Global sensitivity analysis and quantification of uncertainty

Véronique Maume-Deschamps, université Lyon 1 - Institut Camille Jordan (ICJ),

Joint Work with Areski Cousin, Alexandre Janon and Ibrahima Niang.

> Journée MultiRisk à Grenoble 24 juin 2014.

Plan

(1) Context
(2) Tools: Sobol indices and stochastic orders

- Sobol indices
- Stochastic orders
(3) Results
- Case with no interactions
- Product of convex functions
(4) Illustrations and conclusion
- Concluding remarks
- Appendix

General problematic

$$
\begin{aligned}
& \text { Inputs variables - parameters - } X_{1}, \ldots, X_{k} \text {. } \\
& \text { Ouput } Y=f\left(X_{1}, \ldots, X_{k}\right)
\end{aligned}
$$

How does the uncertainty on the X_{i} 's impact the uncertainty on Y ?

Some examples

- Y is be the water high or the first time that the water level is above some threshold in hydrology,
- Y is the flood level,
- Y is the price of an option or the default probability in credit risk.
X_{1}, \ldots, X_{k} are the parameters of the model (wind strength, nature of the soil, precipitation, volatility, mean return, ...). Y could be obtained by solving an EDS or a PDE or by optimization procedures ...

Notations

Let $Y=f\left(X_{1}, \ldots, X_{k}\right)$ be the output with X_{1}, \ldots, X_{k} independent random variables.
Denote

$$
X_{\alpha}=\left(X_{i}, i \in \alpha\right) \text { for } \alpha \subset\{1, \ldots, k\}
$$

Sobol's decomposition of the output

$Y=f(X)$ can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{\alpha \subset\{1, \ldots, k\}} f_{\alpha}\left(X_{\alpha}\right),
$$

with
(1) $f_{\varnothing}=\mathbb{E}(f(X))$,
(2) $\int f_{\alpha} d \mu x_{i}=0$ if $i \in \alpha$,
(3) $\int f_{\alpha} \cdot f_{\beta} d \mu_{X}=0$ if $\alpha \neq \beta$.

Sobol's decomposition of the output

$Y=f(X)$ can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{\alpha \subset\{1, \ldots, k\}} f_{\alpha}\left(X_{\alpha}\right),
$$

The functions f_{α} are defined inductively:

$$
f_{\varnothing}=\mathbb{E}(f(X))
$$

Sobol's decomposition of the output

$Y=f(X)$ can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{\alpha \subset\{1, \ldots, k\}} f_{\alpha}\left(X_{\alpha}\right),
$$

The functions f_{α} are defined inductively:

$$
f_{\varnothing}=\mathbb{E}(f(X))
$$

for $i \in\{1, \ldots, k\}$

$$
f_{i}\left(X_{i}\right)=\mathbb{E}\left(f(X) \mid X_{i}\right)-f_{\varnothing}
$$

Sobol's decomposition of the output

$Y=f(X)$ can be decomposed into (see Sobol (1995 or 2001) e.g.)

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{\alpha \subset\{1, \ldots, k\}} f_{\alpha}\left(X_{\alpha}\right),
$$

The functions f_{α} are defined inductively:

$$
f_{\varnothing}=\mathbb{E}(f(X))
$$

for $i \in\{1, \ldots, k\}$

$$
f_{i}\left(X_{i}\right)=\mathbb{E}\left(f(X) \mid X_{i}\right)-f_{\varnothing}
$$

For $\alpha \subset\{1, \ldots, k\}$,

$$
f_{\alpha}\left(X_{\alpha}\right)=\mathbb{E}\left(f(X) \mid X_{\alpha}\right)-\sum_{\beta \subsetneq \alpha} f_{\beta}\left(X_{\beta}\right)
$$

Decomposition of the variance

A direct application of the above definitions leads to the decomposition:

$$
\begin{gathered}
\operatorname{var}(Y)=\operatorname{var}(f(X))= \\
\sum_{\alpha \subset\{1, \ldots, k\}} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)= \\
\sum_{\alpha \subset\{1, \ldots, k\}} \mathbb{E}\left(f_{\alpha}\left(X_{\alpha}\right)^{2}\right)
\end{gathered}
$$

Simple indices

The impact of the variation of X_{i} on the variation of $Y=f(X)$ may be measured by the Sobol index:

$$
S_{i}=\frac{\operatorname{var}\left(\mathbb{E}\left(f(X) \mid X_{i}\right)\right)}{\operatorname{var}(Y)}=\frac{\mathbb{E}\left(f_{i}\left(X_{i}\right)^{2}\right)}{\operatorname{var}(Y)}
$$

It is the relative impact of X_{i} on the variation of $Y=f(X)$.
We have:

$$
\sum_{i \in\{1, \ldots, k\}} S_{i} \leq 1
$$

The equality is achieved when there is no interactions.

Total indices

Interactions between the variables X_{1}, \ldots, X_{k}, they are identified by the f_{α}, with $|\alpha| \geq 2$.
Total Sobol indices take into account the impact of the interactions:

$$
S_{T_{i}}=\frac{\sum_{\alpha \ni i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}(Y)}=\frac{\sum_{\alpha \ni i} \mathbb{E}\left(\left(f_{\alpha}\left(X_{\alpha}\right)^{2}\right)\right)}{\operatorname{var}(Y)} .
$$

Total indices

Interactions between the variables X_{1}, \ldots, X_{k}, they are identified by the f_{α}, with $|\alpha| \geq 2$.
Total Sobol indices take into account the impact of the interactions:

$$
S_{T_{i}}=\frac{\sum_{\alpha \ni i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}(Y)}=\frac{\sum_{\alpha \ni i} \mathbb{E}\left(\left(f_{\alpha}\left(X_{\alpha}\right)^{2}\right)\right)}{\operatorname{var}(Y)} .
$$

Our aim is to study the impact of a replacement $X_{i} \rightarrow X_{i}^{*}$ on the Sobol indices S_{i} and $S_{T_{i}}$.
The more X_{i} is uncertain, the greater S_{i} and $S_{T_{i}}$?

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.
X_{1} and X_{1}^{*} two random variables.

- X_{1}^{*} is smaller than X_{1} for the standard stochastic order ($X_{1}^{*} \leq_{\text {st }} X_{1}$) if and only if, for any bounded non decreasing function f,

$$
\mathbb{E}\left(f\left(X_{1}^{*}\right)\right) \leq \mathbb{E}\left(f\left(X_{1}\right)\right)
$$

- X_{1}^{*} is smaller than X_{1} for the convex order $\left(X_{1}^{*} \leq_{c x} X_{1}\right)$ if and only if, for any bounded convex function f,

$$
\mathbb{E}\left(f\left(X_{1}^{*}\right)\right) \leq \mathbb{E}\left(f\left(X_{1}\right)\right)
$$

The stochastic order, the convex order

Stochastic orders: different ways to - partially - order random variables.

- X_{1}^{*} is smaller than X_{1} for the standard stochastic order $\left(X_{1}^{*} \leq_{s t} X_{1}\right)$ if and only if, for any bounded non decreasing function f,

$$
\mathbb{E}\left(f\left(X_{1}^{*}\right)\right) \leq \mathbb{E}\left(f\left(X_{1}\right)\right)
$$

- X_{1}^{*} is smaller than X_{1} for the convex order $\left(X_{1}^{*} \leq_{c x} X_{1}\right)$ if and only if, for any bounded convex function f,

$$
\mathbb{E}\left(f\left(X_{1}^{*}\right)\right) \leq \mathbb{E}\left(f\left(X_{1}\right)\right)
$$

These are not location free orders. Remark that

$$
\begin{aligned}
& X_{1}^{*} \leq_{\mathrm{st}} X_{1} \Rightarrow \mathbb{E}\left(X_{1}^{*}\right) \leq \mathbb{E}\left(X_{1}\right) . \\
& X_{1}^{*} \leq_{\mathrm{cx}} X_{1} \Rightarrow \mathbb{E}\left(X_{1}^{*}\right)=\mathbb{E}\left(X_{1}\right) .
\end{aligned}
$$

Some variability orders

We shall consider orders designed to take into account the variability and are location free.

Some variability orders

We shall consider orders designed to take into account the variability and are location free. X_{1}^{*} and X_{1} two random variables.

- F_{*} and F their distribution functions,
- F_{*}^{-1} and F^{-1} their generalized inverse (or the quantile function),
- $\bar{F}_{*}=1-F_{*}, \bar{F}=1-F$ their survival functions.

Some variability orders

We shall consider orders designed to take into account the variability and are location free.

- X_{1}^{*} is smaller than X_{1} for the dilatation order $\left(X_{1}^{*} \leq_{\text {dil }} X_{1}\right)$ if and only if $\left(X_{1}^{*}-\mathbb{E}\left(X_{1}^{*}\right)\right) \leq_{c x}\left(X_{1}-\mathbb{E}\left(X_{1}\right)\right)$,
- X_{1}^{*} is smaller than X_{1} for the dispersive order $\left(X_{1}^{*} \leq_{\operatorname{disp}} X_{1}\right)$ if and only if $F^{-1}-F_{*}^{-1}$ is non decreasing,
- If X_{1}^{*} and X_{1} have finite means, then X_{1}^{*} is smaller than X_{1} for the excess wealth order $\left(X_{1}^{*}\right.$ Sew $\left.X_{1}\right)$ if and only if, for all $p \in] 0,1[$,

$$
\int_{\left[F_{*}^{-1}(p), \infty[\right.} \bar{F}_{*}(x) d x \leq \int_{\left[F^{-1}(p), \infty[\right.} \bar{F}(x) d x .
$$

Scale invariant orders

- X_{1}^{*} is smaller than X_{1} for the star order $\left(X_{1}^{*} \leq_{*} X_{1}\right)$ if and only if

$$
\frac{F^{-1}}{F_{*}^{-1}} \text { is non decreasing, }
$$

- X_{1}^{*} is smaller than X_{1} for the Lorenz $\left(X_{1}^{*} \leq_{\text {Lorenz }} X_{1}\right)$ if and only if

$$
\frac{X_{1}^{*}}{\mathbb{E}\left(X_{1}^{*}\right)} \leq \mathrm{cx} \frac{X_{1}}{\mathbb{E}\left(X_{1}\right)}
$$

Properties and relationships I.

Property (see eg the book Stochastic orders by Shaked-Shanthikumar 2007)
(1) \leq disp $\Longrightarrow \leq_{\text {ew }} \Longrightarrow \leq_{\text {dil }}$.
(2) $\leq * \Longrightarrow \leq$ Lorenz
(3) $X_{1}^{*} \leq * X_{1} \Longleftrightarrow \log X_{1}^{*} \leq_{\text {disp }} \log X_{1}$.
(9) If X_{1}^{*} and X_{1} are random variables with $X_{1}^{*} \leq \operatorname{disp} X_{1}$ and $X_{1}^{*} \leq_{s t} X_{1}$ then for all non decreasing and convex or non increasing concave function $\varphi, \varphi\left(X_{1}^{*}\right) \leq \operatorname{disp} \varphi\left(X_{1}\right)$.

Properties and relationships II.

As a corollary, we have that

$$
X_{1}^{*} \leq_{\text {disp }} X_{1} \text { and } X_{1}^{*} \leq_{\text {st }} X_{1} \Rightarrow \operatorname{var}\left(\varphi\left(X_{1}^{*}\right)\right) \leq \operatorname{var}\left(\varphi\left(X_{1}\right)\right)
$$

for any non decreasing and convex or non increasing concave function φ.

Sketch of results

For which order and under which conditions on f,

$$
X_{i}^{*} \leq X_{i} \Longrightarrow S_{i}^{*} \leq S_{i}
$$

or

$$
X_{i}^{*} \leq X_{i} \Longrightarrow S_{T_{i}}^{*} \leq S_{T_{i}} ?
$$

Where S_{i}^{*} and $S_{T_{i}}^{*}$ are Sobol indices for
$Y^{*}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{*}, X_{i+1}, \ldots, X_{k}\right)$.
Write $X^{*}=\left(X_{1}, \ldots, X_{i-1}, X_{i}^{*}, X_{i+1}, \ldots, X_{k}\right)$.

Result when there is no interactions

No interactions, Sobol's decomposition writes:

$$
f(X)=\sum_{i=1}^{k} f_{i}\left(X_{i}\right)+f_{\varnothing} .
$$

Theorem

Assume

- f is convex and componentwise non decreasing (or concave and componentwise non increasing).
- X_{i}^{*} is independent of $\left(X_{1}, \ldots, X_{k}\right)$.
- $X_{i}^{*} \leq e w X_{i}$ and $-\infty<\ell_{*} \leq \ell$, where ℓ and ℓ_{*} are the left end points of the support of X_{i}^{*} and X_{i}.
Then $S_{i}^{*} \leq S_{i}$.

Idea of the proof

Write $\varphi_{j}\left(X_{j}\right)=\mathbb{E}\left(f(X) \mid X_{j}\right)$, so that $f_{j}=\varphi_{j}-f_{\varnothing}, \varphi_{j}\left(X_{j}\right)$ is non decreasing and convex. $f\left(X^{*}\right)$ writes:

$$
\begin{gathered}
f\left(X^{*}\right)=\sum_{j \neq i} f_{j}\left(X_{j}\right)+f_{i}\left(X_{i}^{*}\right)+f_{\varnothing} . \\
\operatorname{var}\left(Y^{*}\right)=\sum_{j \neq i} \mathbb{E}\left(f_{j}\left(X_{j}\right)^{2}\right)+\operatorname{var}\left(f_{i}\left(X_{i}^{*}\right)\right)=\sum_{j \neq i} \operatorname{var}\left(\varphi_{j}\left(X_{j}\right)\right)+\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right) .
\end{gathered}
$$

Finally,

$$
S_{i}^{*}=\frac{\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right)}{\sum_{j \neq i} \operatorname{var}\left(\varphi_{j}\left(X_{j}\right)\right)+\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right)}
$$

Idea of the proof

Write $\varphi_{j}\left(X_{j}\right)=\mathbb{E}\left(f(X) \mid X_{j}\right)$, so that $f_{j}=\varphi_{j}-f_{\varnothing}, \varphi_{j}\left(X_{j}\right)$ is non decreasing and convex. $f\left(X^{*}\right)$ writes:

$$
\begin{gathered}
f\left(X^{*}\right)=\sum_{j \neq i} f_{j}\left(X_{j}\right)+f_{i}\left(X_{i}^{*}\right)+f_{\varnothing} \\
\operatorname{var}\left(Y^{*}\right)=\sum_{j \neq i} \mathbb{E}\left(f_{j}\left(X_{j}\right)^{2}\right)+\operatorname{var}\left(f_{i}\left(X_{i}^{*}\right)\right)=\sum_{j \neq i} \operatorname{var}\left(\varphi_{j}\left(X_{j}\right)\right)+\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right) .
\end{gathered}
$$

Also, we have

$$
\begin{gathered}
S_{i}=\left[1+\frac{\sum_{j \neq i} \operatorname{var}\left(\varphi_{j}\left(X_{j}\right)\right)}{\operatorname{var}\left(\varphi_{i}\left(X_{i}\right)\right)}\right]^{-1} S_{i}^{*}=\left[1+\frac{\sum_{j \neq i} \operatorname{var}\left(\varphi_{j}\left(X_{j}\right)\right)}{\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right)}\right]^{-1} \\
\operatorname{var}\left(\varphi_{i}\left(X_{i}^{*}\right)\right) \leq \operatorname{var}\left(\varphi_{i}\left(X_{i}\right)\right), \Longrightarrow S_{i}^{*} \leq S_{i}
\end{gathered}
$$

Products of convex functions

Theorem

If f writes:

$$
f\left(X_{1}, \ldots, X_{k}\right)=g_{1}\left(X_{1}\right) \times \cdots \times g_{k}\left(X_{k}\right)+K
$$

with $K \in \mathbb{R}$ and the $\log g_{i}$'s convex and non decreasing functions.
Let X_{i}^{*} be independent of X and $X_{i}^{*} \leq \operatorname{disp} X_{i}$ and $X_{i}^{*} \leq_{s t} X_{i}$.
Then $S_{T_{i}}^{*} \leq S_{T_{i}}$.

Products of convex functions

Theorem

If f writes:

$$
f\left(X_{1}, \ldots, X_{k}\right)=g_{1}\left(X_{1}\right) \times \cdots \times g_{k}\left(X_{k}\right)+K
$$

with $K \in \mathbb{R}$ and the $\log g_{i}$'s convex and non decreasing functions. Let X_{i}^{*} be independent of X and $X_{i}^{*} \leq d_{\text {disp }} X_{i}$ and $X_{i}^{*} \leq_{s t} X_{i}$. Then $S_{T_{i}}^{*} \leq S_{T_{i}}$.

Remark: If X_{i}^{*} and X_{i} have ℓ_{*} and ℓ as finite left end points of their support then $X_{i}^{*} \leq_{\operatorname{disp}} X_{i}$ and $\ell_{*}=\ell \Longrightarrow X_{i}^{*} \leq_{\text {st }} X_{i}$.

Extensions

The previous result holds in some extended cases described below.
(1) Let $\left\{I_{a}\right\}_{a \in A}$ be a partition of $\{1, \ldots, k\}$ and assume that

$$
f(X)=\sum_{a \in A} \prod_{j \in I_{a}} g_{j}\left(X_{j}\right)
$$

with $\log g_{j}$ non decreasing and convex. If X_{i}^{*} is independent of X and $X_{i}^{*} \leq_{\operatorname{disp}} X_{i}$ and $X_{i}^{*} \leq_{\mathrm{st}} X_{i}$. Then $S_{T_{i}}^{*} \leq S_{T_{i}}$.

Extensions

The previous result holds in some extended cases described below.
(1) Let $\left\{I_{a}\right\}_{a \in A}$ be a partition of $\{1, \ldots, k\}$ and assume that

$$
f(X)=\sum_{a \in A} \prod_{j \in I_{a}} g_{j}\left(X_{j}\right)
$$

with $\log g_{j}$ non decreasing and convex. If X_{i}^{*} is independent of X and $X_{i}^{*} \leq_{\operatorname{disp}} X_{i}$ and $X_{i}^{*} \leq_{\mathrm{st}} X_{i}$. Then $S_{T_{i}}^{*} \leq S_{T_{i}}$.
(2) Let $f(X)=\varphi_{1}\left(X_{i}\right) \prod g_{j}\left(X_{j}\right)+\varphi_{2}\left(X_{i}\right)$ with $\log g_{j}, \log \varphi_{1}$ and $j \neq i$
$\log \varphi_{2}$ non decreasing and convex. If

- X_{i}^{*} is independent of X and $X_{i}^{*} \leq_{\text {disp }} X_{i}$ and $X_{i}^{*} \leq_{\text {st }} X_{i}$.
- $\frac{\operatorname{var}\left(\varphi_{2}\left(X_{i}^{*}\right)\right)}{\mathbb{E}\left(\varphi_{1}\left(X_{i}^{*}\right)\right)^{2}} \leq \frac{\operatorname{var}\left(\varphi_{2}\left(X_{i}\right)\right)}{\mathbb{E}\left(\varphi_{1}\left(X_{i}\right)\right)^{2}}$ and $\frac{\operatorname{cov}\left(\varphi_{1}\left(X_{i}^{*}\right), \varphi_{2}\left(X_{i}^{*}\right)\right)}{\mathbb{E}\left(\varphi_{1}\left(X_{i}^{*}\right)\right)^{2}} \leq \frac{\operatorname{cov}\left(\varphi_{1}\left(X_{i}\right), \varphi_{2}\left(X_{i}\right)\right)}{\mathbb{E}\left(\varphi_{1}\left(X_{i}\right)\right)^{2}}$.

Then $S_{T_{i}}^{*} \leq S_{T_{i}}$.

Examples

- Flood event (river stage in Shopshire, UK).
- Value at Risk in the classical Black and Sholes model.
- Price of zero coupon in the Vasicek model.

Flood event

(C)H.L. Cloke, F. Pappenberger, P.-P Renaud, Multi-method global sensitivity analysis for modelling floodplain hydrological processes. Hydrological processes, 22, (2008).

Table I. Specified ranges and distributions of factors. Factors 4 and 5 are exchangeable between the two soil moisture algorithms (Brooks-Corey and van Genuchten)

Factor	Description	Symbol	Unit	Distribution	Mean	$\operatorname{Min}(0.001$ quantile)	$\begin{gathered} \text { Max (0.999 } \\ \text { quantile) } \end{gathered}$
1	Saturated moisture content	$\theta_{\text {S }}$	-	Normal ($\sigma=0.09$)	0.41	0.132	0.688
2	Residual moisture content	θ_{R}	-	Normal ($\sigma=0.01$)	0.0954	0.065	$0 \cdot 125$
3	Saturated hydraulic conductivity	$K_{\text {S }}$	ms^{-1}	Log normal $(\mathrm{A}=-14 \cdot 82, \mathrm{~B}=1 \cdot 24)$	9.93×10^{-7}	1.51×10^{-10}	1.01×10^{-4}
4a	Brooks-Corey, pore size distribution index	λ	-	Normal ($\sigma=0.1$)	0.318	0.017	0.619
5 a	Brooks-Corey, air entry pressure	$h_{\text {S }}$	m	Log normal $(\mathrm{A}=-0.382, \mathrm{~B}=0.710)$	0.880	0.074	6.275
4b	van Genuchten alpha	α	m^{-1}	Log normal $(\mathrm{A}=-4.22, \mathrm{~B}=0.719)$	1.9	0. 16	13.56
5 b	van Genuchten, n	n	-	Normal ($\sigma=0.1$)	1.32	1.02	1.62
6	Storage parameter	S	-	Uniform	0.1×10^{-3}	0.1×10^{-4}	0.1×10^{-2}
7	Upslope pressure	UP	m	Uniform	Measured value	-0.5	0.5
8	River stage	$R_{\text {S }}$	m	Uniform	Measured value	-0.5	0.5
9	Rainfall (precipitation)	PPT	m	Uniform	Measured value	90\%	100%

Flood event

(C)H.L. Cloke, F. Pappenberger, P.-P Renaud, Multi-method global sensitivity analysis for modelling floodplain hydrological processes. Hydrological processes, 22, (2008).

Total

First Order

Sensibility of the VaR

Simplest model (Black-Sholes). L is a loss of a portfolio of the form $L=S_{T}-K$ where K is positive and where S_{T} is the value at time T of a geometric brownian motion:

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}, t \in[0, T]
$$

The Value at Risk is given by

$$
V_{a} R_{\alpha}(L)=S_{0} \exp \left(\mu T+\sigma \sqrt{T} \mathcal{N}^{-1}(\alpha)\right)-K
$$

The parameters are μ and σ. This is a case of a product of \log non decreasing and convex functions.
We have chosen for σ and μ several uniform, truncated normal and truncated exponential laws (ordered with respect to the dispersive and stochastic orders).

Sensibility of the VaR

Results for $\alpha=0.9$.
\mathcal{N}_{T} stands for a truncated, on $[0,2]$ normal law. \mathcal{E}_{T} stands for a truncated, on $[0,1]$ exponential law.

μ^{*}	μ	σ^{*}	σ	$S_{T_{\mu}}^{*}$	$S_{T_{\mu}}$	$S_{T_{\sigma}}^{*}$	$S_{T_{\sigma}}$
$\mathcal{U}[0,1]$	-	$\mathcal{U}[0,1]$	$\mathcal{U}[0,2]$	0.41	0.2	0.64	0.87
$\mathcal{U}[0,2]$	-	$\mathcal{U}[0,1]$	$\mathcal{N}_{\mathrm{T}}(0.5,2)$	0.73	0.48	0.36	0.69
$\mathcal{U}[0,1]$	-	$\mathcal{E}_{\mathrm{T}}(5)$	$\mathcal{E}_{\mathrm{T}}(1)$	0.53	0.4	0.52	0.66
$\mathcal{U}[0,1]$	$\mathcal{N}_{\mathrm{T}}(0.5,2)$	$\mathcal{U}[0,1]$	-	0.4	0.73	0.65	0.35

Vasicek model

Vasicek model: model for short interest rate (or for default intensity) given by the solution of an Ornstein Ulenbeck type stochastic differential equation i.e:

$$
d r_{t}=a\left(b-r_{t}\right) d t+\sigma d W_{t}
$$

where a, b and σ positive parameters and W_{t} is a standard brownian motion.

Vasicek model

Vasicek model: model for short interest rate (or for default intensity) given by the solution of an Ornstein Ulenbeck type stochastic differential equation i.e:

$$
d r_{t}=a\left(b-r_{t}\right) d t+\sigma d W_{t}
$$

The price at time t of a zero coupon bond with maturity T (or the survival probability in a credit risk model) is given by :

$$
P(t, T)=A(t, T) e^{-r(t) B(t, T)}
$$

with

$$
\begin{gathered}
B(t, T)=\frac{1-e^{-a(T-t)}}{a} \\
A(t, T)=\exp \left(\left(b-\frac{\sigma^{2}}{2 a^{2}}\right)(B(t, T)-T+t)-\frac{\sigma^{2}}{4 a} B^{2}(t, T)\right)
\end{gathered}
$$

Vasicek model

Results for the initial rate $r_{0}=0.1$.

param.	law	S_{T}	param.	law	S_{T}	param.	law	S_{T}
a	$\mathcal{U}[0,1]$	0.41	a	$\mathcal{U}[0,1]$	0.48	a	$\mathcal{U}([0,1])$	0.25
b	$\mathcal{U}[0,1]$	0.52	b^{*}	$\mathcal{U}[0,2]$	0.57	b	$\mathcal{U}([0,1])$	0.13
σ	$\mathcal{U}[0,1]$	0.18	σ	$\mathcal{U}[0,1]$	0.06	σ^{*}	$\mathcal{N}_{T}(0.5,2)$	0.7

Conclusion

+ Some compatibility between risk theory (via stochastic orders) and Sobol indices.
- The order of Sobol indices may change when changing the law of the parameters.
ToDo Hydrological applications.
ToDo Find the class of functions f for which the ordering on Sobol indices may be done.
ToDo Use the results presented to find bounds on Sobol indices (use of smallest elements for the dispersive or ew orders).

Concluding remarks

 Appendix
Thanks for your attention.

Other properties of stochastic orders

Property (E Fagiuoli, F Pellerey, and M Shaked 1999.)

X_{1}^{*} and X_{1} two finite means random variables with supports bounded from below by ℓ_{*} and ℓ. If $X_{1}^{*} \leq e w X_{1}$ and $-\infty<\ell_{*} \leq$ then for all non decreasing and convex functions h_{1}, h_{2} for which $h_{i}\left(X_{1}^{*}\right)$ and $h_{i}\left(X_{1}\right) i=1,2$ have order two moments,

$$
\operatorname{cov}\left(h_{1}\left(X_{1}^{*}\right), h_{2}\left(X_{1}^{*}\right)\right) \leq \operatorname{cov}\left(h_{1}\left(X_{1}\right), h_{2}\left(X_{1}\right)\right)
$$

Other properties of stochastic orders

Property (Shaked-Shanthikumar 2007)

- $X_{1}^{*} \leq_{e w} X_{1}$ if and only if

$$
\frac{1}{1-p} \int_{p}^{1}\left(F^{-1}(u)-F_{*}^{-1}(u)\right) d u
$$

is non decreasing in $p \in] 0,1[$.

- $X_{1}^{*} \leq \operatorname{disp} X_{1}$ if and only if for all $c \in \mathbb{R}$, the curve of $F_{*}(\cdot-c)$ crosses that of F at most once. When they cross, the sign is ,-+ .

Idea of the proof I.

$$
f_{i}\left(X_{i}\right)=\left(g_{i}\left(X_{i}\right)-\mathbb{E}\left(g_{i}\left(X_{i}\right)\right) \prod_{j \neq i} \mathbb{E}\left(g_{j}\left(X_{j}\right)\right),\right.
$$

The form of f gives:

$$
\begin{aligned}
f_{\alpha}\left(X_{\alpha}\right) & =\sum_{\beta \subset \alpha}(-1)^{|\alpha|-|\beta|} \prod_{j \in \beta} g_{j}\left(X_{j}\right) \prod_{j \notin \beta} \mathbb{E}\left(g_{j}\left(X_{j}\right)\right) \\
& =\prod_{j \notin \alpha} \mathbb{E}\left(g_{j}\left(X_{j}\right)\right) \prod_{j \in \alpha}\left(g_{j}\left(X_{j}\right)-\mathbb{E}\left(g_{j}\left(X_{j}\right)\right)\right) .
\end{aligned}
$$

Idea of the proof II.

We write

$$
f_{T_{i}}=\sum_{i \in \alpha} f_{\alpha}
$$

Then, one gets

$$
f_{T_{i}}(X)=\left(g_{i}\left(X_{i}\right)-\mathbb{E}\left(g_{i}\left(X_{i}\right)\right) \prod_{j \neq i} g_{j}\left(X_{j}\right) .\right.
$$

Moreover,

$$
f_{\alpha}\left(X_{\alpha}\right)=\prod_{j \notin \alpha} \mathbb{E}\left(g_{j}\left(X_{j}\right)\right) \prod_{j \in \alpha}\left(g_{j}\left(X_{j}\right)-\mathbb{E}\left(g_{j}\left(X_{j}\right)\right)\right)
$$

Idea of the proof III.

Compute the variances:

$$
\operatorname{var} f_{T_{i}}=\operatorname{var}\left(g_{i}\left(X_{i}\right)\right) \prod_{j \neq i} \mathbb{E}\left(g_{j}\left(X_{j}\right)^{2}\right)
$$

if $i \notin \alpha$,
$\operatorname{var} f_{\alpha}\left(X_{\alpha}\right)=\mathbb{E}\left(g_{i}\left(X_{i}\right)\right)^{2} \operatorname{var}\left(\prod_{\substack{j \neq i \\ j \neq \alpha}} \mathbb{E}\left(g_{j}\left(X_{j}\right)\right) \prod_{j \in \alpha}\left(g_{j}\left(X_{j}\right)-\mathbb{E}\left(g_{j}\left(X_{j}\right)\right)\right)\right)$.

Idea of the proof IV.

The total Sobol indices rewrite

$$
S_{T_{i}}=\left[1+\frac{\sum_{\alpha \not \supset i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}\left(f_{T_{i}}(X)\right)}\right]^{-1} \text { and } S_{T_{i}}^{*}=\left[1+\frac{\sum_{\alpha \nexists i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}\left(f_{T_{i}}^{*}\left(X^{*}\right)\right)}\right]^{-1}
$$

Idea of the proof IV.

The total Sobol indices rewrite
$S_{T_{i}}=\left[1+\frac{\sum_{\alpha \not \supset i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}\left(f_{T_{i}}(X)\right)}\right]^{-1}$ and $S_{T_{i}}^{*}=\left[1+\frac{\sum_{\alpha \ngtr i} \operatorname{var}\left(f_{\alpha}\left(X_{\alpha}\right)\right)}{\operatorname{var}\left(f_{T_{i}}^{*}\left(X^{*}\right)\right)}\right]^{-1}$.
The result follows if

$$
\frac{\operatorname{var} g_{i}\left(X_{i}^{*}\right)}{\mathbb{E}\left(g_{i}\left(X_{i}^{*}\right)\right)^{2}} \leq \frac{\operatorname{var} g_{i}\left(X_{i}\right)}{\mathbb{E}\left(g_{i}\left(X_{i}\right)\right)^{2}}
$$

We have

$$
\begin{aligned}
& \log g_{i}\left(X_{i}^{*}\right) \leq \text { disp } \log g_{i}\left(X_{i}\right) \Longleftrightarrow g_{i}\left(X_{i}^{*}\right) \leq_{*} g_{i}\left(X_{i}\right) \\
& \quad \Longrightarrow \quad g_{i}\left(X_{i}^{*}\right) \leq_{\text {Lorenz }} g_{i}\left(X_{i}\right) \Longrightarrow \frac{\operatorname{var} g_{i}\left(X_{i}^{*}\right)}{\mathbb{E}\left(g_{i}\left(X_{i}^{*}\right)\right)^{2}} \leq \frac{\operatorname{var} g_{i}\left(X_{i}\right)}{\mathbb{E}\left(g_{i}\left(X_{i}\right)\right)^{2}} .
\end{aligned}
$$

