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On the complexity of algebraic numbers I.
Expansions in integer bases

By Boris Adamczewski and Yann Bugeaud

Abstract

Let b ≥ 2 be an integer. We prove that the b-ary expansion of every
irrational algebraic number cannot have low complexity. Furthermore, we es-
tablish that irrational morphic numbers are transcendental, for a wide class
of morphisms. In particular, irrational automatic numbers are transcendental.
Our main tool is a new, combinatorial transcendence criterion.

1. Introduction

Let b ≥ 2 be an integer. The b-ary expansion of every rational number
is eventually periodic, but what can be said about the b-ary expansion of an
irrational algebraic number? This question was addressed for the first time
by Émile Borel [11], who made the conjecture that such an expansion should
satisfy some of the same laws as do almost all real numbers. In particular, it
is expected that every irrational algebraic number is normal in base b. Recall
that a real number θ is called normal in base b if, for any positive integer n,
each one of the bn blocks of length n on the alphabet {0, 1, . . . , b − 1} occurs
in the b-ary expansion of θ with the same frequency 1/bn. This conjecture is
reputed to be out of reach: we even do not know whether the digit 7 occurs
infinitely often in the decimal expansion of

√
2. However, some (very) partial

results have been established.
As usual, we measure the complexity of an infinite word u = u1u2 . . .

defined on a finite alphabet by counting the number p(n) of distinct blocks of
length n occurring in the word u. In particular, the b-ary expansion of every
real number normal in base b satisfies p(n) = bn for any positive integer n. Us-
ing a clever reformulation of a theorem of Ridout [33], Ferenczi and Mauduit
[20] established the transcendence of the real numbers whose b-ary expansion
is a non eventually periodic sequence of minimal complexity, that is, which
satisfies p(n) = n + 1 for every n ≥ 1 (such a sequence is called a Sturmian
sequence, see the seminal papers by Morse and Hedlund [28], [29]). The com-
binatorial criterion given in [20] has been used subsequently to exhibit further



548 BORIS ADAMCZEWSKI AND YANN BUGEAUD

examples of transcendental numbers with low complexity [3], [6], [4], [34]. It
also implies that the complexity of the b-ary expansion of every irrational al-
gebraic number satisfies lim infn→∞(p(n) − n) = +∞. Although this is very
far away from what is expected, no better result is known.

In 1965, Hartmanis and Stearns [21] proposed an alternative approach
for the notion of complexity of real numbers, by emphasizing the quantitative
aspect of the notion of calculability introduced by Turing [42]. According to
them, a real number is said to be computable in time T (n) if there exists
a multitape Turing machine which gives the first n-th terms of its binary
expansion in (at most) T (n) operations. The ‘simpler’ real numbers in that
sense, that is, the numbers for which one can choose T (n) = O(n), are said to
be computable in real time. Rational numbers share clearly this property. The
problem of Hartmanis and Stearns, to which a negative answer is expected, is
the following: do there exist irrational algebraic numbers which are computable
in real time? In 1968, Cobham [14] suggested to restrict this problem to a
particular class of Turing machines, namely to the case of finite automata (see
Section 3 for a definition). After several attempts by Cobham [14] in 1968 and
by Loxton and van der Poorten [23] in 1982, Loxton and van der Poorten [24]
finally claimed to have completely solved the restricted problem in 1988. More
precisely, they asserted that the b-ary expansion of every irrational algebraic
number cannot be generated by a finite automaton. The proof proposed in
[24], which rests on a method introduced by Mahler [25], [26], [27], contains
unfortunately a rather serious gap, as explained by Becker [8] (see also [43]).
Furthermore, the combinatorial criterion established in [20] is too weak to
imply this statement, often referred to as the Cobham-Loxton-van der Poorten
conjecture.

In the present paper, we prove new results concerning both notions of com-
plexity. Our Theorem 1 provides a sharper lower estimate for the complexity
of the b-ary expansion of every irrational algebraic number. We are still far
away from proving that such an expansion is normal, but we considerably im-
prove upon the earlier known results. We further establish (Theorem 2) the
Cobham-Loxton-van der Poorten conjecture, namely that irrational automatic
numbers are transcendental. Our proof yields more general statements and
allows us to confirm that irrational morphic numbers are transcendental, for a
wide class of morphisms (Theorems 3 and 4).

We derive Theorems 1 to 4 from a refinement (Theorem 5) of the combi-
natorial criterion from [20], that we obtain as a consequence of the Schmidt
Subspace Theorem.

Throughout the present paper, we adopt the following convention. We
use small letters (a, u, etc.) to denote letters from some finite alphabet A. We
use capital letters (U , V , W , etc.) to denote finite words. We use bold small
letters (a, u, etc.) to denote infinite sequences of letters. We often identify
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the sequence a = (ak)k≥1 with the infinite word a1a2 . . . , also called a. This
should not cause any confusion.

Our paper is organized as follows. The main results are stated in Sec-
tion 2 and proved in Section 5. Some definitions from automata theory and
combinatorics on words are recalled in Section 3. Section 4 is devoted to the
new transcendence criterion and its proof. Finally, we show in Section 6 that
the Hensel expansion of every irrational algebraic p-adic number cannot have
a low complexity, and we conclude in Section 7 by miscellaneous remarks.

Some of the results of the present paper were announced in [2].

Acknowledgements. We would like to thank Guy Barat and Florian Luca
for their useful comments. The first author is also most grateful to Jean-Paul
Allouche and Valérie Berthé for their constant support.

2. Main results

As mentioned in the first part of the Introduction, we measure the com-
plexity of a real number written in some integral base b ≥ 2 by counting, for
any positive integer n, the number p(n) of distinct blocks of n digits (on the
alphabet {0, 1, . . . , b − 1}) occurring in its b-ary expansion. The function p is
commonly called the complexity function. It follows from results of Ferenczi
and Mauduit [20] (see also [4, Th. 3]) that the complexity function p of every
irrational algebraic number satisfies

(1) lim inf
n→∞

(p(n) − n) = +∞.

As far as we are aware, no better result is known, although it has been proved
[3], [6], [34] that some special real numbers with linear complexity are tran-
scendental.

Our first result is a considerable improvement of (1).

Theorem 1. Let b ≥ 2 be an integer. The complexity function of the
b-ary expansion of every irrational algebraic number satisfies

lim inf
n→∞

p(n)
n

= +∞.

It immediately follows from Theorem 1 that every irrational real number
with sub-linear complexity (i.e., such that p(n) = O(n)) is transcendental.
However, Theorem 1 is slightly sharper, as is illustrated by an example due to
Ferenczi [19]: he established the existence of a sequence on a finite alphabet
whose complexity function p satisfies

lim inf
n→∞

p(n)
n

= 2 and lim sup
n→∞

p(n)
nt

= +∞ for any t > 1.
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Most of the previous attempts towards a proof of the Cobham-Loxton-
van der Poorten conjecture have been made via the Mahler method [23],
[24], [8], [31]. We stress that Becker [8] established that, for any given non-
eventually periodic automatic sequence u = u1u2 . . . , the real number∑

k≥1 ukb
−k is transcendental, provided that the integer b is sufficiently large

(in terms of u). Since the complexity function p of any automatic sequence
satisfies p(n) = O(n) (see Cobham [15]), Theorem 1 confirms straightforwardly
this conjecture.

Theorem 2. Let b ≥ 2 be an integer. The b-ary expansion of any irra-
tional algebraic number cannot be generated by a finite automaton. In other
words, irrational automatic numbers are transcendental.

Although Theorem 2 is a direct consequence of Theorem 1, we give in
Section 5 a short proof of it, that rests on another result of Cobham [15].

Theorem 2 establishes a particular case of the following widely believed
conjecture (see e.g. [5]). The definitions of morphism, recurrent morphism,
and morphic number are recalled in Section 3.

Conjecture. Irrational morphic numbers are transcendental.

Our method allows us to confirm this conjecture for a wide class of mor-
phisms.

Theorem 3. Binary algebraic irrational numbers cannot be generated by
a morphism.

As observed by Allouche and Zamboni [6], it follows from [20] combined
with a result of Berstel and Séébold [9] that binary irrational numbers which
are fixed point of a primitive morphism or of a morphism of constant length
≥ 2 are transcendental. Our Theorem 3 is much more general.

Recently, by a totally different method, Bailey, Borwein, Crandall, and
Pomerance [7] established new, interesting results on the density of the digits
in the binary expansion of algebraic numbers.

For b-ary expansions with b ≥ 3, we obtain a similar result as in Theo-
rem 3, but an additional assumption is needed.

Theorem 4. Let b ≥ 3 be an integer. The b-ary expansion of an algebraic
irrational number cannot be generated by a recurrent morphism.

Unfortunately, we are unable to prove that ternary algebraic numbers
cannot be generated by a morphism. Consider for instance the fixed point

u = 01212212221222212222212222221222 . . .

of the morphism defined by 0 → 012, 1 → 12, 2 → 2, and set α =
∑
k≥1

uk3−k.

Our method does not apply to show the transcendence of α. Let us mention
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that this α is known to be transcendental: this is a consequence of deep tran-
scendence results proved in [10] and in [17], concerning the values of theta
series at algebraic points.

The proofs of Theorems 1 to 4 are given in Section 5. The key point
for them is a new transcendence criterion, derived from the Schmidt Subspace
Theorem, and stated in Section 4. Actually, we are able to deal also, under
some conditions, with non-integer bases (see Theorems 5 and 5A). Given a real
number β > 1, we can expand in base β every real number ξ in (0, 1) thanks to
the greedy algorithm: we then get the β-expansion of ξ, introduced by Rényi
[32]. Using Theorem 5, we easily see that the conclusions of Theorems 1 to 4
remain true with the expansion in base b replaced by the β-expansion when β

is a Pisot or a Salem number. Recall that a Pisot (resp. Salem) number is a
real algebraic integer > 1, whose complex conjugates lie inside the open unit
disc (resp. inside the closed unit disc, with at least one of them on the unit
circle). In particular, any integer b ≥ 2 is a Pisot number. For instance, we
get the following result.

Theorem 1A.Let β > 1 be a Pisot or a Salem number. The complexity
function of the β-expansion of every algebraic number in (0, 1) \Q(β) satisfies

lim inf
n→∞

p(n)
n

= +∞.

Likewise, we can also state Theorems 2A, 3A, and 4A accordingly: The-
orems 1 to 4 deal with algebraic irrational numbers, while Theorems 1A to
4A deal with algebraic numbers in (0, 1) which do not lie in the number field
generated by β.

Moreover, our method also allows us to prove that p-adic irrational num-
bers whose Hensel expansions have low complexity are transcendental; see
Section 6.

3. Finite automata and morphic sequences

In this section, we gather classical definitions from automata theory and
combinatorics on words.

Finite automata and automatic sequences. Let k be an integer with
k ≥ 2. We denote by Σk the set {0, 1, . . . , k − 1}. A k-automaton is defined
as a 6-tuple

A = (Q,Σk, δ, q0, ∆, τ) ,

where Q is a finite set of states, Σk is the input alphabet, δ : Q × Σk → Q

is the transition function, q0 is the initial state, ∆ is the output alphabet and
τ : Q → ∆ is the output function.
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For a state q in Q and for a finite word W = w1w2 . . . wn on the alphabet
Σk, we define recursively δ(q, W ) by δ(q, W ) = δ(δ(q, w1w2 . . . wn−1), wn). Let
n ≥ 0 be an integer and let wrwr−1 . . . w1w0 in (Σk)

r be the k-ary expansion

of n; thus, n =
r∑

i=0

wik
i. We denote by Wn the word w0w1 . . . wr. Then, a

sequence a = (an)n≥0 is said to be k-automatic if there exists a k-automaton
A such that an = τ(δ(q0, Wn)) for all n ≥ 0.

A classical example of a 2-automatic sequence is given by the binary Thue-
Morse sequence a = (an)n≥0 = 0110100110010 . . . This sequence is defined as
follows: an is equal to 0 (resp. to 1) if the sum of the digits in the binary
expansion of n is even (resp. is odd). It is easy to check that this sequence can
be generated by the 2-automaton

A =
(
{q0, q1}, {0, 1}, δ, q0, {0, 1}, τ

)
,

where
δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) = δ(q1, 0) = q1,

and τ(q0) = 0, τ(q1) = 1.

Morphisms. For a finite set A, we denote by A∗ the free monoid generated
by A. The empty word ε is the neutral element of A∗. Let A and B be two
finite sets. An application from A to B∗ can be uniquely extended to an
homomorphism between the free monoids A∗ and B∗. We call morphism from
A to B such an homomorphism.

Sequences generated by a morphism. A morphism φ from A into itself is
said to be prolongable if there exists a letter a such that φ(a) = aW , where
W is a non-empty word such that φk(W ) �= ε for every k ≥ 0. In that case,
the sequence of finite words (φk(a))k≥1 converges in AN (endowed with the
product topology of the discrete topology on each copy of A) to an infinite
word a. This infinite word is clearly a fixed point for φ and we say that a is
generated by the morphism φ. If, moreover, every letter occurring in a occurs
at least twice, then we say that a is generated by a recurrent morphism. If
the alphabet A has two letters, then we say that a is generated by a binary
morphism. More generally, an infinite sequence a in AN is said to be morphic
if there exist a sequence u generated by a morphism defined over an alphabet
B and a morphism from B to A such that a = φ(u).

For instance, the Fibonacci morphism σ defined from the alphabet {0, 1}
into itself by σ(0) = 01 and σ(1) = 0 is a binary, recurrent morphism which
generates the Fibonacci infinite word

a = lim
n→∞

σn(0) = 010010100100101001 . . .
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This infinite word is an example of a Sturmian sequence and its complexity
function satisfies thus p(n) = n + 1 for every positive integer n.

Automatic and morphic real numbers. Following the previous defini-
tions, we say that a real number α is automatic (respectively, generated by a
morphism, generated by a recurrent morphism, or morphic) if there exists an
integer b ≥ 2 such that the b-ary expansion of α is automatic (respectively,
generated by a morphism, generated by a recurrent morphism, or morphic).

A classical example of binary automatic number is given by∑
n≥1

1
22n

which is transcendental, as proved by Kempner [22].

4. A transcendence criterion for stammering sequences

First, we need to introduce some notation. Let A be a finite set. The
length of a word W on the alphabet A, that is, the number of letters composing
W , is denoted by |W |. For any positive integer 
, we write W � for the word
W . . . W (
 times repeated concatenation of the word W ). More generally, for
any positive real number x, we denote by W x the word W �x�W ′, where W ′ is
the prefix of W of length �(x − �x�)|W |	. Here, and in all what follows, �y�
and �y	 denote, respectively, the integer part and the upper integer part of the
real number y. Let a = (ak)k≥1 be a sequence of elements from A, that we
identify with the infinite word a1a2 . . . Let w > 1 be a real number. We say
that a satisfies Condition (∗)w if a is not eventually periodic and if there exist
two sequences of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (|Un|/|Vn|)n≥1 is bounded from above;

(iii) The sequence (|Vn|)n≥1 is increasing.

As suggested to us by Guy Barat, a sequence satisfying Condition (∗)w

for some w > 1 may be called a stammering sequence.

Theorem 5. Let β > 1 be a Pisot or a Salem number. Let a = (ak)k≥1

be a bounded sequence of rational integers. If there exists a real number w > 1
such that a satisfies Condition (∗)w, then the real number

α :=
+∞∑
k=1

ak

βk
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either belongs to Q(β), or is transcendental.

The proof of Theorem 5 rests on the Schmidt Subspace Theorem [39] (see
also [40]), and more precisely on a p-adic generalization due to Schlickewei [36],
[37] and Evertse [18]. The particular case when β is an integer ≥ 2 was proved
in [2]. Note that Adamczewski [1] and Corvaja and Zannier [16] proved that,
under a stronger assumption on the sequence (ak)k≥1, the number α defined
in the statement of Theorem 5 is transcendental. Note also that Troi and
Zannier [41] applied the Subspace Theorem on the same way as we do to prove
the transcendence of a particular real number.

Remarks. • Theorem 5 is considerably stronger than the criterion of
Ferenczi and Mauduit [20]: our assumption w > 1 replaces their assumption
w > 2. This type of condition is rather flexible, compared with the Mahler
method, for which a functional equation is needed. For instance, the conclusion
of Theorem 5 also holds if the sequence a is an unbounded sequence of integers
that does not increase too rapidly. Nevertheless, one should acknowledge that,
when it can be applied, the Mahler method gives the transcendence of the
infinite series

∑+∞
k=1 akβ

−k for every algebraic number β such that this series
converges.

• We emphasize that if a sequence u satisfies Condition (∗)w and if φ is
a non-erasing morphism (that is, if the image by φ of any letter has length at
least 1), then φ(u) satisfies Condition (∗)w, as well. This observation is used
in the proof of Theorem 2.

• If β is an algebraic number which is neither a Pisot, nor a Salem num-
ber, it is still possible to get a transcendence criterion using the approach
followed for proving Theorem 5. However, the assumption w > 1 should
then be replaced by a weaker one, involving the Mahler measure of β and
lim supn→∞ |Un|/|Vn|. Furthermore, the same approach shows that the full
strength of Theorem 5 holds when β is a Gaussian integer. More details will
be given in a subsequent work.

Before beginning the proof of Theorem 5, we quote a version of the
Schmidt Subspace Theorem, as formulated by Evertse [18].

We normalize absolute values and heights as follows. Let K be an algebraic
number field of degree d. Let M(K) denote the set of places on K. For x in
K and a place v in M(K), define the absolute value |x|v by

(i) |x|v = |σ(x)|1/d if v corresponds to the embedding σ : K ↪→ R;

(ii) |x|v = |σ(x)|2/d = |σ(x)|2/d if v corresponds to the pair of conjugate
complex embeddings σ, σ : K ↪→ C;

(iii) |x|v = (Np)−ordp(x)/d if v corresponds to the prime ideal p of OK.
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These absolute values satisfy the product formula∏
v∈M(K)

|x|v = 1 for x in K∗.

Let x = (x1, . . . , xn) be in Kn with x �= 0. For a place v in M(K), put

|x|v =
( n∑

i=1

|xi|2d
v

)1/(2d)

if v is real infinite;

|x|v =
( n∑

i=1

|xi|dv
)1/d

if v is complex infinite;

|x|v = max{|x1|v, . . . , |xn|v} if v is finite.

Now define the height of x by

H(x) = H(x1, . . . , xn) =
∏

v∈M(K)

|x|v.

We stress that H(x) depends only on x and not on the choice of the number
field K containing the coordinates of x; see e.g. [18].

We use the following formulation of the Subspace Theorem over number
fields. In the sequel, we assume that the algebraic closure of K is Q. We
choose for every place v in M(K) a continuation of | · |v to Q, that we denote
also by | · |v.

Theorem E. Let K be an algebraic number field. Let m ≥ 2 be an integer.
Let S be a finite set of places on K containing all infinite places. For each v

in S, let L1,v, . . . , Lm,v be linear forms with algebraic coefficients and with

rank {L1,v, . . . , Lm,v} = m.

Let ε be real with 0 < ε < 1. Then, the set of solutions x in Km to the
inequality ∏

v∈S

m∏
i=1

|Li,v(x)|v
|x|v

≤ H(x)−m−ε

lies in finitely many proper subspaces of Km.

For a proof of Theorem E, the reader is directed to [18], where a quantita-
tive version is established (in the sense that one bounds explicitly the number
of exceptional subspaces).

We now turn to the proof of Theorem 5. Keep the notation and the
assumptions of this theorem. Assume that the parameter w > 1 is fixed,
as well as the sequences (Un)n≥1 and (Vn)n≥1 occurring in the definition of
Condition (∗)w. Set also rn = |Un| and sn = |Vn| for any n ≥ 1. We aim to
prove that the real number

α :=
+∞∑
k=1

ak

βk
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either lies in Q(β) or is transcendental. The key fact is the observation that α

admits infinitely many good approximants in the number field Q(β) obtained
by truncating its expansion and completing it by periodicity. Precisely, for any
positive integer n, we define the sequence (b(n)

k )k≥1 by

b
(n)
h = ah for 1 ≤ h ≤ rn + sn,

b
(n)
rn+h+jsn

= arn+h for 1 ≤ h ≤ sn and j ≥ 0.

The sequence (b(n)
k )k≥1 is eventually periodic, with preperiod Un and with

period Vn. Set

αn =
+∞∑
k=1

b
(n)
k

βk
,

and observe that

(2) α − αn =
+∞∑

k=rn+	wsn
+1

ak − b
(n)
k

βk
·

Lemma 1. For any integer n, there exists an integer polynomial Pn(X)
of degree at most rn + sn − 1 such that

αn =
Pn(β)

βrn(βsn − 1)
·

Further, the coefficients of Pn(X) are bounded in absolute value by 2 maxk≥1 |ak|.

Proof. By definition of αn, we get

αn =
rn∑

k=1

ak

βk
+

+∞∑
k=rn+1

b
(n)
k

βk
=

rn∑
k=1

ak

βk
+

1
βrn

+∞∑
k=1

b
(n)
rn+k

βk

=
rn∑

k=1

ak

βk
+

1
βrn

sn∑
k=1

arn+k

βk

(+∞∑
j=0

1
βjsn

)
=

rn∑
k=1

ak

βk
+

sn∑
k=1

arn+k

βk+rn−sn(βsn − 1)
=

Pn(β)
βrn(βsn − 1)

,

where we have set

Pn(X) =
rn∑

k=1

ak Xrn−k(Xsn − 1) +
sn∑

k=1

arn+k Xsn−k.

The last assertion of the lemma is clear.

Set K = Q(β) and denote by d the degree of K. We assume that α is
algebraic, and we consider the following linear forms, in three variables and
with algebraic coefficients. For the place v corresponding to the embedding of



ON THE COMPLEXITY OF ALGEBRAIC NUMBERS I 557

K defined by β ↪→ β, set L1,v(x, y, z) = x, L2,v(x, y, z) = y, and L3,v(x, y, z) =
αx + αy + z. It follows from (2) and Lemma 1 that
(3)

|L3,v(βrn+sn ,−βrn ,−Pn(β))|v = |α(βrn(βsn − 1)) − Pn(β)|1/d � 1
β(w−1)sn/d

,

where we have chosen the continuation of | · |v to Q defined by |x|v = |x|1/d.
Here and throughout this Section, the constants implied by the Vinogradov
symbol � depend (at most) on α, β, and maxk≥1 |ak|, but are independent
of n.

Denote by S′
∞ the set of all other infinite places on K and by S0 the

set of all finite places on K dividing β. Observe that S0 is empty if β is an
algebraic unit. For any v in S0∪S′

∞, set L1,v(x, y, z) = x, L2,v(x, y, z) = y, and
L3,v(x, y, z) = z. Denote by S the union of S0 and the infinite places on K.
Clearly, for any v in S, the forms L1,v, L2,v and L3,v are linearly independent.

To simplify the exposition, set

xn = (βrn+sn ,−βrn ,−Pn(β)).

We wish to estimate the product

Π :=
∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

=
∏
v∈S

|βrn+sn |v |βrn |v
|L3,v(xn)|v

|xn|3v
from above. By the product formula and the definition of S, we immediately
get that

(4) Π =
∏
v∈S

|L3,v(xn)|v
|xn|3v

.

Since the polynomial Pn(X) has integer coefficients and since β is an algebraic
integer, we have |L3,v(xn)|v = |Pn(β)|v ≤ 1 for any place v in S0. Furthermore,
as the conjugates of β have moduli at most 1, we have for any infinite place v

in S′
∞

|L3,v(xn)|v � (rn + sn)dv/d,

where dv = 1 or 2 according as v is real infinite or complex infinite, respectively.
Together with (3) and (4), this gives

Π� (rn + sn)(d−1)/d β−(w−1)sn/d
∏
v∈S

|xn|−3
v

� (rn + sn)(d−1)/d β−(w−1)sn/d H(xn)−3,

since |xn|v = 1 if v does not belong to S.
Furthermore, it follows from Lemma 1 and from the fact that the moduli

of the complex conjugates of β are at most 1 that

H(xn) � (rn + sn)d β(rn+sn)/d.
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Consequently, we infer from Condition (∗)w that∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

� (rn + sn)dw H(xn)−(w−1)sn/(rn+sn) H(xn)−3

�H(xn)−3−ε,

for some positive real number ε.
It then follows from Theorem E that the points (βrn+sn ,−βrn ,−Pn(β))

lie in a finite number of proper subspaces of K3. Thus, there exist a non-zero
triple (x0, y0, z0) in K3 and infinitely many integers n such that

x0 − y0
βrn

βrn+sn
− z0

Pn(β)
βrn+sn

= 0.

Taking the limit along this subsequence of integers and noting that (sn)n≥1

tends to infinity, we get that x0 = z0α. Thus, α belongs to K = Q(β), as
asserted.

Let us restrict our attention to the case when β is a Pisot number. Dealing
with the β-expansions of real numbers (instead of arbitrary power series in β)
allows us to improve the conclusion of Theorem 5.

Theorem 5A. Let β > 1 be a Pisot number. Let α be in (0, 1), and
consider its β-expansion

α :=
+∞∑
k=1

ak

βk
.

If (ak)k≥1 satisfies Condition (∗)w for some real number w > 1, then α is
transcendental.

Proof. By a result of K. Schmidt [38], we know that the β-expansion of
every element of Q(β) ∩ (0, 1) is eventually periodic. Thus, it does not satisfy
Condition (∗)w. We conclude by applying Theorem 5.

Note that for a Salem number β, it is an important open problem to decide
whether every element of Q(β)∩ (0, 1) has an eventually periodic β-expansion.

5. Proofs of Theorems 1 to 4

We begin by a short proof of Theorem 2.

Proof of Theorem 2. Let a = (ak)k≥1 be a non-eventually periodic
automatic sequence defined on a finite alphabet A. Recall that a morphism
is called uniform if the images of each letter have the same length. Following
Cobham [15], there exist a morphism φ from an alphabet B = {1, 2, . . . , r}
to the alphabet A and an uniform morphism σ from B into itself such that
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a = φ(u), where u is a fixed point for σ. Observe first that the sequence
a satisfies Condition (∗)w if this is the case for u. Further, by the Dirichlet
Schubfachprinzip, the prefix of length r +1 of u can be written under the form
W1uW2uW3, where u is a letter and W1, W2, W3 are (possibly empty) finite
words. We check that the assumptions of Theorem 1 are satisfied by u with
the sequences (Un)n≥1 and (Vn)n≥1 defined for any n ≥ 1 by Un = σn(W1) and
Vn = σn(uW2). Indeed, since σ is a morphism of constant length, we get, on
the one hand, that

|Un|
|Vn|

≤ |W1|
1 + |W2|

≤ r − 1

and, on the other hand, that σn(u) is a prefix of Vn of length at least 1/r

times the length of Vn. It follows that Condition (∗)1+1/r is satisfied by the
sequence u, and thus by our sequence a (here, we use the observation we made
in Section 4). Let b ≥ 2 be an integer. By applying Theorem 5 with β = b, we
conclude that the automatic number

∑+∞
k=1 akb

−k is transcendental.

Proof of Theorem 1. Let α be an irrational number. Without any loss of
generality, we assume that α is in (0, 1) and we denote by 0.u1u2 . . . uk . . . its
b-ary expansion. The sequence (uk)k≥1 takes its values in {0, 1, . . . , b− 1} and
is not eventually periodic. We assume that there exists an integer κ ≥ 2 such
that the complexity function p of (uk)k≥1 satisfies

p(n) ≤ κn for infinitely many integers n ≥ 1,

and we shall derive that Condition (∗)w is then fulfilled by the sequence (uk)k≥1

for a suitable w > 1. By Theorem 5, this will imply that α is transcendental.
Let nk be an integer with p(nk) ≤ κnk. Denote by U(
) the prefix of

u := u1u2 . . . of length 
. By the Dirichlet Schubfachprinzip, there exists
(at least) one word Mk of length nk which has (at least) two occurrences in
U((κ + 1)nk). Thus, there are (possibly empty) words Ak, Bk, Ck and Dk,
such that

U((κ + 1)nk) = AkMkCkDk = AkBkMkDk and |Bk| ≥ 1.

We observe that |Ak| ≤ κnk. We have to distinguish three cases:

(i) |Bk| > |Mk|;

(ii) �|Mk|/3	 ≤ |Bk| ≤ |Mk|;

(iii) 1 ≤ |Bk| < �|Mk|/3	.

(i). Under this assumption, there exists a word Ek such that

U((κ + 1)nk) = AkMkEkMkDk.
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Since |Ek| ≤ (κ − 1)|Mk|, the word Ak(MkEk)s with s = 1 + 1/κ is a prefix
of u. Furthermore, we observe that

|MkEk| ≥ |Mk| ≥
|Ak|
κ

.

(ii). Under this assumption, there exist two words Ek and Fk such that

U((κ + 1)nk) = AkM
1/3
k EkM

1/3
k EkFk.

Thus, the word Ak(M
1/3
k Ek)2 is a prefix of u. Furthermore, we observe that

|M1/3
k Ek| ≥

|Mk|
3

≥ |Ak|
3κ

.

(iii). In the present case, Bk is clearly a prefix of Mk, and we infer from
BkMk = MkCk that Bt

k is a prefix of Mk, where t is the integer part of
|Mk|/|Bk|. Observe that t ≥ 3. Setting s = �t/2�, we see that Ak(Bs

k)
2 is a

prefix of u and

|Bs
k| ≥

|Mk|
4

≥ |Ak|
4κ

.

In each of the three cases above, we have proved that there are finite words
Uk, Vk such that UkV

1+1/κ
k is a prefix of u and:

• |Uk| ≤ κnk;

• |Vk| ≥ nk/4;

• w ≥ 1 + 1/κ > 1.

Consequently, the sequence (|Uk|/|Vk|)k≥1 is bounded from above by 4κ. Fur-
thermore, it follows from the lower bound |Vk| ≥ nk/4 that we may assume that
the sequence (|Vk|)k≥1 is strictly increasing. This implies that the sequence u
satisfies Condition (∗)1+1/κ. By applying Theorem 5 with β = b, we conclude
that α is transcendental.

Proof of Theorem 3. Let a be a sequence generated by a morphism φ

defined on a finite alphabet A. For any positive integer n, there exists a letter
an satisfying

|φn(an)| = max{|φn(j)| : j ∈ A}.

This implies the existence of a letter a in A and of a strictly increasing sequence
of positive integers (nk)k≥1 such that for every k ≥ 1 we have

|φnk(a)| = max{|φnk(j)| : j ∈ A}.

Assume from now on that A has two elements. Since the sequence a is not
eventually periodic there exist at least two occurrences in a of the two elements
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of A. In particular, there exist at least two occurrences of the letter a in
the sequence a. We can thus find two (possibly empty) finite words W1 and
W2 such that W1aW2a is a prefix of a. We check that the assumptions of
Theorem 5 are satisfied by a with the sequences (Uk)k≥1 and (Vk)k≥1 defined
by Uk = φnk(W1) and Vk = φnk(aW2) for any k ≥ 1. Indeed, by definition of
a, we have

|Uk|
|Vk|

≤ |W1|

and φnk(a) is a prefix of Vk of length at least 1/(|W2| + 1) times the length
of Vk. It follows that Condition (∗)w is satisfied by the sequence a with w =
1 + 1/(|W2| + 1). We conclude by applying Theorem 5.

Proof of Theorem 4. Let a be a sequence generated by a recurrent mor-
phism φ defined on an alphabet A. As we have already noticed in the beginning
of the proof of Theorem 3, there exist a letter a and a strictly increasing se-
quence of positive integers (nk)k≥1 such that for every k ≥ 1 we have

|φnk(a)| = max{|φnk(j)| : j ∈ A}.
Since by assumption the sequence a is recurrent there exist at least two oc-
currences of the letter a. We then apply the same trick as in the proof of
Theorem 3, and we again conclude by applying Theorem 5.

6. Transcendence of p-adic numbers

Let p be a prime number. As usual, we denote by Qp the field of p-adic
numbers. We call algebraic (resp. transcendental) any element of Qp which
is algebraic (resp. transcendental) over Q. A suitable version of the Schmidt
Subspace Theorem, due to Schlickewei [35], can be applied to derive a lower
bound for the complexity of the Hensel expansion of every irrational algebraic
number in Qp.

Theorem 1B. Let α be an irrational algebraic number in Qp and denote
by

α =
+∞∑

k=−m

akp
k

its Hensel expansion. Then, the complexity function p of the sequence (ak)k≥−m

satisfies

lim inf
n→∞

p(n)
n

= +∞.

Likewise (see Section 2), we can also state Theorems 2B, 3B and 4B.
Theorem 1B follows from Theorem 6 below, along with the arguments used in
the proof of Theorem 1.
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The method of proof of Theorem 5 applies to provide us with a new
transcendence criterion for p-adic numbers.

Theorem 6. Let p be a prime number and let (ak)k≥−m be a sequence
taking its values in {0, 1, . . . , p − 1}. Let w > 1 be a real number. If the
sequence (ak)k≥1 satisfies Condition (∗)w, then the p-adic number

α :=
+∞∑

k=−m

akp
k

is transcendental.

We briefly outline the proof of Theorem 6. Let p and (ak)k≥−m be as
in the statement of this theorem. There exist a parameter w > 1 and two
sequences (Un)n≥1 and (Vn)n≥1 of finite words as in the definition of Condition
(∗)w. For any n ≥ 1, set rn = |Un| and sn = |Vn|. To establish Theorem 6, it
is enough to prove that the p-adic number

α′ :=
+∞∑
k=1

akp
k

is transcendental. As in the proof of Theorem 5, the key fact is the observa-
tion that α′ admits infinitely many good rational approximants obtained by
truncating its Hensel expansion and completing by periodicity. Precisely, for
any positive integer n, we define the sequence (b(n)

k )k≥1 exactly as in Section 4,
and we set

αn =
+∞∑
k=1

b
(n)
k pk.

An easy calculation shows that we have

|α′ − αn|p ≤ p−rn−wsn , αn =
pn

psn − 1
,

where

pn =
( rn∑

k=1

ak pk

)
(psn − 1) −

sn∑
k=1

arn+k prn+k.

Assuming that α′ is an algebraic number in Qp, we apply Theorem 4.1
of Schlickewei [35] with the linear forms L1,p(x, y, z) = x, L2,p(x, y, z) =
y, L3,p(x, y, z) = α′x + α′y + z, L1,∞(x, y, z) = x, L2,∞(x, y, z) = y, and
L3,∞(x, y, z) = z. Setting xn := (psn ,−1,−pn), we get |L1,p(xn)|p = p−sn and
|L3,p(xn)|p ≤ p−rn−wsn . We then follow the same lines as in the proof of Theo-
rem 5, and we end up in a contradiction. This proves that α′ is transcendental.
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7. Concluding remarks

It is of interest to compare our results with a celebrated theorem of Chris-
tol, Kamae, Mendès France, and Rauzy [13] (see also [12]) concerning algebraic
elements of the field Fp((X)). Their result asserts that, for any given prime
number p, the sequence of integers u = (uk)k≥1 is p-automatic if and only if the
formal power series

∑
k≥1

ukX
k is algebraic over the field of rational functions

Fp(X). Thanks to Theorem 2, we thus easily derive the following statement.

Theorem 7. Let b ≥ 2 be an integer and p be a prime number. The
formal power series

∑
k≥1

ukX
k and the real number

∑
k≥1

uk

bk
are both algebraic

(over Fp(X) and over Q, respectively) if and only if they are rational.

Note that Theorem 2B (see Section 6) naturally gives rise to a similar
result where the real number

∑
k≥1

uk

bk
is replaced by the q-adic number

∑
k≥1

ukq
k,

for an arbitrary prime number q. In particular, this holds true for q = p.
In 1991, Morton and Mourant [30] proved the following result: If k ≥ 2

is an integer, P is a non-zero pattern of digits in base k, and if ek,P,b(n) ∈
{0, 1, . . . , b− 1} counts the number of occurrences modulo b of P in the k-ary

expansion of n, then the real number α(k, P, b) =
+∞∑
n=0

ek,P,b(n)
bn

is transcenden-

tal except when k = 3, P = 1 and b = 2. Moreover, we have α(3, 1, 2) = 2/3
in this particular case.

The proof given by Morton and Mourant is based on Theorem 2 and their
paper refers to the work of Loxton and van der Poorten [24]. The present work
validates their result.

It is interesting to remark that the simplest case k = 2, P = 1 and b = 2
corresponds to the well-known Thue-Morse number, whose transcendence has
been proved by Mahler [25]. The theorem of Morton and Mourant can thus be
seen as a full generalisation of the Mahler result.
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