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1. Introduction

Let T : X → X be an ergodic measure preserving transformation with respect to a probability
measure µ on X. Let α be a countable measurable generating partition of X with finite en-
tropy and for every x ∈ X let αn(x) denote the only element of the partition αn = ∨n−1

j=0T
−j(α)

containing x. Put

τn(x) = min{j ≥ 1 : T j(x) ∈ αn(x)}. (1.1)

Ornstein an Weiss proved in [OW] that for µ-a.e. x ∈ X

lim
n→∞

1

n
log τn(x) = hµ, (1.2)

where hµ is the measure-theoretical entropy of the mapping T : X → X with respect to the
measure µ.
Let us assume now additionally that T : X → X is a subshift of finite type, φ : X → X

is a Hölder continuous potential, µ = µφ is a unique equilibrium state (Gibbs measure) of T
and φ, and α is the partition of X into initial cylinders of length 1. Let

Snφ =
n−1
∑

j=0

φ ◦ T j. (1.3)

We shall use the following important property of Gibbs measures for Hölder continuous po-
tentials (see, e.g.[Bo]): there exists a constant C such that for every x ∈ X

C−1 exp(Snφ(x)− nP(φ)) ≤ µ(αn(x)) ≤ C exp(Snφ(x)− nP(φ)) (1.4)

where P(φ) is the topological pressure of T and φ.

P(φ) = lim
n→∞

1

n
log

(

∑

A∈αn

sup
(

Snφ|A
)

)

.

Another important property is the following

P(φ) = hµ +
∫

X
φdµ (1.5)
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The following question arises. Given x, consider the sum

τn(x)
∑

j=0

µ(αn(T i(x))) (1.6)

(the sum of measures of cylinders of the partition αn along the trajectory of x until the time
τn when this trajectory reaches the initial cylinder αn(x)). The question is whether the limit

1

n
log

τn(x)
∑

j=0

µ(αn(T i(x))) (1.7)

exists and what its value is equal to. We shall give an answer for µ being a Gibbs measure
for a Hölder continuous potential.

There are at least two naive ways to answer the above question. First, according to (1.2),
the time τn is approximately exp(nhµ), while the measure of the typical cylinder is close to
exp(−nhµ), so it seems that the limit should be equal to 0.
On the other hand, an atom of the partition αn should be visited by the trajectory of x

with a frequency close to µ(αn), thus the sum (1.6) should be rather close to
∑

A∈αn

µ(A)τn(x)µ(A). (1.8)

This suggests that the limit (1.7) should be equal to

lim
n→∞

(

1

n
log(τn(x)) +

1

n
log

∑

A∈αn

µ(A)2
)

= lim
n→∞

(

1

n
log(τn(x)) +

1

n
log

∫

X
µ(αn(x))dµ(x)

)

(1.9)

provided that this limit exists. It is then easily seen that the limit (1.9) really exists if µ is
a Gibbs measure for a Hölder continuous potential φ for a subshift of finite type and equals
hµ + P(2φ)− 2P(φ).
Indeed, the first summand in (1.9) tends to hµ by (1.2), while the sum

∑

A∈αn µ(A)2 can be
estimated, using the property of Gibbs measures

∑

A∈αn

µ(A)2 ≍
∑

A∈αn

sup
(

exp(2Snφ|A − 2nP(φ)
)

and we conclude that the limit in (1.7) should be rather equal to hµ + P(2φ)− 2P(φ), which
is greater than 0 provided φ is not homologous to a constant (see Remark 1.2 below).
Of course, both ”proofs” are wrong. They use some limit estimates for a given time τn and

a growing number of cylinders αn. In particular, in the second ”proof” we see that the time
τn is certainly too short to visit all cylinders αn even once. However, this wrong proof leads
us to a correct formula. More precisely, we have the following.
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Theorem 1.1. If T : X → X is a subshift of finite type, φ : X → X is a Hölder continuous
potential, µ = µφ is a unique equilibrium state of T and φ and α is the partition of X into
initial cylinders of length 1, then for µ-a.e. x ∈ X

lim
n→∞

1

n
log

τn(x)
∑

j=0

exp
(

Snφ ◦ T j(x)
)

= hµ + P(2φ)− P(φ). (1.10)

and

lim
n→∞

1

n
log

τn(x)
∑

j=0

µ(αn(T j(x))) = hµ + P(2φ)− 2P(φ). (1.11)

Notice that for φ = 0 the above theorem follows immediately from the result of Ornstein
and Weiss. Thus it can be understood as its generalization.

Remark 1.2. The value of the second limit in Theorem 1.1: hµ + P(2φ) − 2P(φ) is non-
negative. Moreover, hµ+P(2φ)−2P(φ) = 0 iff φ is homologous to a constant, i.e. there exists
a Hölder –continuous function g : X → R and a constant c ∈ R such that φ = g ◦ T − g + c.
Indeed, it is well-known that (under the assumptions of Theorem 1.1) the function t 7→

P (tφ) is convex and smooth and d
dt
P (tφ) =

∫

X φdµtφ. Moreover, this function is strictly
convex unless φ is homologous to a constant. Thus, using (1.5),we can write

P(2φ) = P(φ) +
∫ 2

1

d

dt
P(tφ) ≥ P(φ) +

∫

X
φdµφ = P(φ) + P(φ)− hµ

and the inequality is strict if φ is not homologous to a constant. This gives the required
inequality.

Roughly speaking, Theorem 1.1 means that the wrong ”proof” above gives the correct
answer because large cylinders αn (i.e. cylinders of big measure) are visited by the trajectory
of x up to time τn(x) with a frequency close to the limit one (given by the Birkhoff Ergodic
Theorem). It turns out that (typically) the time τn(x) is sufficiently long for the integral
∫

X µ(α
n(x))dµ(x) to be well approximated by the time average 1

τn(x)

∑τn(x)
j=0 µ(αn(T i(x))). The

main tool in the (real) proof of Theorem 1.1 is provided by a detailed analysis of large
deviations of the sums Sn(φ).

After writing this note we found out that the questions of this spirit have been considered
before for sequences of independent identically distributed random variables. It seems that
this research was originated by ”A new law of large numbers” (see [ER]), where the average
1
k
Un, Un = max0≤i≤n−k(Xi + · · · + Xi+k), k = [c log n] was considered. See also [DDL]. A

result analogous to Theorem 1.1 in the context of independent equally distributed random
variables has appeared in [To].
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2. Proofs

Let T : X → X be an ergodic measure preserving transformation with respect to a probability
measure µ on X. Let φ be a bounded measurable function defined on X.
We introduce the following notation.

cφ,µ(t) = lim sup
n→∞

1

n
log

∫

exp(Sntφ)dµ.

where Sn(φ) is defined in 1.3. In statistical mechanics, cφ,µ(t) is usually called the free energy
function, provided that lim sup can be replaced by lim. The notion of free energy is closely
related to the notion of topological pressure. We have the following simple

Lemma 2.1. If T : X → X is a subshift of finite type, φ : X → X is a Hölder continuous
potential and µφ is a unique equilibrium state of T and φ, then cφ,µφ(t) = P((t+1)φ)−P(φ),
where P((t + 1)φ) is the topological pressure of the function (t + 1)φ. In particular, in this
case, lim sup can be replaced by lim in the definition of cφ,µφ.

Proof. As before, denote by α the partition into cylinders of length 1. It is well-known that
for every x ∈ X

µφ(α
n(x)) ≍ exp

(

Snφ(x)− P(φ)n
)

,

(see (1.4)) where the comparability relation A ≍ B means that the quotients A/B and B/A
are uniformly bounded from above (and so also from below). Let α be the partition of X into
cylinders of length 1 and for every cylinder A ∈ αn choose one point xA ∈ A. We then get

log
∫

exp(Sntφ)dµ ≍+ log
∑

A∈αn

µφ(A) exp
(

Sntφ(xA)
)

≍+ log
∑

A∈αn

exp
(

Snφ(xA)− P(φ)n
)

exp
(

Sntφ(xA)
)

= log
∑

A∈αn

exp
(

Sn((t+ 1)φ)(xA)− P(φ)n
)

,

where the comparability relation A ≍+ B means that the differences A − B and B − A are
uniformly bounded from above (and so also from below). It now immediately follows from
the definition of cφ,µφ(t) and from the definition of topological pressure that

cφ,µφ(t) = P((t+ 1)φ)− P(φ).

Remark 2.2. We use both free energy and pressure even though these notions are very closely
related to each other in our case. The free energy is usually used in the statement of Large
Deviation Theorem which will be our main tool in the proof of Lemma 2.4.
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In order to prove Theorem 1.1, we shall estimate the sum
∑τn(x)
j=0 exp

(

Snφ◦T
j(x)

)

from above

(Proposition 2.3) and from below (Lemma 2.4). Notice that the estimate from above works
under much weaker assumptions than the estimate from below.

Proposition 2.3. If T : X → X is an ergodic measure preserving transformation with respect
to a probability measure µ, the partition α and the time τn(x) are defined as in (1.1). Let φ
be a bounded measurable function. Then for µ-a.e. x ∈ X

lim sup
n→∞

1

n
log

τn(x)
∑

j=0

exp
(

Snφ ◦ T j(x)
)

≤ hµ + cφ,µ(1),

Proof. Put

gn(x) = exp
(

Snφ(x)
)

.

Fix ǫ > 0 and for every n ≥ 1 consider the set

Bn(ǫ) =



















x ∈ X :

exp

(

(hµ+
ǫ
3
)n

)

∑

j=0

gn ◦ T
j(x) > exp

(

(hµ + cφ,µ(1) + ǫ)n
)



















.

Applying Tchebyschev’s inequality we obtain

µ(Bn(ǫ)) ≤ exp
(

−(hµ + cφ,µ(1) + ǫ)n
)

∫

exp

(

(hµ+
ǫ
3
)n

)

∑

j=0

gn ◦ T
jdµ

≤ exp
(

−(hµ + cφ,µ(1) + ǫ)n
)

exp
(

(hµ +
ǫ

3
)n
)

∫

gndµ

= exp
(

−(cφ,µ(1) +
2

3
ǫ)n

)

∫

gndµ.

But it follows from the definition of cφ,µ(1) that for all n large enough, say n ≥ nǫ,
∫

gndµ ≤

exp
(

(cφ,µ(1) +
ǫ
3
)n
)

. Consequently

µ(Bn(ǫ)) ≤ exp
(

−
ǫ

3
n
)

for all n ≥ nǫ. Thus the series
∑∞
n=1 µ(Bn(ǫ)) converges and it follows from the Borel-Cantelli

lemma that there exists a measurable set A′
ǫ such that µ(A′

ǫ) = 1 and each point form A′
ǫ

belongs to finitely many sets Bn(ǫ) only. In particular

lim sup
n→∞

1

n
log

exp

(

(hµ+
ǫ
3
)n

)

∑

j=0

gn ◦ T
j(x) ≤ hµ + cφ,µ(1) + ǫ
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for all x ∈ A′
e. Since by (1.2), limn→∞

1
n
log τn(x) = hµ for µ-a.e. x ∈ X, we conclude that

lim sup
n→∞

1

n
log

τn(x)
∑

j=0

≤ hµ + cφ,µ(1) + ǫ

for all points x in some measurable set Aǫ with µ(Aǫ) = 1. Putting A =
⋂

k≥1A1/k, we
therefore have µ(A) = 1 and

lim sup
n→∞

1

n
log

τn(x)
∑

j=0

≤ hµ + cφ,µ(1)

for all x ∈ A. We are done.

Our main technical result is the following.

Lemma 2.4. If T : X → X is a subshift of finite type, φ : X → X is a Hölder continuous
potential and µ = µφ is a unique equilibrium state of T and φ, then for µ-a.e. x ∈ X

lim inf
n→∞

1

n
log

τn(x)
∑

j=0

exp
(

Snφ ◦ T j(x)
)

≥ hµ + cφ,µ(1). (2.1)

Proof. Replacing φ by φ−P(φ) if necessary, we may assume without loss of generality that
P(φ) = 0. Now, we can also assume that φ < 0 in X. Indeed, since P(φ) = 0, it follows
that there exists k ∈ N such that for every x we have Sk(φ) < 0. So, we can replace φ by

φ′ = Skφ
k
. The Gibbs states µφ and µφ′ are the same. Since exp

(

Snφ ◦ T j(x)
)

differs from

exp
(

Snφ
′◦T j(x)

)

by a bounded factor, the left-hand side of the inequality 2.1 does not change

when φ is replaced by φ′. By the same reason, the right-hand side does not change either.

From now on we assume that P(φ) = 0 and φ < 0 in X.

Let us assume that φ is homologous to a constant. In this case the pressure function
t 7→ P (tφ) is affine and (see Remark 1.2) hµ + P (2φ) − 2P (φ) = 0. Moreover, in this case
µ = µφ is simply the measure of maximal entropy and µ(αn) ≍ exp(−nhµ). Thus, in this case
the statement of Theorem 1.1 follows directly from the result of [OW].
So from now on, we also assume that φ is not homologous to a constant.

Put ψ = φ+ hµ. We then have

τn(x)
∑

i=0

expSnφ(T
i(x)) = exp(−nhµ)

τn(x)
∑

i=0

exp(Snφ(T
ix) + nhµ)

= exp(−nhµ)
τn(x)
∑

i=0

exp(Snψ(T
i(x))).

(2.2)
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Fix δ > 0. Then, using (2.2), we get
τn
∑

i=0

expSnφ(T
i(x)) ≥ exp(−nhµ) exp(nδ) ·#{i ∈ (0, τn) : Snψ(x) > nδ}.

Since P(φ) = 0, we have
∫

ψdµ = 0. Thus the Large Deviation Theorem (see [El], Th. II.6.1)
gives

lim
n→∞

1

n
log µ

({

x :
Snψ(x)

n
> δ

})

= −Î(δ), (2.3)

where Î(δ) is the Legendre–Fenchel transform of the free energy function

cψ,µ(t) = lim
n→∞

1

n
log

∫

expSn(tψ)dµ.

Notice that Î(δ) = I(−hµ+δ) where I is the Legendre–Fenchel transform of the free energy
function

cφ,µ(t) = lim
n→∞

1

n
log

∫

expSn(tφ)dµ.

For every n ≥ 1 put

Bδ(n) =

{

x : there exists y ∈ αn(x) such that
Snψ(y)

n
> δ

}

Since ψ is a Hölder continuous function, there exists a constant C independent of n such
that if y ∈ αn(x) then |Snψ(x)−Snψ(y)| < C. Fix ǫ > 0. Since the transform Î is continuous,
it follows from (2.3) that for all n large enough

µ(Bδ(n)) ≥ µ

({

x :
Snψ(x)

n
> δ −

C

n

})

> exp(−n(Î(δ) + ǫ)). (2.4)

The idea of the computation below is the following. For an integer M =M(n) we shall esti-
mate from below the number of points in the trajectory of x under T n: x, T n(x), . . . , TMn(x)
which fall into the set Bδ(n). As a tool, we use the Tchebyschev’s inequality together with
weak dependence of random variables χBδ(n) ◦ T

nj. More precisely, we conclude that the
frequency of ”times” k ∈ {1, . . . ,M} such that T nk(x) ∈ Bδ(n) is close to the measure of
Bδ(n). This estimate works for all x outside some set An, where µ(An) is close to 0 (see
(2.7),(2.8),(2.10)). The ”time” M under consideration depends on n and is related to the
typical return time τn (see (2.8)). If x is chosen so that for every n > n0 = n0(x) the point
x /∈ An, we will get the estimate of

lim inf
n→∞

1

n
log

τn(x)
∑

i=0

expSnφ(T
i(x))

from below in terms of the value of Legendre-Fenchel transform of the free energy function
evaluated at δ (see (2.13)). Finally, we examine the range of possible δ’s. This will lead us
(using the Legendre-Fenchel transform again) to the inequality (2.1).
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So, let Yn = χBδ(n), where χBδ(n) is the characteristic function of the set Bδ(n). Notice that
the function Yn is constant on each cylinder of n-th generation. We have E(Yn) = µ(Bδ(n))
and D2(Yn) = µ(Bδ)(n)(1− µ(Bδ(n))). For every integer M ≥ 1 set

LM,n = Yn + Yn ◦ T
n, . . . , Yn ◦ T

Mn.

Our aim now is to estimate the variance D2(LM,n) from above. Let Ỹn = Yn − E(Yn). Then

D2(LM,n) = E((Ỹn + Ỹn ◦ T
n + · · ·+ Ỹn ◦ T

Mn)2)

= (M + 1)E(Ỹ 2
n ) + 2(ME(Ỹn(Ỹn ◦ T

n)) + (M − 1)E(Ỹn(Ỹn ◦ T
2n)) + . . .

. . .+ E(Ỹn(Ỹn ◦ T
Mn))).

(2.5)

For every l ≥ 0 let

γ(l) = sup

{

|µ(Cn ∩ T
−(l+n)(C ′

n)− µ(Cn)µ(C
′
n)|

µ(Cn)µ(C ′
n)

: n ≥ 1, Cn, C
′
n ∈ αn

}

.

Since the random variable Ỹn is constant on each cylinder of length n, we get that

E(Ỹn(Ỹn ◦ T
jn)) =

∑

Cn

∑

C′

n

µ(Cn ∩ T
−jn(C ′

n))Ỹn|Cn
Ỹn|C′

n

=
∑

Cn

∑

C′

n

µ(Cn)µ(C
′
n)Ỹn|Cn

Ỹn|C′

n

µ(Cn ∩ T
−jn(C ′

n))

µ(Cn)µ(C ′
n)

=
∑

Cn

∑

C′

n

µ(Cn)µ(C
′
n)Ỹn|Cn

Ỹn|C′

n

+
∑

Cn

∑

C′

n

µ(Cn)µ(C
′
n)Ỹn|Cn

Ỹn|C′

n

µ(Cn ∩ T
−nj(C ′

n))− µ(Cn)µ(C
′
n)

µ(Cn)µ(C ′
n)

The first summand is equal to (E(Ỹn))
2 = 0. The second summand can be estimated from

above by γ((j − 1)n))(E(|Ỹn|))
2 ≤ γ((j − 1)n)E(Ỹ 2

n ). The sequence {γ(k)}∞k=0 converges to
0 exponentially fast, this is a well-known property of Gibbs measures, see e.g. [Bo]. Using
(2.5) we obtain that

D2(LM,n) ≤ (M + 1)E(Ỹ 2
n )(1 + 2

∞
∑

j=1

γ((j − 1)n)) ≤ C1ME(Ỹ 2
n ), (2.6)

where C1 is some universal constant independent of M and n. By Tchebyschev’s inequality
we get

µ

({

x :

∣

∣

∣

∣

∣

LM,n(x)

M
− µ(Bδ(n))

∣

∣

∣

∣

∣

> η

})

<
D2
(

LM,n

M

)

η2
. (2.7)

Put

M =M(n) =

[

expn(hµ − ǫ)

n

]

and η =
1

2
µ(Bδ(n)) (2.8)
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and set

An =

{

x :

∣

∣

∣

∣

∣

LM(n),n(x)

M(n)
− µ(Bδ(n))

∣

∣

∣

∣

∣

>
1

2
µ(Bδ(n))

}

. (2.9)

Since E(Ỹ 2
n ) = D2(Yn) = µ(Bδ(n))(1 − µ(Bδ(n))), using (2.4 and (2.6), for all n large

enough, we get that

µ
(

An
)

≤
D2

(

LM(n),n

M(n)

)

(1
2
µ(Bδ(n)))2

≤
C2M(n)µ(Bδ(n))(1− µ(Bδ(n)))

M(n)2(µ(Bδ(n)))2

≤ C3
n

exp(n(hµ − ǫ)) exp(−n(Î(δ) + ǫ))
= C3n exp

(

n(Î(δ)− hµ + 2ǫ)
)

, (2.10)

where C2 and C3 are some universal constants. We therefore conclude that if Î(δ) < hµ and
ǫ > 0 is small enough, then the series

∑

µ(An) converges. Hence, by Borel-Cantelli Lemma,
for µ-a.e x there exists n0 = n0(x) such that for all n ≥ n0(x), x /∈ An. In view of (1.2) we
may assume without loss of generality that τn(x) > exp(n(hµ − ǫ)) for all n ≥ n0(x). Thus,
for all n ≥ n0 we get that

#{i ∈ {0, ..τn(x)} : Snψ(T
i(x)) > nδ} ≥ #{i ∈ {0, . . . , n−1 exp(n(hµ − ǫ))} : T i(x) ∈ Bδ(n)}

≥
1

2
µ(Bδ(n)) exp(n(hµ − ǫ)).

Finally, using (2.2) and (2.4) we obtain

τn(x)
∑

i=0

expSnφ(T
i(x)) ≥

1

2
exp(−nhµ) exp(nδ) exp(−n(Î(δ) + ǫ)) exp(n(hµ − ǫ))

(2.11)

Therefore,

lim inf
n→∞

1

n
log

τn(x)
∑

i=0

expSnφ(T
i(x)) ≥ −hµ + δ − Î(δ)− 2ǫ+ hµ (2.12)

Letting ǫց 0, we get

lim inf
n→∞

1

n
log

τn(x)
∑

i=0

expSnφ(T
i(x)) ≥ δ − Î(δ) (2.13)

The reasoning above works for every δ > 0 such that the series
∑

µ(An) is convergent. As we

have noticed, the sufficient condition for this is that Î(δ) < hµ. So, in particular, one can take

an arbitrary δ such that Î(δ) < δ < hµ. Notice that the domain of I (the Legendre-Fenchel
transform of cφ,µ(t)) is contained in (−∞, 0), (roughly speaking, z is in the domain of I if

there exists t such that c′φ,µ(t) = z). Consequently, the domain of Î is contained in (−∞, hµ).

Therefore, the estimate (2.13) is fulfilled for an arbitrary δ in the domain of Î(δ) for which

Î(δ) < δ. We shall argue now that such δs exist. Indeed, Î is differentiable ([El] Th. VI.5.6)
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and it attains its minimum Î(0) = 0 (so also Î ′(0) = 0). Therefore, we can write the following
estimate

lim inf
n→∞

1

n
log

τn(x)
∑

i=0

expSnφ(T
i(x)) ≥ sup

δ
{δ − Î(δ)}.

where the supremum is evaluated over all δ in the domain of the function Î. But, again by
definition of Legendre transform, this supremum is precisely the value of the Legendre-Fenchel
transform of Î at the point 1. The Legendre-Fenchel transform of I is again cφ,µ(t) (see e.g.

[El],Th. VI.5.3) and the Legendre-Fenchel transform of Î evaluated at the point t is equal to

cφ,µ(t) + hµ · t.

So, its value at 1 equals cφ,µ(1) + hµ. This shows that

lim inf
n→∞

1

n
log

τn(x)
∑

i=0

expSnφ(T
i(x)) ≥ hµ + cφ,µ(1).

We are done.

We now get the main result of this paper, Theorem 1.1, as an immediate consequence of
Proposition 2.3, Lemma 2.4 and Lemma 2.1.

The following proposition along with (1.2) shows that Theorem 1.1 can be used to calculate
topological pressure provided that given are generic points of equilibrium states of Hölder
continuous potentials 2−jφ, j ≥ 0.

Proposition 2.5. If T : X → X is a continuous map of a compact metric space X and if
φ : X → X is a continuous potential, then

P(φ) = htop(T ) +
∞
∑

j=0

(P(2−jφ)− P(2−(j+1)φ)).

Moreover
∣

∣

∣

∣

∣

∣

P(φ)−
(

htop(T ) +
n
∑

j=0

(P(2−jφ)− P(2−(j+1)φ))
)

∣

∣

∣

∣

∣

∣

≤ 2−(n+1)||φ||∞.

Proof. Since for every n ≥ 0

P(φ) =
n
∑

j=0

(P(2−jφ)− P(2−(j+1)φ)) + P(2−(n+1)φ),
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we obtain
∣

∣

∣

∣

∣

∣

P(φ)−
(

htop(T ) +
n
∑

j=0

(P(2−jφ)− P(2−(j+1)φ))
)

∣

∣

∣

∣

∣

∣

= |P(2−(n+1)φ)− htop(T )|

= |P(2−(n+1)φ)− P(0)|

≤ 2−(n+1)||φ||∞.

We are done.

Finally, let us discuss what can be proved in a more general context. In general, without
the strong assumption of Theorem 1.1 we are only able to prove the following straightforward
lower bound:

Proposition 2.6. Suppose that T : X → X is a transformation preserving an ergodic proba-
bility measure µ. Let α be a countable measurable generating partition of X with finite entropy
and let τn be defined as in (1.1). Let φ : X → R be a bounded measurable function. Then for
µ-almost every x ∈ X we have

lim inf
n→∞

1

n
log

τn(x)
∑

j=0

exp(Snφ ◦ T j(x)) ≥ hµ +
∫

X
φdµ

Proof. Fix M > 0 such that |φ| < M . Using Jensen’s inequality, we have

1

n
log

τn(x)
∑

j=0

exp(Snφ ◦ T j(x)) =
1

n
log(τn(x) + 1) +

1

n
log

1

τn(x) + 1

τn(x)
∑

j=0

expSnφ(T
j(x))

≥
1

n
log(τn(x) + 1) +

1

n

1

τn(x) + 1

τn(x)
∑

j=0

Snφ(T
j(x))

The first summand tends to hµ as n tends to ∞. The second one can be written as

1

n

1

τn(x) + 1





τn(x)−n
∑

j=n

nφ(T j(x)) +
n−1
∑

j=0

(j + 1)φ(T j(x)) +
τn(x)
∑

j=τn(x)−n+1

(τn − j + 1)φ(T j(x))





It is easy to see that

1

n

1

τn(x) + 1





τn(x)−n
∑

j=n

nφ(T j(x))



 =
1

τn(x) + 1





τn(x)−n
∑

j=n

φ(T j(x))





tends to
∫

X φdµ, while the remaining part of the sum can be estimated by 1
τn(x)+1

·2nM . This

tends to 0 a.e. since τn(x) grows exponentially fast for almost every x.
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Let us recall the general estimate from above (see Proposition 2.3):

lim sup
n→∞

1

n
log

τn(x)
∑

j=0

exp
(

Snφ ◦ T j(x)
)

≤ hµ + cφ,µ(1),

Of course, cφ,µ(1) ≥
∫

φdµ, but usually the inequality is sharp and, in general we do not get
any precise formula analogous to (1.11).
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