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Abstract

In the vein of Christol, Kamae, Mendès France and Rauzy, we consider the analogue of a problem of
Mahler for rational functions in positive characteristic. To solve this question, we prove an extension of
Cobham’s theorem for quasi-automatic functions and use the recent generalization of Christol’s theorem
obtained by Kedlaya.
 2008 Elsevier Inc. All rights reserved.
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1. Introduction

One motivation for the present work comes from a number theoretical problem concerning
the expansion of algebraic numbers in integer bases. It appears at the end of a paper of Mendès
France [11], but in conversation he attributes the paternity of this problem to Mahler (see for
instance the discussion in Allouche and Shallit [1]). It can be stated as follows. Let a = (an)!0
be a binary sequence and consider the two real numbers

α =
∑

n!0

an

2n
and β =

∑

n!0

an

3n
.
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Then, the problem is to show that these numbers are both algebraic if and only if they are both
rational. At first glance, this problem seems contrived, but behind it hides the more fundamental
question of the structure of representations of real numbers in two multiplicatively independent
integer bases. Unfortunately, problems of this type are difficult and we seem to be far from
answering Mahler’s question.

However, when considering addition and multiplication without carry things become easier.
In particular, we have a nice result of Christol, Kamae, Mendès France and Rauzy [4]: a sequence
of coefficients represents two algebraic power series in distinct characteristics if and only if these
power series are rational functions. In more concrete terms, Christol et al. give the following
result.

Theorem 1.1 (Christol et al.). Let p1 and p2 be distinct prime numbers and let q1 and q2 be
powers of prime p1 and p2, respectively. Let (an)n!0 be a sequence with values in a finite set
A with cardinality at most min{q1, q2}. Let i1 and i2 be two injections from A into Fq1 and Fq1 ,
respectively. Then, the formal power series

f (t) =
∑

n!0

i1(an)t
n ∈ Fq1((t)) and g(t) =

∑

n!0

i2(an)t
n ∈ Fq2((t))

are both algebraic (respectively over Fq1(t) and Fq2(t)) if and only if they are rational functions.

As was remarked by Christol et al. [4], Theorem 1.1 is a straightforward consequence of two
important results. On one side, Christol’s theorem [3] describes precisely in terms of automata
the algebraic closure of Fq(t) in Fq((t)) (q being a power of a prime p). On the other side,
one finds Cobham’s theorem [5] proving that for multiplicatively independent positive integers k

and l, a function h : N → Fq that is both k- and l-automatic is eventually periodic (see Section 3
for a definition of an automatic function and a more precise statement of this result).

Christol’s theorem gives a very concrete description of the elements of Fq((t)) that are al-
gebraic over Fq(t); it shows in fact that being an algebraic power series is equivalent to the
sequence of coefficients being p-automatic. As Kedlaya [9] points out, this result does not give
the complete picture, as the field Fq((t)) is far from being algebraically closed. Indeed, for an
algebraically closed field K of characteristic 0, the field

∞⋃

n=1

K
((

t1/n
))

is itself algebraically closed and contains in particular the algebraic closure of K(t); but in
positive characteristic, things are rather different. The algebraic closure of Fq((t)) is more compli-
cated, due to the existence of wildly ramified field extensions. For instance, Chevalley remarked
[2] that the Artin–Schreier polynomial xp − x − 1/t does not split in the field

⋃+∞
n=1 Fq((t1/n)).

It turns out that the appropriate framework to describe the algebraic closure of Fp(t) is pro-
vided by the fields of generalized power series Fq((tQ)) introduced by Hahn [7]; the construction
of which is the object of Section 4. The work of Kedlaya [10] is precisely devoted to a descrip-
tion of the algebraic closure of Fp(t) in such fields of generalized power series. For this purpose,
Kedlaya introduces the notion of a p-quasi-automatic function over the rationals (see Section 5
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for a definition). His extension of Christol’s theorem is that if q is a power of a prime p, then a
generalized power series

∑

α∈Q
h(α)tα ∈ Fq

((
tQ))

is algebraic if and only if the function h : Q → Fq is p-quasi-automatic.
Motivated by this recent work of Kedlaya, we propose to give an analogue of the result of

Christol et al. [4] for generalized power series. That is,

• first prove an extension of Cobham’s theorem to quasi-automatic functions (this is Theo-
rem 2.1);

• then, put it together with Kedlaya’s result to derive an analogue of Theorem 1.1 (this corre-
sponds to Theorem 2.2).

Actually, the full-power of Theorem 2.1 is not needed for proving Theorem 2.2 and the nec-
essary part of it relies more straightforwardly on the original version of Cobham’s theorem.

The paper is organized as follows. Our main results are presented in Section 2. We recall the
definition of an automatic sequence and the classical version of Cobham’s theorem in Section 3.
We describe Hahn’s construction of generalized power series rings in Section 4. The notion of
quasi-automatic functions and Kedlaya’s extension of Christol’s theorem are recalled in Sec-
tion 5. We introduce the notion of Saguaro sets in Section 6 and prove a Cobham’s theorem
analogue for these sets in Section 7. The proofs of our main results are postponed to Section 8.

2. Main results

Our main result is the following extension of Cobham’s theorem to quasi-automatic functions.
We refer the reader to Section 5 for a definition of the notion of a quasi-automatic function.

Theorem 2.1. Let k and # be multiplicatively independent positive integers. A function h : Q → ∆

is both k- and #-quasi-automatic if and only if there exist integers a and b with a > 0 such that:

(1) the sequence {h((n − b)/a)}n∈N is eventually periodic;
(2) h((x − b)/a) = 0 for x ∈ Q \ N.

Note that our approach relies on the classical version of Cobham’s theorem and we thus do
not derive an independent proof of that result.

For a definition of the notions of generalized power series and of well-ordered sets, the reader
is refered to Section 4. Thanks to Kedlaya’s extension of Christol’s theorem (see Section 5),
we then prove that for a generalized power series, being algebraic in two distinct characteristics
reduces to triviality (i.e., “almost rationality”); providing in this framework an analogue of Theo-
rem 1.1. The main interest for such a generalization is to present a complete picture, in the sense
that no algebraic function escapes this statement.

Theorem 2.2. Let p1 and p2 be distinct primes and let q1 and q2 be powers of p1 and p2,
respectively. Let (rα)α∈Q be sequence with well-ordered support and with values lying in a finite
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set A with cardinality at most min{q1, q2}. Let i1 and i2 be injections from A into Fq1 and Fq1 ,
respectively. Then the generalized power series

f (t) =
∑

α∈Q
i1(rα)tα ∈ Fq1

((
tQ))

and g(t) =
∑

α∈Q
i2(rα)tα ∈ Fq2

((
tQ))

are both algebraic (respectively over Fq1(t) and Fq2(t)) if and only if there exists a positive
integer n such that f (tn) and g(tn) are both rational functions.

Note that it would be unreasonable to expect in this context that, as in the conclusion of
Theorem 1.1, f and g are two rational functions. Indeed, the function a(t) = t1/2 is clearly
algebraic over Fp(t) for every prime p, without being itself rational. However, in this case we
have that a(t2) is a rational function.

3. Finite automata and Cobham’s theorem

In this section, we recall the definition of an automatic sequence and the classical version of
Cobham’s theorem.

Let k ! 2 be an integer. An infinite sequence a = (an)n!0 is said to be k-automatic if an

is a finite-state function of the base-k representation of n. This means that there exists a finite
automaton starting with the k-ary expansion of n as input and producing the term an as output.
A nice reference on this topic is the book of Allouche and Shallit [1].

More precisely, k-automatic sequences can be defined as follows. Denote by Σk the set
{0,1, . . . , k − 1}. By definition, a k-automaton is a 6-tuple

A = (Q,Σk, δ, q0,∆, τ ),

where Q is a finite set of states, δ :Q ×Σk → Q is the transition function, q0 is the initial state,
∆ is the output alphabet and τ :Q → ∆ is the output function. For a state q in Q and for a
finite word W = w1w2 . . .wn on the alphabet Σk , we define recursively δ(q,W) by δ(q,W) =
δ(δ(q,w1w2 . . .wn−1),wn). Let n ! 0 be an integer and let wrwr−1 . . .w1w0 in (Σk)

r+1 be
the k-ary expansion of n; thus, n = ∑r

i=0 wik
i . We denote by Wn the word w0w1 . . .wr . Then,

a sequence a = (an)n!0 is said to be k-automatic if there exists a k-automaton A such that
an = τ (δ(q0,Wn)) for all n ! 0.

A classical example of a 2-automatic sequence is given by the binary Thue–Morse sequence
a = (an)n!0 = 0110100110010 . . . . This sequence is defined as follows: an is equal to 0 (respec-
tively to 1) if the sum of the digits in the binary expansion of n is even (respectively is odd). It is
easy to check that it can be generated by the 2-automaton

A =
(
{q0, q1}, {0,1}, δ, q0, {0,1}, τ

)
,

where

δ(q0,0) = δ(q1,1) = q0, δ(q0,1) = δ(q1,0) = q1,

and τ (q0) = 0, τ (q1) = 1.
We recall the classical version of Cobham’s theorem. Given a finite set ∆, a function

h : N → ∆ is said to be k-automatic if (h(n))n!0 is a k-automatic sequence.
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Theorem 3.1 (Cobham). Let k and # be multiplicatively independent positive integers and ∆ be a
finite set. A function h : N → ∆ is both k- and #-automatic if and only if it is eventually periodic.

4. Generalized power series

As mentioned above, Kedlaya gives a complete generalization of Christol’s theorem by ex-
tending it to algebraic elements in an algebraically closed overring of Fq(t). To describe his
result, we must first look at Hahn’s work [7] on generalized power series.

We recall that a subset S of a totally ordered group is said to be well ordered if every nonempty
subset of S has a minimal element or, equivalently, if there is no infinite decreasing sequence
within S. Given a commutative ring R and a totally ordered abelian group G we construct a
commutative ring, denoted by R((tG)), which is defined to be the collection of all elements of
the form

f (t) :=
∑

α∈G

rαtα

which satisfy:

• rα ∈ R for all α ∈ G;
• the support of f (t) is well ordered; that is, the subset {α | rα '= 0R} is a well-ordered set.

Addition and multiplication are defined via the rules

∑

α∈G

rαtα +
∑

α∈G

sαtα =
∑

α∈G

(rα + sα)tα

and
( ∑

α∈G

rαtα
)( ∑

α∈G

sαtα
)

=
∑

α∈G

∑

β∈G

(rβsα−β)tα.

We note that the fact that the support of valid series expansion is well ordered means that no
problems with possible infinite sums appearing in the expression for the coefficients in a product
of two generalized power series will occur. We call the ring R((tG)) the ring of generalized power
series over R with exponent in G. We recall that a group is divisible if for every g ∈ G and n ! 1,
there exists some h ∈ G such that hn = g.

For an algebraically closed field K and a divisible group G, the field K((tG)) is known to be
algebraically closed [8] (see also [9,12]). In what follows, we will only consider the particular
case of the divisible group Q and of a finite field Fq (q being a power of a prime p). We then
have the series of containments

Fq(t) ⊂ Fq((t)) ⊂ Fq

((
tQ))

.

Though Fq((tQ)) is not algebraically closed, it is sufficient for our purpose to consider such fields.
Indeed, taking

⋃
n!1 Fpn as an algebraic closure of Fp , it follows from the remark above that the

field (
⋃

n!1 Fpn)((tQ)) is algebraically closed.
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Kedlaya asks whether one can, as in the classical Christol’s theorem, give an automata-
theoretic characterization of the elements of Fq((tQ)) that are algebraic over Fq(t). In the next
section we describe Kedlaya’s later work in answering this question [10].

5. Kedlaya’s theorem

In this section, we describe the work of Kedlaya and his generalization of Christol’s theorem.
Let k > 1 be a positive integer. We set

Σ ′
k = {0,1, . . . , k − 1, •}

and we denote by L(k) the language on the alphabet Σ ′
k consisting of all words on Σ ′

k with
exactly one occurrence of the letter ‘•’ (the radix point) and whose first and last letters are not
equal to 0. This is a regular language [10, Lemma 2.3.3]. We let Sk denote the set of nonnegative
k-adic rationals, i.e.,

Sk =
{
a/kb

∣∣ a, b ∈ Z, a ! 0
}
.

We note that there is a bijection [ • ]k :L(k) → Sk given by

s1 · · · si−1•si+1 · · · sn ∈ L(k) *→
i−1∑

j=1

sj k
i−1−j +

n∑

j=i+1

sj k
i−j ,

where s1, . . . , si−1, si+1, . . . , sn ∈ {0,1, . . . , k − 1}. So, for example, we have [110•32]4 =
[20•875]10 = 167/8. We also note that the fact that we exclude strings whose initial and terminal
letters are 0 means that we have the awkward looking expression [ • ]k = 0.

Kedlaya works with a different definition of a k-automatic sequence than the usual one, fo-
cusing instead on maps from Sk into a finite set.

Definition 5.1. We say that a map h :Sk → ∆ is Kk-automatic if the support of h is well ordered
and there is a finite state machine which takes words on Σ ′

k as input such that for each W ∈ Lk ,
h([W ]k) is generated by the machine using the word W as input.

In the sequel, we will need a more general notion of automatic functions defined over the set
of rationals. For this purpose, we always implicitly consider sets ∆ containing a special element
called zero and denoted by 0 (of course, when ∆ is a subset of R or N, or if it denotes a finite field,
zero will preserve its usual meaning). Then, we will talk about functions h : Q → ∆ as being Kk-
automatic if their support is contained in Sk and the restriction of h to Sk is Kk-automatic (the
support of such a function being defined as the set S = {x ∈ Q | h(x) '= 0}).

Example 5.2. For W ∈ L(2), define

h
(
[W ]2

)
=

{
0 if there are an even number of 1’s in W,

1 otherwise.

Then h :S2 → {0,1} is K2-automatic.
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Fig. 1. A finite state machine with input alphabet {0,1, •} and output alphabet {0,1}.

Proof. Note the finite state machine in Fig. 1 has the property that the output of a word W is
just the number, reduced modulo 2, of ones in the expansion of W . !

Definition 5.3. Let k be a positive integer and let h : Q → ∆ be a function with well-ordered
support S. We say that h is k-quasi-automatic if there exist integers a and b with a > 0 such that:

• the set aS + b consists of nonnegative k-adic rationals;
• the map h((x − b)/a) is Kk-automatic.

We will find it convenient to talk about Kk-automatic and k-quasi-automatic subsets of Q.
We say that a set is Kk-automatic (respectively k-quasi-automatic) if its characteristic function is
Kk-automatic (respectively k-quasi-automatic).

We note that if f is k-quasi-automatic with support S, then the map f ((x − b)/a) will be
Kk-automatic whenever a > 0 and b are integers which satisfy aS + b ⊆ Sk .

Kedlaya’s main theorem is the following.

Theorem 5.4 (Kedlaya). Let p be a prime, let q be a power of p, and let f : Q → Fq . Then∑
α∈Q f (α)tα is algebraic over Fq(t) if and only if the function f : Q → Fq is p-quasi-

automatic.

6. Saguaro sets

In this section, motivated by the work of Kedlaya, we introduce the notion of a Saguaro set and
obtain a number-theoretic description of such sets. The behaviour of quasi-automatic functions
has two main components: the pre-radix point behaviour, which is much like ordinary automatic
sequences; and the post-radix point behaviour, which has restrictions. To describe the post-radix
point behaviour of a quasi-automatic function, we define Saguaro sets.

Definition 6.1. We say that a set S is k-Saguaro if S is the support of a Kk-automatic function
and S ⊆ [0,1].

Example 6.2. Let S be the set of all numbers of the form [•2a1b]3. Then S is 3-Saguaro.

Proof. Note that the automaton in Fig. 2 shows that S is K3-automatic. Observe that S is well
ordered since [•2a1b]3 < [•2c1d ]3 if and only if c > a or c = a and d > b. Thus given any subset
of S we can choose the least element in the subset simply by picking the element of the form
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Fig. 2. A finite state machine which produces a Saguaro set.

[•2a1b]3 with a minimal, and among all such elements with this minimal value of a, pick the one
with the minimum value of b. Hence S is well ordered and so it is 3-quasi-automatic. !

The motivation for the name Saguaro comes from graph theory. A connected, undirected graph
is called a cactus if each vertex in the graph lies on at most one minimal cycle. Using this as his
motivation, Kedlaya [10] defines a class of digraphs, which he calls Saguaro digraphs.

Definition 6.3. A rooted directed graph with vertex set V , edge set E, and distinguished vertex
v0 ∈ V is called a rooted Saguaro if each v ∈ V lies on at most one minimal cycle, and there is a
directed path from v0 to each vertex v ∈ V.

Example 6.4. Let G be the transition graph of the automaton in Fig. 2 and let v0 be the vertex
corresponding to state Q. Then G is a rooted Saguaro.

In fact, Kedlaya shows there is a strong connection between Saguaro digraphs and well-
ordered k-quasi-automatic sets. To do this, he introduces the idea of a proper k-labelling of a
Saguaro digraph.

Definition 6.5. Let G be a rooted Saguaro with edge set E and vertex set V . Then a proper
k-labelling of G is a map # :E → {0,1, . . . , k − 1} satisfying:

• if v,w,x ∈ V and vw,vx ∈ E, then #(vw) '= #(vx);
• if v,w,x ∈ V , and vw ∈ E lies on a minimal cycle and vx ∈ E does not, then #(vw) >

#(vx).

Theorem 6.6. (See Kedlaya [10, Theorem 7.1.6].) Let M be a minimal, well-formed deterministic
finite automaton with input alphabet Σ ′

k . Then M is well ordered if and only if for each relevant
post-radix state q , the subgraph Gq of the transition graph consisting of relevant states that can
be reached from q is a rooted Saguaro with a proper k-labelling and root q .
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Lemma 6.7. Let G be a Saguaro digraph with a proper k-labelling, and let v,w be two vertices
in G. Then the collection of labelled paths from v to w is a finite union of sets of the form

{
V0W

i1
1 V1W

i2
2 · · ·Wid

d Vd

∣∣ i1, . . . , id ! 0
}
, (1)

where Wi is a word corresponding to a labelled minimal cycle for 1 " i " d and Vj contains no
cycles for 0 " j " d .

Proof. Let C denote the (finite) set of minimal cycles in G. We create a digraph Ĝ whose vertices
are the elements of C, in which we declare that there is an edge between two cycles C1 and C2 if
there is a directed path in G from a vertex in C1 to a vertex in C2. We note that Ĝ is an acyclic
digraph since G is a Saguaro.

Observe that any labelled path in G from v to w can be written in the form

V0W
i1
1 V1W

i2
2 · · ·Wid

d Vd

for some d ! 0, where W1, . . . ,Wd are words corresponding to minimal cycles. Since Ĝ is
acyclic, and there are only finitely many acyclic paths connecting two cycles, we immediately
see that the collection of labelled paths from v to w is a finite union of sets of the form given in
item (1). !

Proposition 6.8. Let S be a k-Saguaro set. Then S is contained in a finite union of sets of the
form

{
d∑

i=0

αik
−mi

∣∣∣ m0, . . . ,md ∈ Z!0

}

,

where d is a nonnegative integer and α0, . . . ,αd are rational numbers with α0 > 0 and
α1, . . . ,αd < 0.

Proof. By Kedlaya’s theorem, there is a Saguaro digraph G with a proper k-labelling and ver-
tices v and w such that elements in S correspond to the labelled paths from v to w via the
correspondence W *→ [•W ]k .

By Lemma 6.7, it is sufficient to prove that a set of the form given in item (1) satisfies the
conclusion of the statement of the proposition.

Let x ∈ [0,1] be a real number with base k expansion of the form

•V0W
i1
1 V1W

i2
2 V2 · · ·Wid

d Vd .

For convenience, define W0 and Wd+1 to be empty words and define

ai := length(Wi) for 0 " i " d + 1,

bi := length(Vi) for 0 " i " d,

and

mj = length
(
V0W

i1
1 · · ·Vj−1W

ij
j

)
for 0 " j " d.
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Then

x =
[
•V0W

i1
1 V1W

i2
2 · · ·Wid

d Vd

]
k

=
d−1∑

j=0

k−mj
[
•VjW

ij+1
j+1

]
k
+ k−md [•Vd ]k

=
d−1∑

j=0

k−mj
(
[•Vj ]k + k−bj

[
•W

ij+1
j+1

]
k

)
+ k−md [•Vd ]k

=
d−1∑

j=0

k−mj

(
[•Vj ]k + k−bj [•Wj+1]k

(1 − k−aj+1ij+1)

(1 − k−aj+1)

)
+ k−md [•Vd ]k

=
d−1∑

j=0

k−mj
(
[•Vj ]k + k−bj

(
1 − k−aj+1

)−1[•Wj+1]k
)

−
d−1∑

j=0

k−mj −bj −aj+1ij+1
(
1 − kaj+1

)−1[•Wj+1]k + k−md [•Vd ]k

=
d−1∑

j=0

k−mj
(
[•Vj ]k + k−bj

(
1 − k−aj+1

)−1[•Wj+1]k
)

−
d−1∑

j=0

k−mj+1
(
1 − kaj+1

)−1[•Wj+1]k + k−md [•Vd ]k

=
d∑

j=0

k−mj
(
[•Vj ]k + k−bj

(
1 − k−aj+1

)−1[•Wj+1]k −
(
1 − kaj

)−1[•Wj ]k
)
.

Take

αi = [•Vj ]k + k−bj
(
1 − k−aj+1

)−1[•Wj+1]k −
(
1 − kaj

)−1[•Wj ]k

for 0 " i " d .
Then we see that every element in the set

{[
•V0W

i1
1 V1 · · ·Wid

d Vd

]
k

∣∣ i1, . . . , id ! 0
}

is of the form
∑d

i=0 αik
−mi for some nonnegative integers m0, . . . ,md . To finish the proof, note

that α0 = [•V0]k + k−b0(1 − k−a1)−1[W1]k > 0 and for 1 " j " d we have

αj =
(
[•Vj ]k + k−bj

(
1 − k−aj+1

)−1[•Wj+1]k −
(
1 − kaj

)−1[•Wj ]k
)

= [•VjWj+1Wj+1 · · ·]k − [•WjWj · · ·]k.
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Since the digraph G has a proper k-labelling, the first letter of Vj is smaller than the first letter
of Wj . Hence αj " 0 for 1 " j " d . Of course, it is no loss of generality to assume that αj < 0
for 1 " j " d , since zero terms can be ignored. This completes the proof. !

7. Cobham’s theorem and Saguaro sets

In this section we obtain an analogue of Cobham’s theorem for Saguaro sets. More specifi-
cally, we prove the following result.

Theorem 7.1. Let k and # be multiplicatively independent positive integers. If S is a set that is
both k-Saguaro and #-Saguaro, then S is finite.

To prove this result, we need to use the theory of S-unit equations [6, §1.5].

Lemma 7.2. Let d and e be two nonnegative integers and suppose that α0, . . . ,αd,β0, . . . ,βe are
rational numbers. Then there are only finitely many integer solutions (m0, . . . ,md,n0, . . . , ne) ∈
Zd+e+2 which satisfy the following three conditions:

(1)
∑

j αj k
mj = ∑

j βj#
nj .

(2)
∑

j∈I αj k
mj is nonzero for every nonempty subset I of {0,1, . . . , d}.

(3)
∑

j∈I βj#
nj is nonzero for every nonempty subset I of {0,1, . . . , e}.

Proof. Suppose this is not true. We well-order Z2 by declaring that (d, e) < (d ′, e′) if and only
if d < d ′ or d = d ′ and e < e′. Pick (d, e) ∈ Z2

!0 minimal with respect to the property that
there exist α0, . . . ,αd ,β0, . . . ,βe such that there exist infinitely many integer solutions satisfying
conditions (1)–(3).

Then the minimality of d and e and conditions (2) and (3) show that there are infinitely many
solutions (m0, . . . ,md,n0, . . . , ne) such that no non-trivial proper sub-sum of the expression

α0k
m0 + · · · + αdkmd − β0#

n0 − · · · − βe#
ne

is equal to zero.
Let A be the finitely generated multiplicative subgroup of Q× generated by α0, . . . ,αd ,

β0, . . . ,βe , and k, #, and −1. Then Everest et al. [6, Theorem 1.19] show that the equation

X1 + · · · + Xd+e+2 = 0

has only finitely many solutions (a1, . . . , ad+e+2) ∈ Ad+e+2 up to multiplication by A if
we assume that no proper sub-sum vanishes. Eq. (1) thus admits two distinct solutions,
(α0k

m0, . . . ,αdkmd ,−β0#
n0, . . . ,−βe#

ne ) and (α0k
m′

0, . . . ,αdkm′
d ,−β0#

n′
0 , . . . ,−βe#

n′
e ), that

differ by a multiple a ∈ A. Then, for 0 " i " d and 0 " j " e, we have

kmi−m′
i = #

nj −n′
j = a.

But k and # are multiplicatively independent, and hence the only way this can occur is if
mi − m′

i = 0 = nj − n′
j for 0 " i " d and 0 " j " e. This implies that our two solutions are

equal, and so we obtain a contradiction. This ends the proof. !
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Proof of Theorem 7.1. By Proposition 6.8 it is sufficient to show that the intersection of two
sets

T1 :=
{

d∑

i=0

αik
−mi

∣∣∣ m0, . . . ,md ∈ Z!0

}

and

T2 :=
{

e∑

i=0

βi#
−ni

∣∣∣ n0, . . . , ne ∈ Z!0

}

with α0,β0 > 0 and αi ,βj < 0 for 1 " i " d , 1 " j " e, can have at most finitely many elements
in [0,1].

Any point x lying in the set T1 ∩ T2 gives rise to an integer solution (m0, . . . ,md,n0, . . . , ne)

to the equation

d∑

j=0

αj k
mj =

e∑

j=0

βj#
nj .

If, in addition to this, x ∈ (0,1] then we have that

d∑

j=0

αj k
mj > 0.

Since α0k
m0 is the only positive term which appears in this sum, we see that

∑

j∈I

αj k
mj

is nonzero for every nonempty subset I of {0,1, . . . , d}. Similarly,

∑

j∈I

βj k
nj

is nonzero for every nonempty subset I of {0,1, . . . , e}. Hence conditions (1)–(3) in the statement
of Lemma 7.2 are satisfied. It follows that there are only finitely many x ∈ T1 ∩ T2 ∩ (0,1]. Of
course, possibly adding 0 into T1 ∩ T2 does not affect the fact that there are only finitely many
points in the intersection of T1 and T2 that are also in [0,1]. The result follows. !

Remark 7.3. If k and # are relatively prime, then the proof of Theorem 7.1 is trivial. The reason
for this is that if k and # are relatively prime, then Sk ∩ S# = Z!0 and so any set which is both k-
and #-Saguaro will consist of at most two points; namely 0 and 1.
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8. Proofs of Theorems 2.1 and 2.2

In this section we give a proof of our main results.
We first need a simple lemma.

Lemma 8.1. Let S be the support of a Kk-automatic function. Then the set

S1 :=
{
x ∈ [0,1]

∣∣ x + m ∈ S for some m ∈ Z
}

is a k-Saguaro set.

Proof. By assumption, there is some finite state machine which accepts words in Σ ′
k such that

for W ∈ L(k), [W ]k ∈ S if and only if the machine outputs 1 when W is the input. There are only
finitely many possible transitions that can occur when the radix point is entered and thus S1 is
easily seen to be a finite union of k-Saguaro sets. The fact that a finite union of k-Saguaro sets is
itself a k-Saguaro set can be obtained by mimicking the proof of assertion (b) in Theorem 5.6.3
of [1]. The latter result is that a finite union of k-automatic sets is itself a k-automatic set. !

We are now ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Since f is k-quasi-automatic and #-quasi-automatic, there exist integers
a1, a2, b1, b2 with a1, a2 > 0 such that f ((x − b1)/a1) has support in Sk and is Kk-automatic,
and such that f ((x − b2)/a2) has support in S# and is K#-automatic. Let a = a1a2 and let
b = |a1b2| + |a2b1|. Then f ((x − b)/a) has support in both Sk and S# and is both Kk- and
K#-automatic.

Let S denote the support of f (ax + b) and let S1 = {x ∈ [0,1] | x + m ∈ S for some m ∈ Z}.
By Lemma 8.1, S1 is both a k-Saguaro and a #-Saguaro and is thus a finite set by Theorem 7.1.
It follows that there is a positive integer n such that nS ⊆ N.

Replacing a by na and b by nb we may assume that the support of h(x) := f ((x − b)/a) is
the set of nonnegative integers; that is h(x) = 0 for x ∈ Q \ N. Notice that h|N is an ordinary k-
and #-automatic function and hence is eventually periodic in virtue of Cobham’s theorem. The
result follows. !

Proof of Theorem 2.2. We keep the notation as in Theorem 2.2. We first remark that, given
a positive integer n, the field Fq(t1/n) is an algebraic extension (of degree n) of the field of
rational functions Fq(t). Since f (tn) is a rational function (with respect to the indeterminate t) if
and only if f lies in Fq(t1/n), we obtain that such a function f is algebraic over Fq(t) (of degree
at most n). This proves the first part of the theorem.

Now, let us assume that f (t) and g(t) are both algebraic. Theorem 5.4 implies that the
function h1 : Q *→ Fq1 defined by h1(α) = i1(rα), is a p1-quasi-automatic function. Just as, the
function h2 : Q *→ Fq2 defined by h2(α) = i1(rα), is a p2-quasi-automatic function. Since i1 and
i2 are two injections, this straightforwardly implies that the function h : Q *→ A that maps α to
rα is both p1- and p2-quasi-automatic. By Theorem 2.1, there exist integers a and b with a > 0
such that

f (t) =
∑

α∈Q
i1(rα)tα =

∑

k!0

i1(r(k−b)/a)t
(k−b)/a =

(
t1/a

)−b
∑

k!0

ak

(
t1/a

)k
,
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where (ak)k!0 := (i1(r(k−b)/a))k!0. Moreover, Theorem 2.1 also implies under our assumptions
that the sequence (ak)k!0 is eventually periodic. Consequently, f (t) is a rational function in t1/a

and thus f (ta) lies in the field Fq1(t). The same reasoning applies to g(t). This completes the
proof. !
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