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Abstract

Several results on continued fractions expansions are on indirect consequences of the mirror formula. We survey occurrences
of this formula for Sturmian real numbers, for (simultaneous) Diophantine approximation and for formal power series.
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1. Introduction

In the present survey, a conference version of which appeared as [1], we will focus on reversals of patterns and
on palindromic patterns that occur in continued fraction expansions for real numbers and for formal Laurent series
with coefficients in a finite field. Our main motivation comes from the remark that various very recent, and apparently
unrelated, works make use of an elementary formula for continued fractions, referred to as the mirror formula all along
this paper (see for example [3,4,6,5,7,15,19,21,22,44,75,74] for related papers published since 2005). This leads us to
review some of these results, together with older ones, and to underline the central rôle played by this formula.

The first part of the paper (Sections 4 and 5) deals with combinatorics on words. We investigate in particular some
questions related to the critical exponent, to the recurrence quotient, and to the palindrome density of sequences (also
called infinite words). Most of the results involve Sturmian sequences: one characterization among others of these
infinite words is that they are binary codings of non-periodic trajectories on a square billiard. The continued fraction
expansion of the slope of these trajectories unveils the combinatorial properties of the associated Sturmian words,
which explains that the mirror formula naturally appears in this framework.

The following sections are essentially devoted to Diophantine approximation, which can be defined as the art
of answering the question: how good an approximation of a given real number by rationals p/q as a function
of q can be? Continued fractions and Diophantine approximation are of course intimately connected, since the
best rational approximations to a real number are produced by truncating its continued fraction expansion. It is
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however much less known, and quite new, that continued fractions can be used in order to study some questions
of simultaneous approximation (i.e., the more general problem of approximating several real numbers by rationals
having the same denominators). Mainly due to the lack of a suitable multi-dimensional continued fraction algorithm,
such problems are generally considered as rather difficult. We will survey some old Diophantine questions together
with recent developments where continued fractions, thanks to the mirror formula, are used to provide simultaneous
rational approximations for some real numbers. In this regard, Section 6 is an exception since it deals with rational
approximation of (only) one real number, defined by its binary expansion. However, Section 6 is still concerned
by both Diophantine approximation and the mirror formula. Section 7 addresses simultaneous approximation for a
number and its square. Section 8 deals with the Littlewood conjecture. Section 9 studies the transcendence of some
families of continued fractions.

2. Notations

We will use the classical notations for finite or infinite continued fractions

p
q

= a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

= [a0, a1, . . . , an]

resp.

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an +
1
. . .

= [a0, a1, . . . , an, . . .]

where p/q is a positive rational number, resp. α is a positive irrational real number, n is a nonnegative integer,
a0 is a nonnegative integer, and the ai ’s are positive integers for i ≥ 1. If 0 ≤ k ≤ n, we denote by pk/qk the
k-th convergent to p/q (resp. to α), i.e., pk/qk := [a0, a1, . . . , ak]. In particular, for the rational p/q we have
p/q = pn/qn = [a0, a1, . . . , an]. The sequence of denominators of the convergents to p/q (resp. to α) satisfies,
for n such that 1 ≤ k ≤ n, the relation qk = akqk−1 + qk−2, with the convention that q−1 := 0 and q0 := 1.

We will also have continued fractions for formal Laurent series over a field K : in this case, p/q is a rational
function (p and q are two polynomials in K [X ]), resp. α is a Laurent series

∑
j≥t r j X− j , n is a nonnegative integer,

and the ai ’s are nonzero polynomials in K [X ].

3. A fundamental lemma

A pleasant and useful formalism for continued fractions is the matrix formalism that we borrow from papers of van
der Poorten (see, for example, [69,73]), who says that it goes back at least to [45]: we have that

∀n ≥ 0, [a0, a1, . . . , an] =
pn

qn
, with gcd(pn, qn) = 1

if and only if(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
an 1
1 0

)
=

(
pn pn−1
qn qn−1

)
.

Taking the transposition of this equality easily yields the following lemma:
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Lemma 1 (Mirror Formula). Let a0, a1, . . . be positive integers. Let pn
qn

:= [a0, a1, . . . , an]. Then

qn

qn−1
= an +

1

an−1 +
1

. . . +
1
a1

= [an, an−1, . . . , a1]· (1)

We will call equality (1) the mirror formula throughout this paper. A useful variation on the mirror formula is
known as the folding lemma (see [69,73] and Section 10). Another variation of the mirror formula is concerned with
the Lévy constant of a continued fraction (see for example [14,39,78] for recent related works). Since this subject
would deserve a whole survey, we restrict ourselves to point out the following relation:

1
n

log qn =
1
n

∑
1≤k≤n

log
qk

qk−1
=

1
n

∑
1≤k≤n

log [ak, ak−1, . . . , a1]

(recall that the Lévy constant of a continued fraction with convergents pn/qn is the limit, if it exists, of q1/n
n , when n

tends to infinity).

4. Sturmian sequences and continued fractions

4.1. Generalities

Sturmian sequences can be defined in several ways. We choose the arithmetic definition. (For a general overview
on Sturmian sequences, see for example [18].)

Definition 2. A sequence (un)n≥0 is called Sturmian if there exist a positive irrational number α (called the slope of
the Sturmian sequence) and a real number β ∈ [0, 1) such that

• either ∀n ≥ 0, un = bα(n + 1) + βc − bαn + βc − bαc;
• or ∀n ≥ 0, un = dα(n + 1) + βe − dαn + βe − dαe.

A sequence (un)n≥0 is called Sturmian characteristic (or, simply, characteristic) if it is of the form above with
β = 0.

Remark 3. Note that the definition shows that a Sturmian sequence takes its values in {0, 1}.

The following proposition shows a link between Sturmian sequences and continued fractions (see, for example,
[11, Chapter 9] or [56, Chapter 2]). If W is a finite word and a a positive integer, we denote as usual by W a the
concatenation of a copies of the word W .

Proposition 4. Let α = [0, a1, a2, . . .] be an irrational number in [0, 1). Define the sequence of words (s j ) j≥−1 by
s−1 := 1, s0 := 0, s1 := sa1−1

0 s−1, and s j := s
a j
j−1s j−2 for j ≥ 2. Then the sequence (s j ) j≥0 tends to an infinite

word which is equal to the characteristic Sturmian word of slope α.

Definition 5. The Fibonacci sequence (or Fibonacci word) on the alphabet {0, 1} is the characteristic Sturmian
sequence defined as lim j→+∞ s j where the words s j are defined by s−1 := 1, s0 := 0, and, for all j ≥ 1,
s j := s j−1s j−2. Hence this sequence begins as follows

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 . . . .

4.2. Repetitions in Sturmian sequences

Several authors have studied repetitions, i.e., factors (or sub-blocks) of the form W a occurring in a Sturmian
sequence (see in particular the papers [63,64,16,24,95,23,33,19]). It happens that the mirror formula can be used in
these studies. We give, as an example of repetitions in Sturmian words and the mirror formula, a (rephrasing of a)
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theorem due to Vandeth [95, Theorem 16]. First recall that the length of a (finite) word W is denoted by |W |,
and define fractional powers of finite words as follows: if x is a positive real number and W a finite word, then
W x

:= W bxcU , where U is the prefix of W of length d(x −bxc)|W |e. This notion goes back to Dejean [41] where she
calls sesquipuissances what is now called fractional powers. We also define the critical exponent of an infinite word
as the supremum of all powers occurring in this infinite word. This notion goes back to Mignosi and Pirillo [64].

Theorem 6 (Vandeth). Let α be the real number whose (eventually periodic) continued fraction expansion has the
form

α = [0, b0, b1, b2, . . . , bm, b1, b2, . . . , bm . . .],

where the bi ’s are positive integers and bm ≥ b0 (in particular α is quadratic). Then the critical exponent of the
characteristic Sturmian sequence Sα of slope α is

max
1≤t≤m

[2 + bt , bt−1, . . . , b1, bm, . . . , b1, bm, . . . , b1, . . .]

Remark 7. – Note that the characteristic Sturmian sequences in Theorem 6 above are those that are fixed point
of morphisms [31]. Vandeth deduces from his theorem the integer critical exponent of any characteristic Sturmian
sequence Sα (even those that are not fixed points of morphisms) provided that α has bounded partial quotients (see [95,
Theorem 17]). Also note that Carpi and de Luca give in [24] an expression for the critical exponent of any Sturmian
sequence whose slope has ultimately periodic continued fraction expansion, i.e., is a quadratic surd.
– A fine study of the critical exponent (or index) and of the initial critical exponent of Sturmian sequences can be
found in [19]. See also the second part of Remark 11.

4.3. Recurrence function, the Cassaigne spectrum

The recurrence function of an infinite sequence describes the size of maximal gaps between two occurrences of a
same factor (sub-block) in the sequence. More formally

Definition 8. The recurrence function Ru(n) of a sequence u = (uk)k≥0 is defined by: R(n) is the smallest integer
m ≤ +∞ such that each factor of length m in the sequence u contains all factors of length n of u.

If Ru(n) < +∞ for all n, the sequence is said to be uniformly recurrent. The recurrence quotient ρ = ρu of the
sequence u is defined by ρu := lim supn→+∞

Ru(n)
n .

Remark 9. It is clear that ρ = +∞ if the sequence is not uniformly recurrent, and that ρ = 1 for a periodic sequence.
If the sequence is not periodic it can be proven that 2 ≤ ρ ≤ +∞.

The following result, due to Cassaigne [28], makes use of the mirror formula:

Theorem 10 (Cassaigne). Let u be a Sturmian sequence of slope α. Let α = [a0, a1, a2, . . .] be the continued fraction
expansion of α. Then

ρu = 2 + lim sup
i→+∞

[ai , ai−1, . . . , a1].

Remark 11. – Morse and Hedlund noted in [66] that ρu = +∞ for almost all Sturmian sequences. The set
{ρu, u Sturmian} is studied in more details in [28]. We will hence call it the Cassaigne spectrum. This set can be
compared with, but is different from, the Lagrange and the Markoff spectra (see [32], for example).
– As noted in [19] (where the authors say this is a consequence of known results, for example [95]), the limsup
of powers of longer and longer words occurring in a Sturmian sequence of slope α = [a0, a1, . . .] is equal to
2+ lim sup[an, an−1, . . . , a1]. An immediate nice consequence is that the recurrence quotient of a Sturmian sequence
and the limsup of powers of longer and longer words occurring in this sequence are equal. As underlined by a referee
this statement is an easy consequence of Propositions 8 and 11 of [24]. This leads to asking for which sequences this
property does hold.
– A conjecture due to Rauzy asserts that the recurrence quotient of any nonperiodic infinite word is larger than 5+

√
5

2

and that this value is optimal ([81] where the constant is misprinted as 3+
√

5
2 ). The optimality of the constant comes
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from the fact that it is the recurrence quotient of the Fibonacci sequence, fixed point of the morphism 0 → 01, 1 → 0.
For related or similar questions, see [9,26,27].

5. Palindrome density

In this section, we consider palindromic prefixes of infinite words. Let us recall that a finite word W = w1w2 · · · wn
is a palindrome if it is invariant under mirror symmetry, i.e., if it is equal to its reversal: W = W , where
W := anan−1 · · · a1. Let w = w1w2 · · · wn · · · be an infinite word beginning in arbitrarily long palindromes. For such
a word, let us denote by (ni )i≥1 the increasing sequence of all lengths of palindromic prefixes of w. By assumption,
this sequence is thus infinite. In [44], Fischler defines the palindrome density of w, denoted dp(w), by

dp(w) :=

(
lim sup

i→∞

ni+1

ni

)−1

(where dp(w) := 0 if the word w begins in only finitely many palindromes). Clearly 0 ≤ dp(w) ≤ 1. Furthermore,
if w = Z Z Z · · · is a periodic word, then dp(w) = 1 if there exist two (possibly empty) palindromes U and V such
that Z = U V , and dp(w) = 0 otherwise. Thus the palindrome density of periodic infinite words is either maximal or
minimal. This naturally leads to the following question: what is the maximal palindrome density that can be attained
by an non-periodic infinite word? This problem is solved in [44].

Theorem 12 (Fischler). Let w be an infinite non-periodic word. Then,

dp(w) ≤
1
γ

,

where γ :=
1+

√
5

2 is the golden ratio.

The bound obtained in Theorem 12 is optimal and reached in particular for the Fibonacci word. More generally, it
is possible to compute dp(w) when w is a characteristic Sturmian word. Indeed, if α = [0, a1, a2, . . .] denotes a real
number and if wα is the associated characteristic Sturmian sequence, then

dp(wα) =
σ + 1

2σ + 1
,

where σ := lim supn→∞[an, an−1, . . . , a1]. In other words, the computation of the palindrome density of a
characteristic Sturmian sequence involves the mirror formula, via the convergents to its slope.

Remark 13. – As suggested by a referee of the conference version of this paper, it is interesting to observe that the
characteristic Sturmian words whose continued fraction expansion of the slope begins in arbitrarily long palindromes
are exactly the standard infinite harmonic words introduced in [25].
– It might be of interest to note that the Fibonacci sequence again (see third part of Remark 11) enters the picture as
an “extremal word”.

We now introduce a modification of the Cassaigne spectrum (see Remark 11). Let S ′
c be defined by

S ′
c :=

{
dp(wα), α ∈ (0, 1) \ Q

}
=

{
σ + 1

2σ + 1
, σ ∈ Sc

}
.

We also denote by Sp the set of the real numbers that can be written dp(w) for some infinite word w. The following
interesting result is proved in [44]: if a non-periodic word w has a palindrome density that is “too large”, then there
exists an irrational number α such that dp(w) = dp(wα). This can be formalized as follows:

Theorem 14 (Fischler). We have

Sp ∩

[
1

√
3
, 1

)
= S ′

c ∩

[
1

√
3
, 1

)
.
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Remark 15. A similar question arises in relation with Rauzy’s conjecture recalled in Remark 11: is it true that any
recurrence quotient sufficiently close to 5+

√
5

2 is actually the recurrence quotient of some Sturmian sequence, i.e.,
belongs to the Cassaigne spectrum?

We end this section by mentioning that the motivation for studying the palindrome density of infinite words comes
from a problem of uniform simultaneous rational approximation, see Section 7.

6. Exact irrationality measure

The irrationality measure of an irrational real number α, denoted by µ(α), is defined as the supremum of the
positive real numbers τ for which the inequality∣∣∣∣α −

p
q

∣∣∣∣ <
1

qτ

has infinitely many solutions (p, q) ∈ Z2. Thus, µ(α) measures the quality of the best rational approximations to α.
The theory of continued fractions ensures that µ(α) ≥ 2, for any irrational number α. Algebraic irrational numbers
have irrationality measure 2, as follows from Roth’s theorem [82]. This is also the case for almost all real numbers
with respect to the Lebesgue measure (Khintchine [47], see also [49]). Let us also mention that Liouville numbers are
defined as the real numbers having an infinite irrationality measure.

It is in general a challenging problem to compute or even to bound the irrationality measure of a given real number.
In this section we consider a particular class of irrational numbers having the spectacular property that both their
b-adic expansion and their continued fraction expansion can be explicitly determined. We will deduce from this last
representation the exact value of their irrationality measure.

With an irrational number α and an integer b, both larger than 1, we associate the real number Sb(α) defined by

Sb(α) := (b − 1)

+∞∑
n=1

1
bbnαc

·

The following nice result can be found in [8] (see also [37]).

Theorem 16 (Adams & Davison). Let α := [a0, a1, a2, . . .] be a positive irrational number and b be an integer, both
larger than 1. Let pn/qn be the n-th convergent to 1/α. For n ≥ 1, set

tn := (bqn − bqn−2)/(bqn−1 − 1).

Then,

Sb(α) = [0, t1, t2, . . . , tn, . . .].

We easily deduce from Theorem 16 and the mirror formula, the exact irrationality measure for Sb(α) for any
irrational α and any integer b, both larger than 1.

Theorem 17. Let α := [a0, a1, a2, . . .] be a positive irrational number and b be an integer, both larger than 1. Then

µ(Sb(α)) = 1 + lim sup
n→∞

[an, an−1, . . . , a0].

Let us remark that, up to a translation, the set M := {µ(Sb(α)), α 6∈ Q} is equal to the Cassaigne spectrum (see
Remark 11). As a consequence, we always have that µ(Sb(α)) ≥

3+
√

5
2 > 2. In virtue of Roth’s theorem, Sb(α) is

thus transcendental.

Proof of Theorem 17. We keep the notations of Theorem 16. For any nonnegative integer, let us denote by Pn/Qn
the n-th convergent to Sb(α). By Theorem 16, we know that (Qn)n≥0 is the sequence defined by

Q0 := 1, Q1 := 1, and for n ≥ 2, Qn+1 := tn+1 Qn + Qn−1.
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We first observe that, for any nonnegative integer n, Qn = (bqn − 1)/(b − 1). Namely, for n = 0 and n = 1, this
follows from q0 = 0 and q1 = 1. For n ≥ 2, this is implied by

tn+1

(
bqn − 1
b − 1

)
+

bqn−1 − 1
b − 1

=

(
bqn+1 − bqn−1

bqn − 1

) (
bqn − 1
b − 1

)
+

bqn−1 − 1
b − 1

=
bqn+1 − bqn−1

b − 1
+

bqn−1 − 1
b − 1

=
bqn+1 − 1

b − 1
·

On the other hand, the theory of continued fractions gives

1
2Qn Qn+1

<

∣∣∣∣Sb(α) −
Pn

Qn

∣∣∣∣ <
1

Qn Qn+1
· (2)

This can be expressed as follows:

1

Q1+(log Qn+1/ log Qn)+(log 2/ log Qn)
n

<

∣∣∣∣Sb(α) −
Pn

Qn

∣∣∣∣ <
1

Q1+(log Qn+1/ log Qn)
n

·

Furthermore, we have that log Qn = log(bqn − 1) − log(b − 1), which implies

lim sup
n→∞

log Qn+1

log Qn
= lim sup

n→∞

qn+1

qn
·

We thus can precisely estimate the quality of approximations of Sb(α) by the rationals Pn/Qn . From (2) and the mirror
formula, we deduce that the inequality∣∣∣∣Sb(α) −

Pn

Qn

∣∣∣∣ <
1

Qτ
n

has infinitely many solutions as soon as

τ < 1 + lim sup
n→∞

[an, an−1, . . . , a0],

whereas it has only finitely many solutions if

τ > 1 + lim sup
n→∞

[an, an−1, . . . , a0].

Since the rationals Pn/Qn are by definition the best rational approximations to Sb(α), we get that µ(Sb(α)) =

1 + lim supn→∞[an, an−1, . . . , a0], concluding the proof. �

Remark 18. For other results on Diophantine approximation of Sturmian numbers, see [79] and its bibliography.

7. Simultaneous approximation for a number and its square

The study of approximations to a real number by algebraic numbers of bounded degree began with Wirsing’s 1960
paper [96]. He proved that if n is an integer at least equal to 2, and if ξ is not an algebraic number of degree at most
n, there are infinitely many algebraic numbers α of degree at most n satisfying

|ξ − α| � H(α)−(n+3)/2 (3)

where H(α) denotes the height of α, i.e., the largest absolute value of the coefficients of its irreducible polynomial
over Z. The constant implied by the notation � depends on n and ξ . A famous conjecture, due to Wirsing [96], claims
that the right exponent in (3) is equal to n + 1 instead of (n + 3)/2. Up to now, the Wirsing conjecture is only known
to be true for n = 2; this is a result of Davenport and Schmidt [35].

In 1969, Davenport and Schmidt [36] investigated the same question but with algebraic numbers replaced by
algebraic integers. In the rest of this section, we will focus on the approximation to a real number by cubic integers,
i.e., on a question related to the case n = 3 in (3). In this direction, Davenport and Schmidt [36] proved the following
result:
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Theorem 19 (Davenport and Schmidt). Let γ :=
1+

√
5

2 . Let ξ be a real number that is neither rational nor quadratic.
Then, there exist a positive constant c1 and infinitely many algebraic integers α of degree at most 3 such that

|ξ − α| ≤ c1 H(α)−γ 2
,

where H(α) denotes the height of the algebraic number α.

By a kind of “duality”, approximation to a real number by algebraic numbers of bounded degree is also intimately
connected with simultaneous uniform rational approximation to successive powers of a real number. In particular,
approximation to a real number ξ by algebraic cubic integers is related to simultaneous uniform rational approximation
to ξ and ξ2, and the authors of [36] actually derive Theorem 19 from the following result.

Theorem 20 (Davenport and Schmidt). Let γ :=
1+

√
5

2 . Let ξ be a real number that is neither rational nor quadratic.
Then, there exist a positive constant c2 and arbitrarily large values of X such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c2 X−1/γ , |x0ξ
2
− x2| ≤ c2 X−1/γ ,

do not have any nonzero solution (x0, x1, x2) ∈ Z3.

Until recently it was believed that the value γ 2 in Theorem 19 could be improved to 3. This is, however, not true,
as discovered by Roy [84]. Actually, Roy proves the surprising result that the value γ 2 in Theorem 19 is optimal.

Theorem 21 (Roy). Let γ :=
1+

√
5

2 . Then there exist a positive constant c3 and a real number ξ that is neither
rational nor quadratic, such that for any algebraic integer α of degree at most 3, we have

|ξ − α| ≥ c3 H(α)−γ 2
.

To obtain this result, Roy [83,85] first proves that the value γ is in fact optimal in Theorem 20, against the natural
conjecture that the value γ could be improved to 2.

Theorem 22 (Roy). Let γ :=
1+

√
5

2 . Then there exist a positive constant c4 and a real number ξ that is neither
rational nor quadratic, such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c4 X−1/γ , |x0ξ
2
− x2| ≤ c4 X−1/γ ,

have a nonzero solution (x0, x1, x2) ∈ Z3 for any real number X > 1.

Following Roy, a real number satisfying the exceptional Diophantine conditions of Theorem 22 is called an
extremal number. It is proved in [85] that the set of extremal numbers is countable. Surprisingly, Roy provides the
following “natural” example of an extremal real number. Let a and b be two distinct positive integers. Let

ξ := [a, b, a, a, b, a, b, a, a, b, . . .],

where abaababaab . . . denotes the Fibonacci word over the alphabet {a, b} (see Definition 5 in Section 4). Then, Roy
proved [85] that ξ is an extremal number.

Of course the attractive work of Roy led to many stimulating questions. For a real number ξ we define, following
[21], the exponent λ̂2(ξ) as the supremum of the real numbers λ such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c4 X−1/λ, |x0ξ
2
− x2| ≤ c4 X−1/λ,

have a nonzero solution (x0, x1, x2) ∈ Z3 for any large enough real number X . Bugeaud and Laurent [21] showed
how to use Roy’s construction to provide explicit real numbers for which the exponent λ̂2 takes values beetwen 2 (the
expected value) and γ (the optimal value).

Theorem 23 (Bugeaud and Laurent). Let m and n be two distinct positive integers. Let α := [0, a1, a2, . . .] be an
irrational real number and let (bn)n≥1 be the characteristic Sturmian sequence of slope α defined on the alphabet
{m, n}. Let ξ be the non-quadratic and irrational real number defined by

ξ := [0, b1, b2, . . .].
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Then,

λ̂2(ξ) =
σ + 1

2σ + 1
,

where σ := lim supn→∞ [an, an−1, . . . , a1].

We end this section with a focus on the main steps of the proof of Theorem 22. Our presentation is quite far from
the proof in [85] but quite close to that of [83], it shows how the mirror formula can play here a central rôle.

Proof of Theorem 22. We first need a lemma whose proof can be found for example in the book of Perron [67].

Lemma 24. For any positive integers a1, . . . , am and any integer k with 1 ≤ k ≤ m − 1, denote by Km(a1, . . . , am)

their continuant, i.e., the denominator of the rational number [0, a1, . . . , am]. We have

Km(a1, . . . , am) = Km(am, . . . , a1)

and

1 ≤
Km(a1, . . . , am)

Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am)
≤ 2.

Now, the proof of Theorem 22 can essentially be divided into three steps.
In the first and more important step, we show how continued fractions can be used for finding simultaneous rational

approximations to a real number and its square, via palindromes. Let ξ = [0, a1, a2, . . .] be a positive irrational real
number, and denote by pn/qn its convergents, i.e., pn/qn := [0, a1, . . . , an]. If the word a1 · · · an is a palindrome,
then the mirror formula implies that

qn−1

qn
= [0, an, an−1, . . . , a1] = [0, a1, . . . , an] =

pn

qn
·

In this case, we have pn = qn−1. By the theory of continued fractions, we get∣∣∣∣ξ −
pn

qn

∣∣∣∣ <
1

q2
n

and
∣∣∣∣ξ −

pn−1

qn−1

∣∣∣∣ <
1

q2
n−1

·

We then infer from 0 < ξ < 1, a1 = an and qn ≤ (an + 1)qn−1 that∣∣∣∣ξ2
−

pn−1

qn

∣∣∣∣ ≤

∣∣∣∣ξ2
−

pn−1

qn−1
×

pn

qn

∣∣∣∣ ≤

∣∣∣∣ξ +
pn−1

qn−1

∣∣∣∣ ×

∣∣∣∣ξ −
pn

qn

∣∣∣∣ +
1

qnqn−1

≤ 2
∣∣∣∣ξ −

pn

qn

∣∣∣∣ +
1

qnqn−1
<

a1 + 3
q2

n
·

Consequently, if the word a1a2 · · · an is a palindrome, then

|qnξ − pn| <
1
qn

and |qnξ2
− pn−1| <

a1 + 3
qn

· (4)

In other words, each time a convergent pn/qn to the real ξ is palindromic (i.e., pn/qn = [0, a1, . . . , an] and a1 · · · an
is a palindrome), it provides very good simultaneous rational approximations to ξ and ξ2, respectively given by pn/qn
and pn−1/qn .

An important feature of the problem we are studying is that we have to prove a uniform statement, that is, it deals
with uniform simultaneous rational approximation. In the second step, which will now appear as very natural, we show
how the palindrome density of the continued fraction expansion of a real ξ is related to such a uniform statement.

First, let us assume that the infinite word a = a1a2 · · · an · · · begins in infinitely many palindromes. We will use
the notation introduced in Section 5. We thus denote by (ni )i≥1 the increasing sequence of all lengths of palindromic
prefixes of a, and by dp(a) the palindrome density of the word a. Let us assume that the palindrome density of a
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is large enough to ensure that qni+1 ≤ cqτ
ni

, for some real number τ larger than one and for a positive constant c
independent of i . Then, it easily follows from (4) that for any real number X > 1, the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ cX−1/τ , |x0ξ
2
− x2| ≤ cX−1/τ , (5)

have a nonzero solution (x0, x1, x2) ∈ Z3. Indeed, given X there always exists a positive integer n such that
qn ≤ X < qn+1, and the triple (qn, pn, pn−1) is a nonzero solution for (5).

Thus, if ξ is a real number whose continued fraction expansion begins in many palindromes, then ξ and ξ2 are
uniformly and simultaneously well approximated by rationals. In view of Section 5, the Fibonacci continued fraction
thus appears as a natural candidate for our problem. This ends our second step.

From now on, we assume that a = abaab . . . denotes the Fibonacci word over the alphabet {a, b} and that
ξ := [a, b, a, a, b, . . .]. We want to prove that ξ is an extremal number. We thus have first to estimate the growth
of the sequence (ni )i≥1. Actually as noted in [44] the value of ni can be computed exactly as a consequence of [57,
Theorem 5]: we have

ni = Fi+1 − 2, (6)

where Fi denotes the i-th Fibonacci number.
To end the proof, it now suffices (in view of (5)) to prove that there exists a positive constant c independent of i

such that

qni+1 ≤ cqγ
ni , (7)

where γ =
1+

√
5

2 denotes as previously the golden ratio. Lemma 24 and equality (6) imply that

c5 <
qni+1

qni qni−1

< c6,

for any i ≥ 2 and for some positive constants c5 and c6. We set

c7 = max
{

c6,
(c5qn1)

γ

qn2

,
(c5qn2)

1/γ

qn1

}
.

Since c7 ≥ c6, we obviously get that

c5 <
qni+1

qni qni−1

< c7. (8)

We set c8 = cγ

5 /c7 and c9 = cγ
7 /c5, and we are now going to prove by induction on i that

c8qγ
ni ≤ qni+1 ≤ c9qγ

ni (9)

holds for any i ≥ 2. For i = 2, this follows from (8) and from the definition of c7. Let us assume that (9) holds for a
fixed integer i ≥ 2. By (8), we have

c5qγ
ni

(
q1−γ

ni qni−1

)
< qni+1 < c7qγ

ni

(
q1−γ

ni qni−1

)
and since γ (γ − 1) = 1, we obtain

c5qγ
ni

(
qni q

−γ
ni−1

)1−γ

< qni+1 < c7qγ
ni

(
qni q

−γ
ni−1

)1−γ

.

We thus deduce from (9) that(
c5c1−γ

9

)
qγ

ni < qni+1 <
(

c8c1−γ

5

)
qγ

ni .

By definition of c8 and c9, and since γ (γ − 1) = 1, this gives

c8qγ
ni < qni+1 < c9qγ

ni .

We thus have shown that (9) holds for any integer i ≥ 2. In virtue of (7) and (5), ξ is an extremal number, which
concludes the proof of Theorem 22. �
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8. The Littlewood conjecture

It follows from the theory of continued fractions that, for any real number α, there exist infinitely many positive
integers q such that

q · ‖qα‖ < 1, (10)

where ‖ · ‖ denotes the distance to the nearest integer. In particular, for any given pair (α, β) of real numbers, there
exist infinitely many positive integers q such that

q · ‖qα‖ · ‖qβ‖ < 1.

A famous open problem in simultaneous Diophantine approximation, called the Littlewood conjecture (see for
example [55]), claims that in fact, for any given pair (α, β) of real numbers, a stronger result holds.

Littlewood’s conjecture. For any given pair (α, β) of real numbers,

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0. (11)

Let us denote by Bad the set of badly approximable numbers, i.e.,

Bad := {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

The set Bad is intimately connected with the theory of continued fractions. Indeed, a real number lies in Bad if
and only if it has bounded partial quotients in its continued fraction expansion. It then follows that the Littlewood
conjecture holds true for the pair (α, β) if α or β has unbounded partial quotients in its continued fraction expansion.
It also holds when the numbers 1, α, and β are linearly dependent over the rational integers, as follows from (10).

The first significant contribution towards the Littlewood conjecture goes back to Cassels and Swinnerton-Dyer [29]
who showed that (11) holds when α and β belong to the same cubic field. However, since it is still not known whether
cubic real numbers have bounded partial quotients or not (see the discussion at the beginning of Section 9), their result
does not yield examples of pairs of badly approximable real numbers for which the Littlewood conjecture holds.

In view of the above discussion, it is natural to restrict our attention to independent parameters α and β, both lying
in Bad. This naturally leads to considering the following problem:

Question 25. Given α in Bad, is there any independent β in Bad so that the Littlewood conjecture is true for the pair
(α, β)?

Apparently, Question 25 remained unsolved until 2000, when Pollington and Velani [68] gave a positive answer,
by establishing the following stronger result:

Theorem 26 (Pollington and Velani). Given α in Bad, there exists a subset A(α) of Bad with Hausdorff dimension
one, such that, for any β in A(α), there exist infinitely many positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤
1

log q
· (12)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in A(α).

The proof of this result depends on sophisticated tools from metric number theory. At the end of [68], Pollington
and Velani give an alternative proof of a weaker version of Theorem 26, namely with (12) replaced by (11). However,
even for establishing this weaker version, deep tools from metric number theory are still needed, including in particular
a result of Davenport, Erdős and LeVeque on uniform distribution [34] and the Kaufman measure constructed in [46].

Very recently, Einsiedler, Katok and Lindenstrauss [43] proved the following remarkable result:

Theorem 27 (Einsiedler, Katok and Lindenstrauss). The set of pairs of real numbers for which the Littlewood
conjecture does not hold has Hausdorff dimension zero.
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Obviously, this gives a positive answer to Question 25. Actually, the authors established part of the Margulis
conjecture on ergodic actions on the homogeneous space SLk(R)/SLk(Z), for k ≥ 3 (see [59]). It was previously
known that such a result would have implications to Diophantine questions, including the Littlewood conjecture. Their
sophisticated proof used, among others, deep tools from algebra and from the theory of dynamical systems, involving
in particular the important work of Ratner (see for example [80]).

De Mathan gave in [60] an explicit construction of pairs of real numbers (α, β) with bounded partial quotients,
such that 1, α, β are linearly independent over the rationals and satisfy Littlewood’s conjecture. We do not resist to
give the following natural example derived by de Mathan in [60, p. 264] from Queffélec’s paper [77]. Recall that the
Thue–Morse sequence on the alphabet {1, 2} is the sequence (an)n≥0 defined by an := 1 (resp. an := 2) if the sum of
the binary digits of n is even (resp. odd).

Theorem 28 (de Mathan). Let η := [1, 2, 2, 1, 2, 1, 1, 2, 2, . . .] be the real number whose continued fraction
expansion is the Thue–Morse sequence on the alphabet {1, 2}. Then, 1, η, 1/η are linearly independent on the
rationals, and (η, 1/η) satisfies the Littlewood conjecture.

Actually our favourite formula was used by the authors of [3] to provide a short and elementary positive answer to
Question 25, and even a stronger form of it. Their approach, based on the basic theory of continued fractions, gives a
generic way to provide explicit examples for the Littlewood conjecture.

Theorem 29 (Adamczewski and Bugeaud). Let ϕ be a positive and non-increasing function defined on the set of
positive integers such that ϕ(1) = 1, limq→+∞ ϕ(q) = 0 and limq→+∞ qϕ(q) = +∞. Given α in Bad, there exists
an uncountable subset Bϕ(α) of Bad such that, for any β in Bϕ(α), there exist infinitely many positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤
1

q · ϕ(q)
· (13)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in Bϕ(α). Furthermore, the set Bϕ(α) can
be effectively constructed.

It is of interest to compare this result with Theorem 26. Regarding the Littlewood conjecture, Theorem 26 is
stronger since the set A(α) has Hausdorff dimension one whereas the set Bϕ(α) has only the power of the continuum.
On the other hand, one can remark that the Diophantine property in Theorem 29 is really stronger than the one of
Theorem 26. In particular, one can doubt on the truth of a statement analogous to Theorem 26, with the Diophantine
condition of Theorem 29.

9. Transcendental continued fractions

It is widely believed (the question was first asked by Khintchine [48] cited in [90]) that the continued fraction
expansion of any irrational algebraic number α is either eventually periodic (and this is the case if and only if α is a
quadratic irrational) or it contains arbitrarily large partial quotients; but we seem to be very far away from a proof (or
a disproof). A first step consists in providing explicit examples of transcendental continued fractions. The first result
of this type is due to Liouville [54], who constructed real numbers whose sequence of partial quotients grows very
fast, too fast for the numbers to be algebraic. Subsequently, various authors used deeper transcendence criteria from
Diophantine approximation to construct other classes of transcendental continued fractions. Of particular interest is
the work of Maillet [58] (see also Section 34 of Perron [67]), who was the first to give examples of transcendental
continued fractions with bounded partial quotients. Further examples were provided by Baker [12,13], Shallit [89],
Davison [38], Queffélec [77], Allouche, Davison, Queffélec and Zamboni [10] and Adamczewski and Bugeaud [2],
among others. Note that the folding lemma is used by Shallit in [89] (see also Section 10).

In the previous two sections, we have shown how the mirror formula can be used to find simultaneous rational
approximations for some real numbers. On the other hand, algebraic numbers cannot be “too well” simultaneously
approximated by rationals. This is a multi-dimensional Roth’s principle (see Theorem 30 below). Such considerations
give naturally rise to transcendence statements, as we will see in this section. We will first be interested in a familly
of “quasi-periodic” continued fractions introduced by Maillet [58] and studied later by Baker in [12] and [13]. Then,
we will investigate real numbers whose sequence of partial quotients enjoys another combinatorial property, namely
is “symmetrical”, in the sense that it begins in arbitrarily long palindromes or quasi-palindromes.
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The transcendence criteria presented in this section rest on the powerful Subspace Schmidt Theorem [87] (see also
[88]) that we state now, as well as on a heavy use of the mirror formula.

Theorem 30 (W.M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm be linearly independent linear forms in x =

(x1, . . . , xm) with algebraic coefficients. Let ε be a positive real number. Then, the solutions x = (x1, . . . , xm) ∈ Zm

to the inequality

|L1(x) · · · Lm(x)| ≤ (max{|x1|, . . . , |xm |})−ε

lies in the union of finitely many proper subspaces of Qm .

As an example of a by-product of the Subspace Theorem, we mention a result concerning the simultaneous rational
approximation of a real number and its square. It was originally proved in [86].

Theorem 31 (W.M. Schmidt). Let ξ be a real number, which is neither rational, nor quadratic. If there exist a real
number w > 3/2 and infinitely many triples of integers (p, q, r) such that

max
{∣∣∣∣ξ −

p
q

∣∣∣∣, ∣∣∣∣ξ2
−

r
q

∣∣∣∣} <
1

|q|w
,

then ξ is transcendental.

A direct consequence of this result is that the extremal numbers considered in Section 7 are transcendental. The
following dual form of Theorem 31, also proved in [86], which limits the approximation of an algebraic nonquadratic
number by quadratic numbers, can also be derived from the Suspace Theorem.

Theorem 32 (W.M. Schmidt). Let ξ be a real number, which is neither rational, nor quadratic. If there exist a real
number w > 3 and infinitely many quadratic numbers α such that

|ξ − α| < H(α)−w,

then ξ is transcendental (as previously H(α) is the height of α).

9.1. Maillet–Baker’s continued fractions

Maillet proved in his already quoted book [58] that if a = (an)n≥0 is a noneventually periodic sequence of positive
integers, and if there are infinitely many positive integers n such that

an = an+1 = · · · = an+λ(n),

then the real number ξ = [a0, a1, a2, . . .] is transcendental provided that λ(n) is larger than a certain function of qn ,
the denominator of the nth convergent to ξ . Actually, the result of Maillet is more general and also includes the case of
repetitions of a block of consecutive partial quotients. His proof is based on a general form of the Liouville inequality
which limits the approximation of algebraic numbers by quadratic irrationals. Indeed, under the previous assumption,
the quadratic irrational real numbers ξn = [a0, a1, a2, . . . , an−1, an, an, . . . , an, . . .] provide approximations to ξ that
are “too good”.

It is not very surprising that the breaktrough made by Roth [82] in 1955 led to an improvement of this result.
Thus, Baker [12] used in 1962 the Roth theorem for number fields obtained by LeVeque [51] to strongly improve the
results of Maillet and make them more explicit. His main idea was to see that if the quadratic approximations found
by Maillet lie in a same quadratic number field, then one can favourably replace the use of the Liouville inequality by
LeVeque’s result. Amongst the results in [12], Baker proved in particular the following theorem:

Theorem 33 (A. Baker). Let A be a positive integer and ξ := [a0, a1, a2, . . .] be a real number whose partial
quotients are all bounded by A. Let us assume that there exist an increasing sequence of positive integers (nk)k≥1,
and a sequence of positive integers (λk)k≥1, such that

ank = ank+1 = · · · = ank+λk .
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If

lim sup
k→∞

λk

nk
> 2

 log
((

A +
√

A2 + 4
)

/2
)

log
((

1 +
√

5
)

/2
)

 − 1,

then the real number ξ is transcendental.

In order to improve this result, it is quite tempting to apply the Subspace Theorem instead of LeVeque’s theorem.
This general trend of ideas was introduced in 2002 by Corvaja and Zannier for other questions of Diophantine
approximation, e.g., transcendence of values of lacunary series at algebraic points, ratio of recurrence sequences,
integer points on an algebraic curve or surface... (see [30]). We first mention that a direct use of Theorem 32 in Baker’s
approach leads to a weaker form of Theorem 33, contrarily to what is claimed in [65]. It seems, however, possible
to reach a smaller bound than the one obtained in Theorem 33 by using the quadratic approximations previously
considered by Maillet or by Baker and the ideas of [2], see [40]. In [7], the authors show how the method introduced
in Section 9.2 can also be used to improve Theorem 33 in some particular cases.

Quite surprisingly, a tricky use of the Subspace Theorem based on the mirror formula allows the authors of [5]
to considerably relax the transcendence criteria obtained by Baker. In particular, they get rid of the bound A of
Theorem 33 by proving the following result:

Theorem 34 (Adamczewski and Bugeaud). In Theorem 33, the assumption

lim sup
k→∞

λk

nk
> 2

 log
((

A +
√

A2 + 4
)

/2
)

log
((

1 +
√

5
)

/2
)

 − 1,

can be replaced by the weaker condition

lim sup
k→∞

λk

nk
> 0.

9.2. Palindromic continued fractions

A common feature of the results mentioned at the beginning of this section is that they apply to real numbers
whose continued fraction expansions are “quasi-periodic”, in the sense that they contain arbitrarily long blocks of
partial quotients which occur precociously at least twice. We now consider real numbers whose sequence of partial
quotients enjoys another combinatorial property, namely is “symmetrical”, in the sense that it begins in arbitrarily long
palindromes or quasi-palindromes. The results stated below are proved in [7] (see also [4]) and rest on the Subspace
Theorem.

We first mention the following simple transcendental criterion for palindromic continued fractions.

Theorem 35 (Adamczewski and Bugeaud). Let a = (an)n≥0 be a sequence of positive integers. If the word a begins
in arbitrarily long palindromes, then the real number ξ := [a0, a1, . . . , an, . . .] is either quadratic or transcendental.

As shown in [4], given two distinct positive integers a and b, Theorem 35 easily implies the transcendence of the
real number [a0, a1, a2, . . .], whose sequence of partial quotients is the Thue–Morse sequence on the alphabet {a, b},
i.e., with an := a (resp. an := b) if the sum of the binary digits of n is odd (resp. even). This result is originally due
to Queffélec [77] who used a different approach. We also point out that, quite surprisingly, there is no assumption on
the growth of the sequence (an)n≥0 in Theorem 35.

Let us introduce some more notation. In order to relax the “symmetry” property of palindromes, we now introduce
the notion of quasi-palindrome. Let Z be a finite word. We say that Z is a quasi-palindrome of finite order if there
exist two finite words U and V such that Z = U V U . Following this definition, the larger the quotient |V |/|U |, the
weaker the symmetry property. Note that any palindrome is a quasi-palindrome (where V is either empty or reduced
to a single letter). We now give a transcendence criterion in which occurrences of arbitrarily long palindromes are
replaced by occurrences of arbitrarily long quasi-palindromes Z = U V U where the quotient |V |/|U | is bounded.



234 B. Adamczewski, J.-P. Allouche / Theoretical Computer Science 380 (2007) 220–237

An extra assumption on the growth of the partial quotients is then needed. This assumption is not very restrictive. In
particular, it is always satisfied by real numbers with bounded partial quotients.

Let a = (an)n≥0 be a sequence over A. We say that a begins in arbitrarily long quasi-palindromes of bounded
order if there exist a nonnegative real number w, and two sequences of finite words (Uk)k≥0 and (Vk)k≥0 such that:

(i) For any k ≥ 0, the word Uk VkUk is a prefix of the word a;
(ii) The sequence (|Vk |/|Uk |)k≥0 is bounded from above by w;

(iii) The sequence (|Uk |)k≥0 is increasing.

Then, Theorem 35 can be extended in the following way:

Theorem 36 (Adamczewski and Bugeaud). Let a = (an)n≥0 be a sequence of positive integers. Let (pn/qn)n≥0
denote the sequence of convergents to the real number

ξ := [a0, a1, . . . , an, . . .].

Assume that the sequence (q1/n
n )n≥0 is bounded, which is in particular the case when the sequence a is bounded. If a

begins in arbitrarily long quasi-palindromes of bounded order, then ξ is either quadratic or transcendental.

In the statements of Theorems 35 and 36 the palindromes or the quasi-palindromes must appear at the very
beginning of the continued fraction under consideration. We mention that the ideas used in their proofs also allow
to deal with the more general situation where arbitrarily long quasi-palindromes occur not too far from the beginning
(see [7]).

10. The folding lemma. Formal Laurent series

We begin this section with a variation on the mirror formula called the folding lemma (see [69,73]), whose proof
is an easy consequence of the matrix formalism for continued fractions and of the mirror formula.

Lemma 37 (Folding Lemma). Let c, a0, a1, . . . be positive integers. Let pn
qn

:= [a0, a1, . . . , an]. Then

pn

qn
+

(−1)n

cq2
n

= [a0, a1, a2, . . . , an, c, −an, −an−1, . . . ,−a1]. (14)

Remark 38. In equality (14) negative partial quotients occur. An easy transformation permits to get rid of these
forbidden partial quotients (see, e.g., [73]). Note that the terminology “folding lemma” comes from the fact that,
defining the word W := a1a2 · · · an and noting W := anan−1 · · · a1, we go from pn

qn
to pn

qn
+

(−1)n

cq2
n

(up to the first

partial quotient a0) by means of the “perturbed symmetry” (see [62,20], see also [61, p. 209]) W −→ W c (−W ):
iterating this operation in the case W := +1 and c := +1 gives a sequence of ±1 symbols that is the sequence of
creases in a strip of paper repeatedly folded in half: see for example [42]. Note that a systematic use of transforming
forbidden (i.e., ≤ 0) partial quotients into permitted (i.e., > 0) ones led van der Poorten to state his very useful ripple
lemma [70, Proposition 3].

As previously mentioned formal Laurent series can be expanded into continued fractions whose partial quotients
are polynomials. The mirror formula and the folding lemma still hold in this context. We only give here a theorem due
to van der Poorten and Shallit (see [76], see also [52] from a remark of Shallit given in [73]).

Theorem 39. Let F be the formal Laurent series F = F(X) := X
∑

h≥0 X−2h
. Then its continued fraction expansion

is equal to

[1, X, −X, −X, −X, X, X, −X, . . .]

where the sequence of partial quotients starting from the first X is obtained by repeatedly iterating the folding rule:
W0 := X, W j+1 := W j (−X)(−W j ) for j ≥ 0.
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Remark 40. As previously W stands for the reversal of W , so that W1 = X −X −X , W2 = X −X −X −X X X −X .
Note that the same folding trick permitted to Shallit [89] and to Kmošek [50] independently to give the continued
fraction expansion of real numbers with explicit g-adic expansion such as

∑
2−2n

. Also note that van der Poorten
studies precisely how and when continued fraction expansions of Laurent formal series can be “specialized” or
“reduced” modulo a prime number (see [69,71,74] and note that the folding lemma is alluded to in [71]).

We end this section by citing [6] where the authors, using the mirror formula, prove a result about the Littlewood
conjecture for Laurent power series which is the analogue of Theorem 29.

11. Conclusion

Several other beautiful results about symmetrical or palindromic patterns in continued fraction expansions can
be found in the literature: we refer the reader in particular to papers of van der Poorten, Tamura, Liardet–Stambul,
Berstel–de Luca... ([72,73,75,92–94,53,17]...).

We do not resist ending this survey by citing two very nice papers on palindromes and continued fractions: one by
Burger [22], who studies when a real quadratic irrational is a linear fractional transformation of its conjugate, the other
by Benjamin and Zeilberger [15] who prove, revisiting a paper of Smith [91], that any prime congruent to 1 modulo
4 is the sum of two squares: the mirror formula and palindromic continued fraction expansions already present in
Smith’s paper are quite unexpected in this context.
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[54] J. Liouville, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques,
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Math., vol. 12, Birkhäuser, Boston, Mass, 1981, pp. 77–98.
[63] F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989) 221–242.
[64] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992) 199–204.
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