N}_{\tau}(0.5,2)$	0.7

Concluding remarks Appendix

Conclusion

- + Some compatibility between risk theory (via stochastic orders) and Sobol indices.
 - The order of Sobol indices may change when changing the law of the parameters.
- ToDo Hydrological applications.
- ToDo Find the class of functions f for which the ordering on Sobol indices may be done.
- ToDo Use the results presented to find bounds on Sobol indices (use of smallest elements for the dispersive or ew orders).

Concluding remarks Appendix

Thanks for your attention.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concluding remarks Appendix

Other properties of stochastic orders

Property (E Fagiuoli, F Pellerey, and M Shaked 1999.)

 X_1^* and X_1 two finite means random variables with supports bounded from below by ℓ_* and ℓ . If $X_1^* \leq_{ew} X_1$ and $-\infty < \ell_* \leq \ell$ then for all non decreasing and convex functions h_1, h_2 for which $h_i(X_1^*)$ and $h_i(X_1)$ i = 1, 2 have order two moments,

 $cov(h_1(X_1^*), h_2(X_1^*)) \le cov(h_1(X_1), h_2(X_1)).$

Concluding remarks Appendix

Other properties of stochastic orders

Property (Shaked-Shanthikumar 2007)

• $X_1^* \leq_{ew} X_1$ if and only if

$$\frac{1}{1-p}\int_{p}^{1}(F^{-1}(u)-F_{*}^{-1}(u))du$$

is non decreasing in $p \in]0, 1[$.

X₁^{*} ≤_{disp} X₁ if and only if for all c ∈ ℝ, the curve of F_{*}(· − c) crosses that of F at most once. When they cross, the sign is −,+.

(日) (周) (日) (日) (日)

42 / 47

Concluding remarks Appendix

Idea of the proof I.

$$f_i(X_i) = (g_i(X_i) - \mathbb{E}(g_i(X_i)) \prod_{j \neq i} \mathbb{E}(g_j(X_j)),$$

The form of f gives:

$$egin{array}{rll} f_lpha(X_lpha) &=& \displaystyle{\sum_{eta \subset lpha}}(-1)^{|lpha|-|eta|}\prod_{j\in eta} g_j(X_j)\prod_{j
otin eta} \mathbb{E}(g_j(X_j)) \ &=& \displaystyle{\prod_{j
otin lpha}} \mathbb{E}(g_j(X_j))\prod_{j\in lpha} \left(g_j(X_j)-\mathbb{E}(g_j(X_j))
ight). \end{array}$$

< □ ▶ < 圖 ▶ < 置 ▶ < 置 ▶ 目 の Q ↔ 43/47

Concluding remarks Appendix

Idea of the proof II.

We write

$$f_{\mathcal{T}_i} = \sum_{i \in \alpha} f_\alpha$$

Then, one gets

$$f_{T_i}(X) = (g_i(X_i) - \mathbb{E}(g_i(X_i)))\prod_{j\neq i} g_j(X_j).$$

Moreover,

$$f_lpha(X_lpha) = \prod_{j
ot \in lpha} \mathbb{E}(g_j(X_j)) \prod_{j \in lpha} \left(g_j(X_j) - \mathbb{E}(g_j(X_j))
ight).$$

◆□ → < 部 → < 目 → < 目 → < 目 → ○へ ○ 44 / 47

Concluding remarks Appendix

Idea of the proof III.

Compute the variances:

$$\operatorname{var} f_{\mathcal{T}_i} = \operatorname{var}(g_i(X_i)) \prod_{j \neq i} \mathbb{E}(g_j(X_j)^2),$$

if $i \notin \alpha$,

$$\operatorname{var} f_{\alpha}(X_{\alpha}) = \mathbb{E}(g_{i}(X_{i}))^{2} \operatorname{var} \left(\prod_{\substack{j \neq i \\ j \notin \alpha}} \mathbb{E}(g_{j}(X_{j})) \prod_{j \in \alpha} (g_{j}(X_{j}) - \mathbb{E}(g_{j}(X_{j}))) \right).$$

◆□ → < 部 → < 目 → < 目 → < 目 → ○へ ○ 45 / 47

Concluding remarks Appendix

Idea of the proof IV.

The total Sobol indices rewrite

$$S_{\mathcal{T}_i} = \left[1 + \frac{\sum\limits_{\alpha \not \ni i} \mathsf{var}(f_\alpha(X_\alpha))}{\mathsf{var}(f_{\mathcal{T}_i}(X))}\right]^{-1} \text{ and } S^*_{\mathcal{T}_i} = \left[1 + \frac{\sum\limits_{\alpha \not \ni i} \mathsf{var}(f_\alpha(X_\alpha))}{\mathsf{var}(f^*_{\mathcal{T}_i}(X^*))}\right]^{-1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concluding remarks Appendix

Idea of the proof IV.

The total Sobol indices rewrite

$$S_{\mathcal{T}_i} = \left[1 + \frac{\sum\limits_{\alpha \not\ni i} \operatorname{var}(f_{\alpha}(X_{\alpha}))}{\operatorname{var}(f_{\mathcal{T}_i}(X))}\right]^{-1} \text{ and } S_{\mathcal{T}_i}^* = \left[1 + \frac{\sum\limits_{\alpha \not\ni i} \operatorname{var}(f_{\alpha}(X_{\alpha}))}{\operatorname{var}(f_{\mathcal{T}_i}^*(X^*))}\right]^{-1}$$

The result follows if

$$rac{ ext{var}\, g_i(X_i^*)}{\mathbb{E}(g_i(X_i^*))^2} \leq rac{ ext{var}\, g_i(X_i)}{\mathbb{E}(g_i(X_i))^2}$$

We have

 $\log g_i(X_i^*) \leq_{\mathsf{disp}} \log g_i(X_i) \iff g_i(X_i^*) \leq_* g_i(X_i)$ $\implies g_i(X_i^*) \leq_{\mathsf{Lorenz}} g_i(X_i) \implies \frac{\operatorname{var} g_i(X_i^*)}{\mathbb{E}(g_i(X_i^*))^2} \leq \frac{\operatorname{var} g_i(X_i)}{\mathbb{E}(g_i(X_i))^2}.$