

Applications linéaires

Aimé Lachal

Cours de mathématiques

1er cycle. 1re année

- \bigcirc L'espace vectoriel $\mathcal{L}(E,F)$
 - Définition
 - Exemples
 - Structure
- Image par une application linéaire
 - Image et image réciproque
 - Noyau et image d'une application
 - Image d'une famille de vecteurs
- Applications linéaires particulières
 - Homothéties vectorielles
 - Projections vectorielles
 - Symétries vectorielles

L'espace vectoriel $\mathcal{L}(E,F)$

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et l'on se donne deux \mathbb{K} -e.v. $(E, +_F, \cdot_F)$ et

Définition 1.1 (Applications linéaires)

On dit qu'une application $f: E \longrightarrow F$ est **linéaire** si :

- $\emptyset \ \forall (\vec{u}, \vec{v}) \in E^2, \ f(\vec{u} +_E \vec{v}) = f(\vec{u}) +_E f(\vec{v})$
- $\emptyset \ \forall \vec{u} \in E, \ \forall \lambda \in \mathbb{K}, \ f(\lambda \cdot_{F} \vec{u}) = \lambda \cdot_{F} f(\vec{u})$

L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$

Un élément de $\mathcal{L}(E, E)$, noté plus simplement $\mathcal{L}(E)$, s'appelle un **endomorphisme**

On peut aussi vérifier qu'une application est linéaire en une seule relation

Proposition 1.2 (Stabilité par combinaison linéaire)

Soit f une application de E dans F.

 $f \in \mathcal{L}(E, F) \iff \forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall (\vec{u}, \vec{v}) \in E^2, \ f(\lambda \cdot_E \vec{u} +_E \mu \cdot_E \vec{v}) = \lambda \cdot_F f(\vec{u}) +_F \mu \cdot_F f(\vec{v})$

N.B. Dans toute la suite, pour alléger les notations, on utilisera les mêmes symboles + et · (ou rien) pour les lois relatives à E et F.

1. L'espace vectoriel $\mathcal{L}(E,F)$

Proposition 1.3 (Propriétés immédiates)

Soit $f \in \mathcal{L}(E, F)$. Alors:

 f(0_E) = 0_F. • $\forall (\lambda_1,\ldots,\lambda_n) \in \mathbb{K}^n$, $\forall (\vec{u}_1,\ldots,\vec{u}_n) \in E^n$, $f\left(\sum_{i=1}^n \lambda_i \vec{u}_i\right) = \sum_{i=1}^n \lambda_i f(\vec{u}_i)$

En particulier : $\forall n \in \mathbb{Z}, \forall \vec{u} \in E, f(n\vec{u}) = n f(\vec{u})$

- ① Les applications linéaires de \mathbb{K} dans \mathbb{K} sont toutes de la forme $x \mapsto ax$ où $a \in \mathbb{K}$
- Les applications linéaires de K² dans K sont toutes de la forme $(x,y) \longmapsto ax + by \text{ où } (a,b) \in \mathbb{K}^2$
- 3 L'application $\varphi: \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \longrightarrow \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ définie par $\varphi(f) = f'$ est linéaire.
- **1** L'application $\varphi: \mathcal{C}^0([0,1],\mathbb{R}) \longrightarrow \mathbb{R}$ définie par $\varphi(f) = \int_0^1 f(t) \, \mathrm{d}t$ est linéaire.

Définition 1.5 (Forme linéaire)

Si $F = \mathbb{K}$ on dit que l'application linéaire est une forme linéaire sur E.

. L'espace vectoriel $\mathcal{L}(E, F)$

Applications linéaires en dimension

Image d'une famille de vecteurs

Matrice d'une application linéaire

Rang d'une application linéaire

Représentation analytique

Proposition 1.6 (Structure d'e.v.)

Soit E et F deux \mathbb{K} -e.v. $\mathcal{L}(E,F)$ est aussi un \mathbb{K} -e.v.

En plus de la stabilité par combinaison linéaire, on a :

Proposition 1.7 (Composition)

- ① Si $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$. Autrement dit, la composée de deux applications linéaires est encore linéaire.
- ② Si $f \in \mathcal{L}(E, F)$ est bijective alors $f^{-1} \in \mathcal{L}(F, E)$

Définition 1.8 (Isomorphisme, automorphisme)

- 1 Toute application linéaire bijective de E dans F s'appelle un isomorphisme de
- Tout endomorphisme bijectif de E s'appelle un automorphisme de E.
- a L'ensemble des automorphismes de E, noté GL(E), muni de la loi de composition o, est un groupe non commutatif appelé groupe linéaire de E.

lmage par une application linéaire

Définition 2.1 (Image directe/réciproque)

Soit $f \in \mathcal{L}(E, F)$, A une partie de E et B une partie de F.

L'image (directe) de A par f est l'ensemble

$$f(A) = {\vec{v} \in F : \exists \vec{u} \in A, \vec{v} = f(\vec{u})} = {f(\vec{u}), \vec{u} \in A}.$$

a L'image réciproque de B par f est l'ensemble

$$f^{-1}(B) = \{\vec{u} \in E : f(\vec{u}) \in B\}.$$

Une propriété importante de conservation de la structure d'e.v. par les applications

Proposition 2.2 (Image d'un s.e.v)

Soit $f \in \mathcal{L}(E, F)$, G un s.e.v de E et H un s.e.v de F.

Alors f(G) est un s.e.v de F et $f^{-1}(H)$ est un s.e.v de E.

2. Image par une application linéaire

Définition 2.3 (Image/Noyau)

Soit $f \in \mathcal{L}(E, F)$.

- On appelle image de f le s.e.v f(E) de F que l'on note lm f.
- ② On appelle **noyau** de f le s.e.v $f^{-1}(\{\vec{0}_F\})$ de E que l'on note Ker f.

On peut caractériser la surjectivité et l'injectivité d'une application linéaire :

Théorème 2.4 (Injectivité/Surjectivité)

Soit $f \in \mathcal{L}(E, F)$.

- ② f est injective ssi $Ker f = \{\vec{0}_F\}$

Soit $f \in \mathcal{L}(E, F)$ et $\vec{b} \in F$. Si $\vec{b} \in \text{Im } f$ et si \vec{u}_p est une solution particulière de l'équation $f(\vec{u}) = \vec{b}$, alors les solutions de cette équation sont les vecteurs de \vec{E} de la forme $\vec{u}_n + \vec{u}_h$ où \vec{u}_h décrit Ker f.

. Image par une application linéaire

Exemple 2.6 (Dérivation/intégration)

① Dans le \mathbb{R} -e.v. $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ des fonctions indéfiniment dérivables sur \mathbb{R} , considérons les applications $\varphi: E \longrightarrow E$ et $\psi: E \longrightarrow E$

$$(\int_{a}^{x} f \operatorname{est} \operatorname{la fonction} x \longmapsto \int_{a}^{x} f dx$$

- φ et ψ sont des endomorphismes de E.
- Ker (φ) est le s.e.v. des fonctions constantes et $\text{Im}(\varphi) = E$ donc φ est surjective mais pas injective.
- Ker $(\psi) = \{0\}$ et lm (ψ) est le s.e.v. des fonctions s'annulant en 0 donc ψ est injective mais pas surjective.
- On a $\forall f \in E$, $(\varphi \circ \psi)(f) = \left(\int_0^\cdot f\right)' = f$ et $(\psi \circ \varphi)(f) = \int_0^\cdot f' = f f(0)$ donc $\varphi \circ \psi = \mathrm{Id}_E$ (mais $\psi \circ \varphi \neq \mathrm{Id}_E$).
- ② Le sous-ensemble $E_0 = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) : f(0) = 0 \}$ est un s.e.v. de E. Considérons à présent les applications $\varphi_0: E_0 \longrightarrow E$ et $\psi_0: E \longrightarrow E_0$

Dans ce contexte, on a $\varphi_0 \circ \psi_0 = \operatorname{Id}_E$ et $\psi_0 \circ \varphi_0 = \operatorname{Id}_{E_0}$. Ainsi φ_0 et ψ_0 sont des isomorphismes réciproques l'un de l'autre

. Image par une application linéaire

Exemple 2.7 (Équation différentielle linéaire du 1er ordre)

Soit $a \in \mathbb{R}$ et $g: I \longrightarrow \mathbb{R}$ une fonction continue sur un intervalle I de \mathbb{R} . Considérons l'équation différentielle $(\mathcal{E}): u'(t) + au(t) = g(t), t \in I$.

On introduit l'application linéaire Φ entre les \mathbb{R} -e.v. $E = \mathcal{C}^1(I,\mathbb{R})$ et $F = \mathcal{C}^0(I,\mathbb{R})$ des fonctions réelles respectivement de classe \mathcal{C}^1 et continues sur I définie par

$$\Phi: E \longrightarrow F$$

$$f \longmapsto f' + i$$

- Ker (Φ) est l'ensemble des solutions de l'équation homogène associée à (\mathcal{E}) : u'(t) + au(t) = 0. C'est la droite vectorielle des fonctions $t \mapsto \lambda e^{-at}$, $\lambda \in \mathbb{R}$.
- Puis, l'équation (\mathcal{E}) s'écrivant $\Phi(f) = g$, son ensemble de solutions est $u_P + \text{Ker}(\Phi)$ où u_P est une solution particulière de (E). On retrouve ainsi un principe de superposition.

Proposition 2.8 (Image d'une famille de vecteurs)

Soit $f \in \mathcal{L}(E, F)$ et $(\vec{u_1}, \dots, \vec{u_p})$ une famille de vecteurs de E.

- ① Si $(\vec{u}_1, \dots, \vec{u}_p)$ est liée alors $(f(\vec{u}_1), \dots, f(\vec{u}_p))$ est liée.
- ② Soit $(\vec{u}_1, \dots, \vec{u}_p)$ une famille **libre** dans E Si f est injective alors $(f(\vec{u}_1), \dots, f(\vec{u}_p))$ est libre dans F.
- Soit $(\vec{u}_1, \dots, \vec{u}_p)$ une famille **génératrice** de E. Si f est surjective alors $(f(\vec{u_1}), \dots, f(\vec{u_p}))$ est une famille génératrice de F.
- En particulier, si $(\vec{u}_1, \dots, \vec{u}_n)$ est une base de E, alors $(f(\vec{u}_1), \dots, f(\vec{u}_n))$ est une famille génératrice de lm f.

3. Applications linéaires particulières

Définition 3.1 (Homothétie)

On appelle **homothétie vectorielle** de rapport $\lambda \in \mathbb{K}$, l'application $h_{\lambda} : E \longmapsto E$ définie par $h_{\lambda}(\vec{u}) = \lambda \vec{u}$. C'est un endomorphisme de E.

Quelques propriétés immédiates :

Proposition 3.2 (Composition)

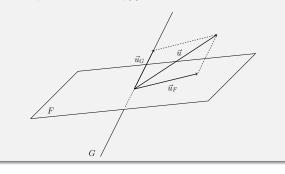
- Une homothétie vectorielle de $\mathcal{L}(E)$ commute avec tout $f \in \mathcal{L}(E)$.
- $\otimes \forall (\lambda, \mu) \in \mathbb{K}^2, h_{\lambda} \circ h_{\mu} = h_{\lambda\mu}.$
- $\emptyset \ \forall \lambda \in \mathbb{K}^*, \ h_{\lambda} \in \mathsf{GL}(E) \ \mathsf{et} \ (h_{\lambda})^{-1} = h_{1/\lambda}.$

. Applications linéaires particulières

Définition 3.3 (Projection)

Soit F et G deux s.e.v supplémentaires dans $E : E = F \oplus G$.

Tout vecteur $\vec{u} \in E$ se décomposant de manière unique sous la forme $\vec{u} = \vec{u}_E + \vec{u}_G$ où $\vec{u}_F \in F$ et $\vec{u}_G \in G$, on appelle projection vectorielle sur F parallèlement à G. l'application $p: E \longrightarrow E$ définie par $p(\vec{u}) = \vec{u}_E$



Applications linéaires particulières

Applications linéaires particulières

Théorème 3.4 (Propriétés)

Soit p la projection vectorielle sur F parallèlement à G dans $E = F \oplus G$.

- ① p est un endomorphisme de E et $p \circ p = p$ (on dit que p est idempotent).
- \bigcirc $F = \operatorname{Im} p = \operatorname{Ker} (p \operatorname{Id}_F)$ et $G = \operatorname{Ker} p$. F est l'ensemble des vecteurs invariants par $p: F = \{\vec{u} \in E : p(\vec{u}) = \vec{u}\}.$

Proposition 3.5 (Caractérisation)

Tout endomorphisme idempotent p de E est la projection vectorielle sur lm p parallèlement à Ker p, espaces alors supplémentaires dans $E : E = \text{Im } p \oplus \text{Ker } p$.

Remarque 3.6

En revanche, il ne suffit pas d'avoir $f \in \mathcal{L}(E)$ et $\operatorname{Ker} f \oplus \operatorname{Im} f = E$ pour dire que fest une projection

Exemple 3.7 (Détermination d'une projection)

Dans le \mathbb{R} -espace vectoriel $E=\mathbb{R}^3$, on considère le plan vectoriel P d'équation x - 2v + 3z = 0 et la droite vectorielle D de vecteur directeur (1.1.1). D a pour équations x = v = z.

Déterminons la projection vectorielle p sur le plan P parallèlement à la droite D.

- \bigcirc On vérifie tout d'abord que P et D sont supplémentaires dans E : ceci est dû à $P \cap D = \{(0, 0, 0)\} \text{ et } \dim P + \dim D = \dim E.$
- ② Pour tout vecteur (x, y, z) de E, notons (x', y', z') son image par p: (x', y', z') = p(x, y, z)
- 3 Le vecteur (x', y', z') est caractérisé par les deux conditions

$$\begin{cases} (x',y',z') \in P \\ (x,y,z)-(x',y',z') \in D \end{cases} \iff \begin{cases} x'-2y'+3z'=0 \\ x'-y' & = x-y \\ x' & -z'=x-z \end{cases} \iff \begin{cases} x=\frac{1}{2}(x+2y-3z) \\ y=\frac{1}{2}(-x+4y-3z) \\ z=\frac{1}{2}(-x+2y-z) \end{cases}$$

En conclusion, p est définie analytiquement par

Exemple 3.8 (Identification d'une projection)

Considérons l'endomorphisme p du \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$ suivant :

$$p: E \longrightarrow E$$

(x, y, z) \longmapsto (3x - 2y + 8z, -x + 2y - 4z, -x + y - 3z)

- ① On vérifie que $p \circ p = p$ donc p est une projection vectorielle de E.
- ② Déterminons le noyau de p. Soit $(x, y, z) \in E$.

$$(x,y,z) \in \operatorname{Ker}(p) \Longleftrightarrow \begin{cases} 3x - 2y + 8z = 0 \\ -x + 2y - 4z = 0 \\ -x + y - 3z = 0 \end{cases} \Longleftrightarrow \begin{cases} x = -2z \\ y = z \end{cases}$$

Donc Ker $(p) = \{(-2\lambda, \lambda, \lambda), \lambda \in \mathbb{R}\}$

C'est la droite vectorielle D engendrée par le vecteur (-2, 1, 1).

1 Déterminons les invariants de p. Soit $(x, y, z) \in E$

$$(x,y,z) \in \operatorname{Ker} \left(p - \operatorname{Id}_E \right) \Longleftrightarrow \begin{cases} 3x - 2y + 8z = x \\ -x + 2y - 4z = y \\ -x + y - 3z = z \end{cases} \Longleftrightarrow x - y + 4z = 0$$

Donc $\text{Ker}(p - \text{Id}_E) = \{(x, y, z) \in E : x - y + 4z = 0\} = \{(\lambda, \lambda + 4\mu, \mu), (\lambda, \mu) \in \mathbb{R}^2\}.$ C'est le plan vectoriel P engendré par (1,1,0) et (0,4,1).

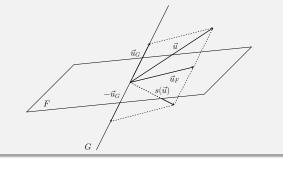
1 En conclusion, p est la projection vectorielle sur P parallèlement à D.

3. Applications linéaires particulières Définition 3.9 (Symétrie)

Soit F et G deux s.e.v supplémentaires dans E.

Tout vecteur $\vec{u} \in E$ se décomposant de manière unique sous la forme $\vec{u} = \vec{u}_E + \vec{u}_G$ où $\vec{u}_F \in F$ et $\vec{u}_G \in G$, on appelle symétrie vectorielle par rapport à F parallèlement

à G, l'application s : $E \longrightarrow E$ définie par $s(\vec{u}) = \vec{u}_F - \vec{u}_G$.



3. Applications linéaires particulières

Théorème 3.10 (Propriétés) Soit s la symétrie vectorielle par rapport à F parallèlement à G dans $E=F\oplus G$.

- \circ s est un endomorphisme de E tel que s \circ s = $|d_F|$ (on dit que s est **involutif**) et $s = 2p - Id_E$, p étant la projection sur F parallèlement à G.
- $oldsymbol{0} F = \operatorname{Ker}(s \operatorname{Id}_{E}) \ et \ G = \operatorname{Ker}(s + \operatorname{Id}_{F}).$ F (resp. G) est l'ensemble des vecteurs invariants (resp. anti-invariants) par s $F = \{\vec{u} \in E : s(\vec{u}) = \vec{u}\}\ (resp.\ G = \{\vec{u} \in E : s(\vec{u}) = -\vec{u}\}).$

Proposition 3.11 (Caractérisation)

Tout endormorphisme involutif s de E est la symétrie vectorielle par rapport à $Ker(s-Id_F)$ parallèlement à $Ker(s+Id_F)$, espaces alors supplémentaires dans E. 4. Applications linéaires en dimension finie a) Image d'une famille de vecteurs

Théorème 4.1 (Image d'une famille de vecteurs)

On suppose E de dimension finie n et F de dimension quelconque. Soit $f \in \mathcal{L}(E,F)$ et $(\vec{e_1},\ldots,\vec{e_n})$ une base de E

- ① la famille $(f(\vec{e}_1), \ldots, f(\vec{e}_n))$ est **libre** dans F ssi f est **injective**;
- a la famille $(f(\vec{e}_1), \dots, f(\vec{e}_n))$ est génératrice dans F ssi f est surjective;
- a la famille $(f(\vec{e_1}), \dots, f(\vec{e_n}))$ est une **base** de F ssi f est un **isomorphisme**. Dans ce cas, on dit que E et F sont isomorphes.

Corollaire 4.2 (Injectivité/surjectivité et dimension)

On suppose E et F de dimensions finies.

- s'il existe une application linéaire de E dans F injective alors dim $F \geqslant \dim E$;
- s'il existe une application linéaire de E dans F surjective alors dim F ≤ dim E;
- \odot s'il existe un **isomorphisme** de E sur F alors dim $F = \dim E$.

. Applications linéaires en dimension finie a) Image d'une famille de vecteurs

Théorème 4.3 (Détermination d'une application linéaire)

On suppose E de dimension **finie** n et F de dimension quelconque. Soit $(\vec{e}_1, \dots, \vec{e}_n)$ une base de E. Alors :

- **a** si $f \in \mathcal{L}(E, F)$ vérifie $f(\vec{e_i}) = 0$ pour tout $i \in \{1, ..., n\}$, alors f est l'application **nulle**;
- \emptyset si $(f,g) \in \mathcal{L}(E,F)$ et que $f(\vec{e_i}) = g(\vec{e_i})$ pour tout $i \in \{1,\ldots,n\}$ alors f = g.

 Autrement dit, si f et g coïncident sur une base alors elles sont égales;
- \odot soit $\vec{\varepsilon}_1, \ldots, \vec{\varepsilon}_n$ des vecteurs de F. Alors, il existe une unique application linéaire $f \in \mathcal{L}(E, F)$ telle que $f(\vec{e}_i) = \vec{\varepsilon}_i$ pour tout $i \in \{1, \ldots, n\}$.

On peut résumer ce résultat en une phrase :

si l'espace de départ est de dimension finie, une application linéaire est **entièrement déterminée** par la donnée des images d'une base.

4. Applications linéaires en dimension finie b) Représentation analytique

Théorème 4.4 (Représentation analytique)

On suppose E et F de dimensions finies respectives n et m.

Soit $\mathcal{B}_E = (\vec{e}_1, \dots, \vec{e}_n)$ une base de E, $\mathcal{B}_F = (\vec{e}_1, \dots, \vec{e}_m)$ une base de F et $f \in \mathcal{L}(E, F)$.

Notons pour tout
$$j \in \{1, ..., n\}$$
, $f(\vec{e_j}) = \sum_{i=1}^m a_{ij}\vec{\epsilon_i}$,

Si le vecteur $\vec{u} \in E$ a pour coordonnées (x_1, \dots, x_n) par rapport à \mathcal{B}_E , alors son image par fest le vecteur $f(\vec{u}) \in F$ de coordonnées (y_1, \dots, y_m) par rapport à \mathcal{B}_F où

pour tout
$$i \in \{1,\ldots,m\}$$
, $y_i = \sum_{i=1}^n a_{ij} x_j$. Cela s'écrit explicitement :

$$\begin{cases} y_1 = a_{11}x_1 + \dots + a_{1j}x_j + \dots + a_{1n}x_n \\ \vdots \\ y_i = a_{i1}x_1 + \dots + a_{ij}x_j + \dots + a_{in}x_n \\ \vdots \\ y_m = a_{m1}x_1 + \dots + a_{mj}x_j + \dots + a_{mn}x_n \end{cases}$$

Le système précédent s'appelle la **représentation analytique** de f relativement aux bases \mathcal{B}_E et \mathcal{B}_F .

Corollaire 4.5 (Applications linéaires canoniques)

Les applications linéaires des \mathbb{K} -e.v. canoniques \mathbb{K}^n et \mathbb{K}^m sont de la forme

$$(x_1,\ldots,x_n)\in\mathbb{K}^n\longmapsto\left(\sum_{j=1}^na_{1j}x_j,\ldots,\sum_{j=1}^na_{mj}x_j\right)\in\mathbb{K}^m$$
 où les a_{ij} sont des scalaires $de\ \mathbb{K}.$

Il est parfois commode d'écrire la correspondance sous la forme (cf. le cours de calcul différentiel de $2^{\rm e}$ année, calcul de matrice **jacobienne**)

$$\mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$$

$$(x_{1}, x_{2}, \dots, x_{n}) \longmapsto
\begin{pmatrix}
a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\
a_{21}x_{1} + a_{22}x_{2} + \dots + a_{1n}x_{n} \\
\vdots \\
a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}
\end{pmatrix}$$

19

. Applications linéaires en dimension finie c) Matrice d'une application linéaire

Définition 4.6 (Matrice d'une application linéaire)

On suppose E et F de dimensions **finies** respectives n et m. Soit $\mathcal{B}_E = (\vec{e}_1, \dots, \vec{e}_n)$ une base de E, $\mathcal{B}_F = (\vec{e}_1, \dots, \vec{e}_m)$ une base de F et $f \in \mathcal{L}(E,F)$.

On appelle matrice de f dans les bases \mathcal{B}_E et \mathcal{B}_F , le tableau de nombres à m lignes et n colonnes, noté $[f]_{\mathcal{B}_E,\mathcal{B}_F}$ (ou $\mathcal{M}(f,\mathcal{B}_E,\mathcal{B}_F)$), obtenu en écrivant en colonnes les coordonnées des vecteurs $f(\vec{e_j})$, $j \in \{1,\ldots,n\}$, dans la base \mathcal{B}_F .

Ainsi, si pour tout $j \in \{1, ..., n\}$, $f(\vec{e_j}) = \sum_{i=1}^m a_{ij} \vec{\epsilon_i}$,

$$[f]_{\mathcal{B}_E,\mathcal{B}_F} = egin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

4. Applications linéaires en dimension finie d) Rang d'une application linéaire

Proposition-définition 4.7 (Rang d'une application linéaire)

On suppose E de dimension **finie** n, F de dimension quelconque et $f \in \mathcal{L}(E,F)$. Alors $\operatorname{Im} f$ est de dimension **finie**. Sa dimension est appelée le **rang** de f et notée $\operatorname{re}(f)$.

Ainsi, si $(\vec{e}_1, \dots, \vec{e}_n)$ est une base de E, rg(f) est le rang de la famille de vecteurs $(f(\vec{e}_1), \dots, f(\vec{e}_n))$.

Quelques propriétés du rang d'une application linéaire :

Proposition 4.8 (Propriétés immédiates)

- On suppose E de dimension finie, F de dimension quelconque et $f \in \mathcal{L}(E,F)$.
- ② $\operatorname{rg}(f) \leq \dim F$, a vec égalité ssi f est surjective.

4. Applications linéaires en dimension finie d) Rang d'une application linéaire

Proposition 4.9 (Composition et rang)

Soit E, F des \mathbb{K} -e.v. de dimensions finies et G un \mathbb{K} -e.v. quelconque. Soit $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Alors :

$$rg(g \circ f) \leq min(rg(f), rg(g)).$$

De plus,

- si f est surjective alors $rg(g \circ f) = rg(g)$;
- ② si g est injective alors $rg(g \circ f) = rg(f)$.

Une conséquence importante :

Corollaire 4.10

On ne modifie pas la rang d'une application linéaire en composant celle-ci avec un isomorphisme.

22

4. Applications linéaires en dimension finie d) Rang d'une application linéaire

Théorème 4.11 (Théorème du rang)

On suppose E de dimension **finie**, F de dimension quelconque et $f \in \mathcal{L}(E,F)$. Si G est un supplémentaire de Ker f dans E alors $f_{\mid G}:G \longrightarrow \text{Im } f$ est un isomorphisme.

En particulier :

$$\dim(\operatorname{Ker} f) + \operatorname{rg}(f) = \dim E.$$

Corollaire 4.12 (Équivalence injectivité/surjectivité)

On suppose E et F de même dimension finie et $f \in \mathcal{L}(E,F)$. Alors :

f est injective \iff f est surjective \iff f est un isomorphisme

En particulier, ces équivalences sont vérifiées pour tout endomorphisme f de E.

Théorème 4.13 (Espaces isomorphes)

Deux e.v. de dimension finie sont isomorphes ssi ils ont la même dimension.

Ainsi, tous les K-e.v. de dimension finie n sont isomorphes à Kn.

4. Applications linéaires en dimension finie d) Rang d'une application linéaire

Exemple 4.14 (Dérivation/intégration

Soit $E=\mathbb{R}_n[X]$ le \mathbb{R} -e.v. des polynômes à coefficients réels de degré au plus n et $F=\mathbb{R}_{n-1}[X]\times\mathbb{R}$. Considérons l'application linéaire $\varphi:E\longrightarrow F$

$$P \longmapsto (P', P(0))$$

- ① Déterminons le noyau de $\varphi: P \in \operatorname{Ker}(\varphi) \iff P' = 0$ et $P(0) = 0 \iff P = 0$.
- \odot Comme les e.v. E et F sont de **même dimension finie** n+1, φ est aussi surjective, c'est donc un isomorphisme.
- $\ \, {\bf Son}$ isomorphisme réciproque s'écrit $\varphi^{-1}: \ F \longrightarrow E$ $(Q, {\bf a}) \longmapsto \int \ Q + {\bf a}$

En résumé.

Notions à retenir

- Applications linéaires
 - * Caractérisation
 - * Représentation analytique
 - * Matrice
 - * Novau, image: lien avec l'injectivité, la surjectivité; isomorphisme
 - * Image d'une famille de vecteurs
 - * Théorème du rang
 - * Exemples géométriques : homothéties, projections, symétries