

Intégrale de Riemann

Aimé Lachal

Cours de mathématiques 1er cycle. 1re année

Définition 1.3 (Somme de Riemann)

Soit f une fonction définie sur [a, b], $\sigma = (x_0, \dots, x_n)$ une subdivision de [a, b], et $\Lambda = (\lambda_1, \dots, \lambda_n)$ une famille de réels tels que : $\forall k \in \{1, \dots, n\}, \lambda_k \in [x_{k-1}, x_k]$ (on dit alors que la famille Λ est **adaptée** à la subdivision σ).

On appelle somme de Riemann de la fonction f associée à σ et à Λ le nombre

$$S(f, \sigma, \Lambda) = \sum_{k=1}^{n} (x_k - x_{k-1}) f(\lambda_k).$$

Ce nombre représente l'aire de la réunion des rectangles de base $[x_{k-1}, x_k]$ et de

2. Intégrale de Riemann

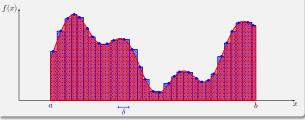
Définition 2.1 (Intégrabilité)

Soit $f:[a,b] \to \mathbb{R}$ une fonction **bornée**. S'il existe un nombre réel I tel que

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall \ \sigma$ subdivision de pas $< \delta, \ \forall \ \Lambda$ adaptée à $\sigma, \ |S(f, \sigma, \Lambda) - I| < \varepsilon$ on dit que la fonction f est intégrable (au sens de Riemann) sur [a, b] et le nombre

I est l'**intégrale de f sur [a, b]**. Ce nombre est noté $\int_{a}^{b} f(x) dx$ ou $\int_{a}^{b} f(x) dx$ Autrement dit, une fonction est intégrable ssi toutes ses suites de sommes de

Riemann dont le pas des subdivisions associées tend vers 0, sont convergentes de même limite finie.



- Sommes de Riemann d'une fonction
 - Définitions
 - Exemples
- Intégrale de Riemann
- Intégrabilité
- Exemples
- Propriétés
- ∍ Formule de la moyenne
- - Théorème fondamental de l'analyse
 - Lien intégrale/primitive
 - Exemple de synthèse
 - Primitives des fonctions usuelles

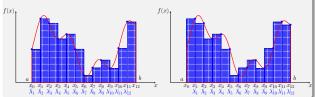
Exemple 1.4 (Subdivision équirépartie)

Considérons une subdivision « équirépartie » avec comme choix des λ_k une des

bornes de chaque sous-intervalle :
$$\begin{cases} x_k = a + k \frac{b-a}{n}, \ 0 \leqslant k \leqslant n \\ \lambda_k = x_{k-1} \text{ ou } x_k, \ 1 \leqslant k \leqslant n \end{cases}$$

Les sommes de Riemann correspondantes s'écrivent

$$S(f,\sigma,\Lambda) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \quad \text{ou} \quad \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right)$$



Remarque 2.2 (Notations/conventions)

La variable utilisée dans la notation de l'intégrale est dite muette :

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du = \int_{a}^{b} f(\textcircled{o}) d\textcircled{o} = \cdots$$

 Le nombre \(\int^b f \) représente l' « aire algébrique » entre la courbe de f dans un repère orthonormal et l'axe des abscisses, en comptant négativement les parties au-dessous de l'axe et positivement les parties au-dessus.

• Conventions : on convient que $\int_a^a f(x) dx = -\int_a^b f(x) dx$ et $\int_a^a f(x) dx = 0$.

Définition 1.1 (Subdivision

Soit a et b deux réels tels que a < b.

- Une subdivision de l'intervalle fermé borné [a, b] est une famille finie de réels (x_0, x_1, \dots, x_n) telle que : $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. Il s'agit donc d'un « découpage » de l'intervalle [a, b].
- Le pas d'une telle subdivision est le nombre $\delta = \max_{1 \le k \le n} \{x_k x_{k-1}\}.$ C'est la longueur du plus grand intervalle dans le découpage de [a, b].

Exemple 1.2 (Subdivision « équirépartie »)

La subdivision équirépartie est issue d'un découpage équidistant de [a, b] en nintervalles de longueur identique $\delta = \frac{b-a}{a}$.

Les points de subdivision sont donnés par $x_k = a + k \frac{b-a}{2}$, $0 \le k \le n$ (ils sont répartis selon une progression arithmétique de raison δ ":

Exemple 1.5 (Sommes de Darboux (facultatif))

Soit f une fonction **continue** sur [a, b], $\sigma = (x_0, \dots, x_n)$ une subdivision de [a, b]. Introduisons les valeurs « extrémales » relatives à chacun des sous-intervalles de σ :

 $\forall k \in \{1,2,\dots,n\}, \quad m_k = \min_{[x_{k-1},x_k]} f \quad \text{et} \quad M_k = \max_{[x_{k-1},x_k]} f.$ Par continuité, f atteint ses bornes : il existe donc des λ_k^1, λ_k^2 dans $[x_{k-1},x_k]$ tels que $f(\lambda_k^1) = m_k$ et $f(\lambda_k^2) = M_k$.

Les sommes de Riemann correspondant aux familles adaptées $\Lambda_1 = (\lambda_1, \dots, \lambda_n)$ et $\Lambda_2 = (\lambda_1^2, \dots, \lambda_n^2)$ sont appelées sommes de Darboux :

 $S_1 = S(f, \sigma, \Lambda_1) = \sum_{k=0}^{\infty} m_k (x_k - x_{k-1})$ et $S_2 = S(f, \sigma, \Lambda_2) = \sum_{k=0}^{\infty} M_k (x_k - x_{k-1})$



Remarque : toutes les sommes de Riemann sont comprises entre S_1 et S_2 .

. Intégrale de Riemann

Théorème 2.3 (Exemples de fonction intégrable (admis))

- Toute fonction continue sur [a, b] est intégrable sur [a, b].
- Plus généralement, toute fonction continue par morceaux sur [a, b] (i.e. admettant un nombre fini de discontinuités, celles-ci étant de 1re espèce) est intégrable sur [a, b].

Plus précisément, en notant x_1, x_2, \dots, x_{n-1} ses discontinuités et en posant $x_0 = a$ et $x_n = b$, on peut prolonger f par continuité sur chaque intervalle

 $[x_{k-1}, x_k]$, $k \in \{1, \dots, n\}$. Notons \tilde{f}_k ce prolongement. Alors $\int_0^{\infty} f = \sum_{k=1}^n \int_0^{x_k} \tilde{f}_k$.

Remarquons que si l'on modifie la valeur d'une fonction continue par morceaux en un nombre fini de points, alors la valeur de son intégrale reste la même.

• Toute fonction monotone sur [a, b] est intégrable sur [a, b]

Exemple 2.4 (Fonctions constante, identité, exponentielle...)

À l'aide de la somme de Riemann associée à une subdivision équirépartie, on trouve pour une fonction intégrable

$$\lim_{n\to+\infty}\frac{b-a}{n}\sum_{k=1}^nf\left(a+k\frac{b-a}{n}\right)=\int_a^bf(x)\,\mathrm{d}x.$$

$$\forall \lambda \in \mathbb{R}, \quad \int_a^b \lambda \, \mathrm{d} x = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^n \lambda = \lambda (b-a) \quad \text{(aire d'un rectangle!)}$$

$$\int_{a}^{b} e^{x} dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} e^{a+k\frac{b-a}{n}} = e^{b} - e^{a}.$$

• Dans le cas de la fonction identité, cela don

$$\int_{a}^{b} x \, \mathrm{d}x = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right) = \frac{1}{2} (b^2 - a^2) \quad \text{(aire d'un trapèze!)}$$

$$\int_{a}^{b} x^{2} dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right)^{2} = \frac{1}{3} (b^{3} - a^{3}).$$

Exemple 2.5 (Fonction indicatrice de Q)

Considérons la fonction «indicatrice» (ou «caractéristique») de Q. Il s'agit de la fonction

$$1_{\mathbb{Q}} : \mathbb{R} \longrightarrow \mathbb{Q}$$

$$x \longmapsto \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases}$$

Soit une subdivision $\sigma = (x_0, \dots, x_n)$ d'un intervalle [a, b] de pas arbitrairement petit, $\Lambda = (\lambda_1, \dots, \lambda_n)$ et $\Lambda' = (\lambda'_1, \dots, \lambda'_n)$ deux familles adaptées à la subdivision σ telles que

$$\forall k \in \{1, \dots, n\}, \quad \lambda_k \in \mathbb{Q} \quad \text{et} \quad \lambda_k' \in \mathbb{R} \backslash \mathbb{Q}.$$

Les sommes de Riemann correspondantes valent

$$S(\mathbb{1}_{\mathbb{Q}}, \sigma, \Lambda) = b - a$$
 et $S(\mathbb{1}_{\mathbb{Q}}, \sigma, \Lambda') = 0$.

Elles ne peuvent pas tendre vers une limite commune.

Ainsi, la fonction indicatrice de \mathbb{Q} n'est intégrable sur aucun intervalle [a,b]

Entre deux réels distincts quelconques, il existe un rationnel et un irrationnel (en fait une infinité de chaque). On dit que les ensembles $\mathbb Q$ et $\mathbb R\setminus\mathbb Q$ sont denses dans $\mathbb R$.

En effet : soit $(a, b) \in \mathbb{R}^2$ tels que a < b. Alors il existe un entier n tel que $a < b - \frac{1}{2}$ Posons $u_n = \frac{\mathsf{E}(na) + 1}{n}$ et $v_n = \frac{\mathsf{E}(na) + 1}{n\sqrt{2}}$. Les nombres u_n et v_n sont compris entre a et b, u_n est rationnel et v_n est irrationnel.

Proposition 2.6 (Opérations

Linéarité

Soit f et g deux fonctions intégrables sur [a,b] $(a \leqslant b)$ et $\lambda, \mu \in \mathbb{R}$. La fonction $\lambda f + \mu g$ est intégrable sur [a, b] et

$$\int_a^b (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$$

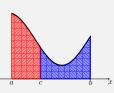
Relation de Chasles

Soit f une fonction intégrable sur [a, b] $(a \le b)$ Pour tout $c \in [a, b]$, f est intégrable sur [a, c] et [c, b] et

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

$$\int_a^c f(x) dx = \int_a^b f(x) dx - \int_c^b f(x) dx$$

Ces propriétés restent valables lorsque b < a.



Proposition 2.7 (Parité)

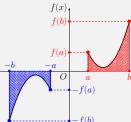
Soit f une fonction intégrable sur $[-b, -a] \cup [a, b]$ $(0 \le a \le b)$.

Si f est paire, alors

$$\int_{-b}^{-a} f(x) dx = \int_{a}^{b} f(x) dx.$$

$$\int_{-b}^{-a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

$$\begin{cases} f(x) \\ f(b) \end{cases}$$



est impaire.

Proposition 2.7 (Parité)

Cas particulier: soit f une fonction intégrable sur [-a, a] $(a \ge 0)$.

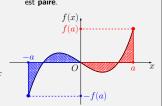
 Si f est paire, alors $\int_{a}^{a} f(x) dx = 2 \int_{a}^{a} f(x) dx.$

 $\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$

Autrement dit, la fonction $x \in [-a, a] \longmapsto \int_{0}^{x} f(t) dt$ Autrement dit. la fonction

Si f est impaire, alors

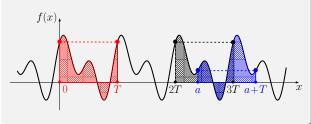
 $x \in [-a,a] \longmapsto \int_0^x f(t) \, \mathrm{d}t$ est paire.



Proposition 2.8 (Périodicité)

Soit f une fonction T-périodique sur \mathbb{R} intégrable sur [0, T] (T > 0). Alors, pour tout réel a, f est intégrable sur [a, a + T] et

$$\int_a^{a+T} f(x) dx = \int_0^T f(x) dx.$$

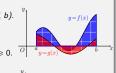


. Intégrale de Riemann

Proposition 2.9 (Ordre) Croissance/Positivité

Soit f et g deux fonctions intégrables sur [a, b] $(a \le b)$. Si $f \geqslant g$ sur [a, b] alors $\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx$.

En particulier : si $f \ge 0$ sur [a, b] alors $\int_0^b f(x) dx \ge 0$.

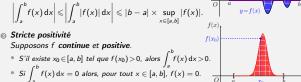


• Inégalité triangulaire

Soit f une fonction intégrable sur [a, b] $(a \le b)$

On a
$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$$

Plus généralement, quel que soit l'ordre de a et b,



Définition 2.10 (Valeur moyenne)

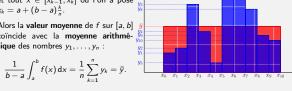
Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable.

On appelle valeur moyenne de f sur [a, b] le réel $\frac{1}{b-2}\int_{a}^{b}f(x)\,dx$

Exemple 2.11

Soit y_1, y_2, \dots, y_n des nombres réels et $f: [a,b] \longrightarrow \mathbb{R}$ la fonction constante par morceaux définie par $f(x) = y_k$ pour tout $k \in \{1, 2, \dots, n\}$ et tout $x \in [x_{k-1}, x_k]$ où l'on a posé $x_k = a + (b-a)\frac{k}{a}$

Alors la valeur movenne de f sur [a, b] coïncide avec la moyenne arithmétique des nombres y_1, \ldots, y_n



Intégrale de Riemann

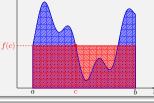
Théorème 2.12 (Formule de la movenne)

Soit $f:[a,b]\to\mathbb{R}$ continue et soit $g:[a,b]\to\mathbb{R}$ intégrable de signe constant $\exists c \in [a, b], \quad \int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$

En particulier, pour g = 1:

 $\exists c \in [a,b], \ \int_{a}^{b} f(x) dx = f(c)(b-a).$

Autrement dit, il existe un $c \in [a, b]$ tel que f(c) coïncide avec la valeur movenne de f sur [a, b].



Exemple 2.13

Soit $f:[a,b]\to\mathbb{R}$ continue et pour tout $n\in\mathbb{N}$, $u_n=\int_a^b f(x)\,\mathrm{e}^{-nx}\,\mathrm{d}x$. La fonction $x \mapsto e^{-nx}$ étant intégrable positive sur [a,b]

$$\exists c_n \in [a,b], \quad u_n = f(c_n) \int_0^b e^{-nx} dx = \frac{1}{n} f(c_n) (e^{-na} - e^{-nb}).$$

La fonction f étant continue sur [a, b], donc bornée, on en déduit que $\lim u_n = 0$

Le théorème de la moyenne permet d'obtenir une relation de réciprocité entre les opérations d'intégration et de dérivation décrite dans le résultat suivant :

Théorème-définition 3.1 (Théorème fondamental de l'analyse)

Soit f une fonction continue sur un intervalle I et $a \in I$ fixé.

On définit la fonction suivante F sur I par $\forall x \in I$, $F(x) = \int_{-\infty}^{\infty} f(t) dt$.

Alors F est de classe C^1 sur I et F' = f.

On dit que F est une primitive de f sur I.

F est en fait l'unique primitive de f sur l qui s'annule en a.

Remarque 3.2 (Raffinement de la formule de la moyenne (facultatif))

La formule de la moyenne précédemment énoncée stipule l'existence d'un cappartenant à l'intervalle **fermé** [a,b] tel que $\int_{a}^{b} f(x) dx = f(c)(b-a)$.

En fait, le théorème des accroissements finis appliqué à une primitive de f permet d'assurer plus précisément l'existence d'un tel c dans l'intervalle ouvert]a, b[

Soit f une fonction continue sur un intervalle 1. Alors :

- f admet des primitives sur I;
- @ si F est une primitive de f, alors toutes les primitives de f s'obtiennent en ajoutant une constante réelle à F;
- § pour toute primitive F de f et $(a,b) \in I^2$, on $a : \int_a^b f(t) dt = F(b) F(a)$. Notations :
- la quantité F(b) F(a) se note aussi [F(t)]^b_a;
- on note | f(x) dx toute primitive de f (définie à une constante additive près).

Soit f une fonction de classe C^1 sur un intervalle I.

Alors on a pour tout $(a,b) \in I^2$: $\int_{a}^{b} f'(t) dt = f(b) - f(a)$.

On fera attention de ne pas confondre la formule précédente avec la suivante (valable pour f continue), l'ordre d'intégration et de dérivation n'étant pas le même

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

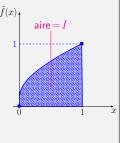
Exemple 3.5 (Un calcul d'intégrale **1** La fonction d'intérêt : soit $f: [0,1] \longrightarrow \mathbb{R}$

- La fonction f est continue sur]0,1[
- On a $\lim_{x \to 0^+} f(x) = 0$ et $\lim_{x \to 1^-} f(x) = 1$
- Onc f admet un prolongement par continuité \tilde{f} en 0 et 1 obtenu en posant $\tilde{f}(0)=0$ et $\tilde{f}(1)=1$. Plus précisément :

$$\begin{split} \tilde{f}: [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \begin{cases} f(x) & \text{si } x \in]0,1[\\ 0 & \text{si } x = 0 \\ 1 & \text{si } x = 1 \end{cases} \end{split}$$

On se propose alors de calculer l'intégrale

$$I = \int_0^1 \tilde{f}(x) \, \mathrm{d}x.$$

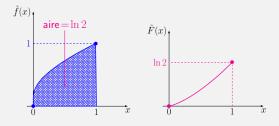


Exemple 3.5 (Un calcul d'intégrale)

- **Q** Une fonction intermédiaire : soit $F:]0,1[\longrightarrow \mathbb{R}$ $x \longmapsto \int_{-\infty}^{x^2} \frac{1}{\ln t} dt$
- Limite en 0^+ . Posons $\varphi(t)=\frac{1}{\ln t}$ pour $t\in]0,1[$. En appliquant la formule de la moyenne à la fonction φ continue sur $[x^2,x]$, il existe $c(x)\in [x^2,x]$ tel que $F(x)=\frac{x^2-x}{\ln(c(x))}$. Or $\lim_{x\to 0^+}c(x)=0$. D'où $\lim_{x\to 0^+}F(x)=0$.
 Limite en 1^- . En décomposant $\varphi(t)=f(t)\times\frac{1}{t-1}$ et en appliquant la formule de la
- moyenne, la fonction $t\mapsto \frac{1}{t-1}$ étant négative sur $[x^2,x]$, il existe $d(x)\in [x^2,x]$ tel que $F(x) = f(d(x)) \int_{x}^{x^{2}} \frac{1}{t-1} dt = f(d(x)) \ln(x+1)$. Or $\lim_{x \to 1^{-}} d(x) = 1$ et $\lim_{u \to 1^{-}} f(u) = 1$, donc $\lim_{x\to 1^-} f(d(x)) = 1$. D'où $\lim_{x\to 1^-} F(x) = \ln 2$.
- **Prolongement par continuité sur** [0,1]. Donc F admet un prolongement par continuité \tilde{F} en 0 et 1 obtenu en posant $\tilde{F}(0) = 0$ et $\tilde{F}(1) = \ln 2$ (F étant continue sur]0,1[).
- **Dérivée de** \tilde{F} . La fonction φ étant continue sur]0,1[, elle admet une primitive Φ . On peut écrire $F(x) = \Phi(x^2) - \Phi(x)$, Φ étant dérivable sur [0,1]. On voit alors que F est dérivable sur]0,1[et $F'(x)=2x\varphi(x^2)-\varphi(x)=f(x)$. Par ailleurs, $\lim_{x \to \infty} F'(x) = \tilde{f}(0)$ et $\lim_{x \to \infty} F'(x) = \tilde{f}(1)$, donc d'après le théorème de la limite de la dérivée, \tilde{F} est dérivable en 0 et en 1 et $\tilde{F}' = \tilde{f}$ sur [0, 1].

Le calcul d'aire :

• La fonction \tilde{F} est une **primitive** de \tilde{f} sur [0,1]. En conséquence, $I = [\tilde{F}(x)]_0^1 = \tilde{F}(1) - \tilde{F}(0)$ soit $I = \ln 2$



Partant des dérivées des fonctions classiques, on peut dresser une liste de primitives

Exemple 3.6 (Fonctions puissances/exponentielles/trigonométriques/hyperboliques)

$$\int \cos x \, dx = \sin x + Cste \text{ et } \int \sin x \, dx = -\cos x + Cste$$

$$\int \tan x \, dx = -\ln|\cos x| + Cste \text{ et } \int \frac{1}{\cos^2 x} \, dx = \tan x + Cste$$

INSA DES SOUNCES APPLICACES

Série de Riemann

http://math.univ-lyon1.fr/~alachal/diaporamas/

INSA RESTRICT AND DES SCHOOLS APPLIALES

Formule de Stirlind

http://math.univ-lyon1.fr/~alachal/diaporamas diaporama stirling.pdf

Entre Machin et Plouffe...

http://math.univ-lyon1.fr/~alachal/diaporamas/

Sinus et produit

http://math.univ-lyon1.fr/~alachal/diapora
diaporama sinus eulerien.pdf

Notions à retenir

- Sommes de Riemann
 - * Application au calcul de limites de certaines suites
- Intégrale de Riemann
 - * Interprétation géométrique
 - * Opérations
 - * Inégalités, théorème de la moyenne
- - * Théorème fondamental de l'analyse : lien entre intégrale définie et
 - * Primitives usuelles à connaître