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1. Géométrie vectorielle de l’espace a) Vecteurs
Vecteurs
Un vecteur du plan ou de l’espace est caractérisé par sa direction, son sens et sa
longueur (ou norme).
Une base du plan est la donnée de deux vecteurs non colinéaires.
Une base de l’espace est la donnée de trois vecteurs non coplanaires.
Elle permet de repérer n’importe quel vecteur du plan ou de l’espace à l’aide de ses
composantes (on dit aussi parfois coordonnées).

Composantes/bases dans l’espace : diverses notations

• ~u

x
y
z

 dans la base
(
~i ,~j, ~k

)
signifie : ~u = x~i + y~j + z~k

↪→ notation simple en dimension 2 ou 3.

• ~u

x1
x2
x3

 dans la base (~e1,~e2,~e3) signifie : ~u = x1~e1 + x2~e2 + x3~e3

↪→ notation généralisable en dimension supérieure (cf. cours de Mathématiques).

• ~u

ux
uy
uz

 dans la base (~ex ,~ey ,~ez ) signifie : ~u = ux~ex + uy~ey + uz~ez

↪→ notation utile pour les changements de systèmes de coordonnées
(cartésiennes, polaires, cylindriques, sphériques... Cf. cours d’OMNI). 1

1. Géométrie vectorielle de l’espace b) Points
Vecteurs et points
Un vecteur du plan ou de l’espace est géométriquement représenté par un bipoint
(A,B) surmonté d’une flèche indiquant le sens : ~u = −→AB.
Il est ainsi représenté par un segment de droite orienté. Deux segments de droites
orientés parallèles, de même longueur et de même sens représentent le même vecteur
(règle du parallélogramme).

•

•

A

B

C

D

~u

~u

−→
AB =

−→
CD ⇐⇒ ABDC est un parallélogramme

~u =
−→
AB =

−→
CD
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1. Géométrie vectorielle de l’espace c) Repérage

Coordonnées/repères
Un repère de l’espace est la donnée d’un point O et d’une base (~ex ,~ey ,~ez ), on l’écrit
(O;~ex ,~ey ,~ez ). Il permet de repérer n’importe quel point de l’espace à l’aide de ses
coordonnées.

Repérage sur une droite
Dans un repère (O;~ex ), un point quelconque A de la droite est repéré par son
abscisse xA : −→OA = xA~ex .

~ex

O
0

A
xA

• •

Repérage dans un plan
Dans un repère (O;~ex ,~ey ), un point quelconque A du plan est repéré par son
abscisse xA et son ordonnée yA : −→OA = xA~ex + yA~ey .

~ex

~ey

O
•

A

xA

yA
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1. Géométrie vectorielle de l’espace c) Repérage
Repérage dans l’espace
Dans un repère (O;~ex ,~ey ,~ez ), un point quelconque A de l’espace est repéré par son
abscisse xA, son ordonnée yA et sa cote zA : −→OA = xA~ex + yA~ey + zA~ez .
On note usuellement les coordonnées d’un point en ligne, les composantes d’un

vecteur en colonne : O(0, 0, 0),A(xA, yA, zA) et ~ex

1
0
0

 ,~ey

0
1
0

 ,~ez

0
0
1

 ,
−→
OA

xA
yA
zA

.

~ex ~ey

~ez
O •

A

xA

yA

zA

Remarque : on parle parfois de coordonnées d’un vecteur, et on les écrit parfois en
ligne : −→OA(xA, yA, zA).

4

1. Géométrie vectorielle de l’espace c) Repérage

Vecteurs et points
Si (xA, yA, zA) et (xB , yB , zB) sont les coordonnées de A et B dans le repère
(O;~ex ,~ey ,~ez ), on écrit A(xA, yA, zA) et B(xB , yB , zB). On a

−→
OA = xA~ex + yA~ey + zA~ez et

−→
OB = xB~ex + yB~ey + zB~ez

Alors le vecteur −→AB = −→OB −−→OA a pour composantes dans la base (~ex ,~ey ,~ez ) :xB − xA
yB − yA
zB − zA

. On écrit usuellement en colonne : −→AB

xB − xA
yB − yA
zB − zA

.

Remarque : on note parfois les composantes en ligne : −→AB(xB − xA, yB − yA, zB − zA).
On écrit aussi parfois −→AB = B − A en cohérence avec la relation entre coordonnées
de A et B et composantes de −→AB décrite ci-dessus.
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2. Produit scalaire a) Définition

Attention : il existe plusieurs produits scalaires (cf. cours de Mathématiques de 2e

année). On parle ici du produit scalaire usuel (euclidien...)

Définition 2.1 (Produit scalaire/norme)
1 Soit ~u et ~v deux vecteurs de l’espace. Leur produit scalaire est le réel

~u ··· ~v = ‖~u‖×××‖~v‖×××cos(~̂u, ~v)

où (~̂u, ~v) est l’angle entre ~u et ~v.
Remarque : l’angle n’est pas nécessairement orienté.

2 La norme se déduit inversement du carré scalaire : ‖~u‖ =
√
~u ··· ~u.

Un vecteur est dit normé ou unitaire lorsque sa norme vaut 1.
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2. Produit scalaire a) Définition

Propriété 2.2 (Visualisation du produit scalaire)
À l’aide du théorème de Thalès et de la trigonométrie dans un triangle rectangle,
en notant θ = (~̂u, ~v) l’angle géométrique entre ~u et ~v (attention, l’angle θ peut être
aigu ou obtus, donc cos(θ) peut changer de signe), on peut visualiser le produit
scalaire de ~u et ~v selon la figure ci-dessous.

‖~u‖
×‖
~v‖

‖~v‖

‖~u‖

•
~u ·~v~u

•
1

~v

θ
•

•
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2. Produit scalaire b) Propriétés

Propriété 2.3 (Bilinéarité)

1 Le produit scalaire est symétrique : ~u ··· ~v = ~v ··· ~u.

2 Le produit scalaire est bilinéaire :
{
~u ··· (~v + ~w) = ~u ··· ~v + ~u ··· ~w
~u ··· (λ~v) = λ(~u ··· ~v)

(où λ est un réel).
3 Le produit scalaire est défini positif : ~u ··· ~u = ‖~u‖2 > 0 pour ~u 6=~0.

Propriété 2.4 (Expression analytique)
Soit une base orthonormée de l’espace et soit ~u et ~v deux vecteurs de composantes

respectives ~u

ux
uy
uz

 et ~v

vx
vy
vz

 dans cette base.

Le produit scalaire et la norme s’expriment alors en réel selon :

~u ··· ~v = uxvx + uyvy + uzvz et ‖~u‖ =
√
u2

x + u2
y + u2

z

Remarque 2.5 (Vecteur unitaire)

Pour tout vecteur ~u 6=~0, le vecteur 1
‖~u‖~u est un vecteur unitaire de mêmes sens et

direction que ~u.
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2. Produit scalaire c) Applications

Propriété 2.6 (Projection orthogonale d’un vecteur sur un autre)
Le projeté orthogonal ~v~u d’un vecteur ~v sur un vecteur non nul ~u s’exprime selon

~v~u = ~u ··· ~v
‖~u‖2 ~u

~u

~v

~v~u

θ

Si l’on note v~u la mesure algébrique de ~v~u sur l’axe orienté par ~u, alors on a :
v~u = ~u ··· ~v

‖~u‖ . En conséquence, v~u et ~u ··· ~v ont même signe.

Cas particulier : lorsque ~u est un vecteur unitaire, la formule se simplifie selon

~v~u = (~u ··· ~v)~u
9

2. Produit scalaire c) Applications

Démonstration de la projection (cf. propriété 2.6)

Par trigonométrie dans un triangle rectangle, v~u = ‖~v‖×××cos θ où θ = (~̂u, ~v) est
l’angle géométrique entre ~u et ~v .

Par ailleurs, on a cos θ = ~u ··· ~v
‖~u‖×××‖~v‖ , donc v~u = ~u ··· ~v

‖~u‖ .

On obtient alors le vecteur ~v~u le long de la droite dirigée par le vecteur unitaire 1
‖~u‖~u

selon ~v~u = v~u
(

1
‖~u‖~u

)
= v~u
‖~u‖~u d’où ~v~u = ~u ··· ~v

‖~u‖2~u.

Exemple 2.7 (Projections sur une base orthonormée)

Soit ~u un vecteur de composantes

ux
uy
uz

 dans la base orthonormée (~ex ,~ey ,~ez ) de

l’espace, c’est-à-dire ~u = ux~ex + uy~ey + uz~ez .
On peut obtenir ses composantes grâce aux produits scalaires (projections sur les
vecteurs de la base) selon 

ux = ~u ···~ex
uy = ~u ···~ey
uz = ~u ···~ez
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2. Produit scalaire c) Applications

Démonstration de l’addition (cf. propriété 2.3)

Partant des projetés de ~v et ~w : ~v~u = ~u ··· ~v
‖~u‖2~u et ~w~u = ~u ··· ~w

‖~u‖2 ~u

on obtient ~v~u +++ ~w~u = ~u ··· ~v +++ ~u ··· ~w
‖~u‖2 ~u.

D’autre part, le projeté de ~v +++ ~w est donné par (~v +++ ~w)~u = ~u ··· (~v +++ ~w)
‖~u‖2 ~u.

On a l’égalité des projections : (~v +++ ~w)~u = ~v~u +++ ~w~u
d’où par identification : ~u ··· (~v +++ ~w) = ~u ··· ~v +++ ~u ··· ~w .

~u
~v

~w

~v~u ~w~u

~v+~w

(~v+~w)~u

Illustration pour trois vecteurs coplanaires
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2. Produit scalaire c) Applications

Applications géométriques
• Tester l’orthogonalité de deux vecteurs :

~u et ~v sont orthogonaux ⇐⇒ ~u ··· ~v = 0

• Tester la colinéarité de deux vecteurs :

~u et ~v sont colinéaires ⇐⇒ ~u ··· ~v = ±‖~u‖.‖~v‖

Les vecteurs sont alors de même sens ssi le produit scalaire est positif.

Exemple 2.8 (Plan orthogonal à un vecteur)
On se place dans une base orthonormée de l’espace.

Soit a, b, c trois réels non simultanément nuls et ~u

a
b
c

 un vecteur fixé.

Alors l’ensemble des vecteurs ~v

x
y
z

 orthogonaux à ~u sont caractérisés par la relation

ax + by + cz = 0. Il s’agit d’une équation cartésienne du plan vectoriel orthogonal
à ~v .
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2. Produit scalaire c) Applications
Applications physiques

• En mécanique, le travail de la force constante −→F qui déplace en ligne droite son
point d’application de A à B est le produit scalaire −→F ···−→AB.

Travail de −→FA :
positif maximal

Travail de −→FB :
négatif minimal

Travail de −→FC : nul
13

2. Produit scalaire c) Applications
Applications physiques

• Dans divers domaines de la physique (mécanique des fluides, électromagnétisme,
thermodynamique, acoustique, etc.) le flux d’un champ de vecteurs −→F à travers
une surface orientée Σ est donné par l’intégrale de surface d’un produit scalaire∫ ∫

Σ

−→
F ···
−→
dS où −→dS représente un vecteur normal « élémentaire » à la surface Σ.
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2. Produit scalaire c) Applications
Applications physiques
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3. Forme linéaire a) Définition, représentation

Définition 3.1 (Forme linéaire)
Une forme linéaire sur Rn est une application f : Rn −→ R telle que (cf. cours de
Mathématiques, chapitre Algèbre linéaire){

∀~u, ~v ∈ Rn, f
(
~u + ~v

)
= f
(
~u
)

+ f
(
~v
)

∀α ∈ R, ∀~u ∈ Rn, f
(
α~u
)

= αf
(
~u
)

Proposition 3.2 (Représentation explicite sur R3R3R3)
• Formulation vectorielle

Toute forme linéaire f sur R3 vue comme fonction d’une variable vectorielle peut
s’écrire dans une base

(
~ex ,~ey ,~ez

)
de l’espace des vecteurs sous la forme :

f
(
x~ex + y~ey + z~ez

)
= ax + by + cz

• Formulation ponctuelle (scalaire)
Toute forme linéaire f vue comme fonction de 3 variables réelles (scalaires) peut
s’écrire sous la forme :

f (x , y , z) = ax + by + cz

Remarque 3.3 (Coefficients d’une forme linéaire)
Les coefficients a, b, c peuvent s’exprimer en fonction de f suivant chacune des deux
formulations selon
a = f

(
~ex
)
, b = f

(
~ey
)
, c = f

(
~ez
)

ou a = f (1, 0, 0), b = f (0, 1, 0), c = f (0, 0, 1)
16



3. Forme linéaire a) Définition, représentation

Remarque 3.4 (Lien avec le calcul différentiel)
• Pour toute forme linéaire f sur R3, ses coefficients a, b, c s’obtiennent par
dérivations partielles (cf. chapitre Calcul différentiel) :

∂f
∂x (x , y , z) = a ∂f

∂y (x , y , z) = b ∂f
∂z (x , y , z) = c

Ces dérivées partielles définissent un vecteur appelé gradient de f en
(x , y , z), noté −−→grad f (x, y, z) ou −→∇f (x, y, z) (opérateur nabla ).
Dans le cas présent d’une forme linéaire, ce vecteur gradient est constant.

• Si la base
(
~ex ,~ey ,~ez

)
est orthonormée, la forme linéaire f peut s’exprimer à

l’aide d’un produit scalaire par son gradient selon

f (x , y , z) = −−→grad f (x , y , z) ···
(
x~ex + y~ey + z~ez

)
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3. Forme linéaire b) Ensembles de niveau
Ensembles de niveau
Les ensembles de niveau pour une fonction à valeurs réelles f : Rn −→ R sont les
sous-ensembles de Rn des points dont la valeur de f est constante.
• Cas du plan (n = 2)
Les ensembles de niveau sont des courbes de niveau :

Ek =
{

(x , y) ∈ R2 : f (x , y) = k
}
, k ∈ R

• Cas de l’espace (n = 3)
Les ensembles de niveau sont des surfaces de niveau :

Ek =
{

(x , y , z) ∈ R3 : f (x , y , z) = k
}
, k ∈ R

Exemple 3.5 (Ensembles de niveau pour les formes linéaires)
• Cas du plan

Les ensembles de niveau d’une forme linéaire f : R2 −→ R
(x , y) 7−→ ax + by

(pour a, b

non simultanément nuls) sont les droites parallèles d’équation ax+by =k, k∈R,
perpendiculaires au vecteur (a, b).
• Cas de l’espace
Les ensembles de niveau d’une forme linéaire f : R3 −→ R

(x , y , z) 7−→ ax + by + cz
(pour a, b, c non simultanément nuls) sont les plans parallèles d’équation
ax + by + cz = k, k ∈ R, perpendiculaires au vecteur (a, b, c). 18

3. Forme linéaire b) Ensembles de niveau

Exemple 3.6 (Ensembles de niveau pour les formes linéaires)

Lignes de niveau d’une forme linéaire 2D : droites parallèles
19

3. Forme linéaire b) Ensembles de niveau

Exemple 3.6 (Ensembles de niveau pour les formes linéaires)

Surfaces de niveau d’une forme linéaire 3D : plans parallèles
20

4. Orientation a) Droite, plan
Orientation d’une droite
Pour orienter une droite, on choisit une origine O et un sens de parcours sur la droite
(2 orientations possibles).
Le vecteur unitaire choisi ~ex donne l’orientation choisie. On définit ainsi un repère
normé orienté (O;~ex ).

~ex

O
0
•

sens direct

Orientation d’un plan
On choisit un axe de repère normé (O;~ex ) puis un deuxième axe passant par O de
repère normé (O;~ey ), perpendiculaire au premier. On choisit un sens de rotation pour
passer des vecteurs unitaires ~ex à ~ey , c’est le sens direct ou trigonométrique.
On obtient ainsi un repère orthonormé direct (O;~ex ,~ey ).

~ex

~ey

O
•

sens direct
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4. Orientation b) Espace
Orientation de l’espace
Une fois un plan de l’espace muni d’un repère orthonormé (O;~ex ,~ey ), il y a deux
choix possibles (opposés) du dernier vecteur unitaire ~ez orthogonal aux deux
premiers, pour orienter l’espace.
En physique, le sens direct du repère (O;~ex ,~ey ,~ez ) correspond à la règle des trois
doigts de la main droite :

pouce : ~ex~ex~ex index : ~ey~ey~ey majeur : ~ez~ez~ez

On obtient un repère (O;~ex ,~ey ,~ez ), dans lequel les trois vecteurs ~ex ,~ey et ~ez sont
unitaires et orthogonaux deux à deux, orienté selon la règle précédente.
On dit que c’est un repère orthonormé direct. 22

4. Orientation b) Espace
Orientation et permutations

~ey

~ez

~ex

•

++++++

+++

~ex

~ey

~ez

•

++++++

+++

~ez

~ex

~ey

•

++++++

+++
(~ex ,~ey ,~ez ) directe (~ez ,~ex ,~ey ) directe (~ey ,~ez ,~ex ) directe

Une permutation circulaire conserve l’orientation

~ex

~ez

~ey

• ~ez

~ey

~ex

• ~ey

~ex

~ez

•

(~ey ,~ex ,~ez ) indirecte (~ex ,~ez ,~ey ) indirecte (~ez ,~ey ,~ex ) indirecte
Une permutation de deux vecteurs inverse l’orientation 23

4. Orientation b) Espace

Orientation d’une base quelconque de l’espace
Considérons une base (~u, ~v , ~w) de l’espace non orthogonale.

• On introduit les vecteurs

~v ′ = ~v−−−~v~u et ~w ′ = ~w−−− ~w~u−−− ~w~v′

où ~v~u est le projeté orthogonal de ~v sur ~u,
et ~w~v et ~w~v′ sont respectivement les
projetés orthogonaux de ~w sur ~v et ~v ′.
On construit ainsi une base orthogonale
(~u, ~v ′, ~w ′) de l’espace.
• On norme ensuite les vecteurs ~u, ~v ′, ~w ′ en
posant :

~u′ = 1
‖~u‖~u, ~v

′′ = 1
‖~v ′‖~v

′, ~w ′′ = 1
‖~w ′‖ ~w

′

On construit ainsi une base orthonormée
(~u′, ~v ′′, ~w ′′) de l’espace.

~v~u~w~u

~w~v′

~u

~v

~w

~v ′

~w ′

~v ′′
~w ′′

~u′

On définit alors l’orientation de la base quelconque (~u, ~v , ~w) comme étant celle de la
base orthonormée (~u′, ~v ′′, ~w ′′).

24

5. Produit vectoriel a) Définition

Définition 5.1 (Produit vectoriel)
Soit ~u et ~v deux vecteurs de l’espace orienté. Leur produit vectoriel est le vecteur
~u ∧ ~v défini par :
• si ~u et ~v sont colinéaires ou que l’un des deux est nul, ~u ∧ ~v =~0 ;
• si ~u et ~v ne sont ni nuls ni colinéaires, alors ~u ∧ ~v est l’unique vecteur dont les
caractéristiques sont :
∗ direction : ~u ∧ ~v est orthogonal à ~u et ~v ;
∗ sens : la base (~u, ~v , ~u ∧ ~v) est directe ;
∗ longueur : ‖~u ∧ ~v‖ = ‖~u‖×××‖~v‖×××| sin(~̂u, ~v)|.

θ

~v

~u

~u ∧ ~v

•

Attention : le produit vectoriel de deux vecteurs n’existe qu’en dimension 3 !
25



5. Produit vectoriel b) Propriétés

Propriété 5.2 (Bilinéarité)
1 Le produit vectoriel est antisymétrique : ~u ∧ ~v = −~v ∧ ~u.
2 Le produit vectoriel est bilinéaire, c’est-à-dire linéaire par rapport à chaque
variable :{

(~u + ~v) ∧ ~w = ~u ∧ ~w + ~v ∧ ~w
(λ~u) ∧ ~v = λ(~u ∧ ~v)

et
{
~u ∧ (~v + ~w) = ~u ∧ ~v + ~u ∧ ~w
~u ∧ (λ~v) = λ(~u ∧ ~v)

3 Dans une base orthonormée directe de l’espace (~ex ,~ey ,~ez ), soit ~u et ~v deux

vecteurs de composantes respectives ~u

ux
uy
uz

 et ~v

vx
vy
vz

.

Le produit vectoriel ~u ∧ ~v a pour composantes :

~u ∧ ~v

 uyvz − uzvy
−−−(uxvz − uzvx )

uxvy − uyvx


En particulier, si ~u et ~v sont deux vecteurs du plan de base (~ex ,~ey ) donc de

composantes respectives ~u

ux
uy
0

 et ~v

vx
vy
0

, alors ~u ∧ ~v = (uxvy − uyvx )~ez .

26

5. Produit vectoriel b) Propriétés
Composantes : procédé mnémotechnique
Retenir les expressions des composantes d’un produit vectoriel étant difficile, il est
pratique de procéder comme suit :

1 on écrit les composantes des vecteurs sous forme de matrices-colonnes ;
2 on recopie les deux premières composantes de chaque colonne en dessous ;
3 on note l’emplacement des produits en croix et l’on effectue les différences
des produits en croix : ux

uy

uz


ux

uy

∧

vx

vy

vz


vx

vy

∧
−→−→−→
−→−→−→
−→−→−→

uyvz − uzvy

uzvx − uxvz

uxvy − uyvx


On peut aussi calculer les composantes d’un produit vectoriel à l’aide d’un déterminant.
En posant

∣∣∣∣a c
b d

∣∣∣∣ = ad − bc (déterminant d’ordre 2) et en développant par
rapport à la 3e colonne :

~u ∧ ~v =

∣∣∣∣∣∣
ux vx ~ex
uy vy ~ey
uz vz ~ez

∣∣∣∣∣∣ =
∣∣∣∣uy vy
uz vz

∣∣∣∣~ex −−−
∣∣∣∣ux vx
uz vz

∣∣∣∣~ey +++
∣∣∣∣ux vx
uy vy

∣∣∣∣~ez

= (uyvz − uzvy )~ex −−− (uxvz − uzvx )~ey +++ (uxvy − uyvx )~ez
27

5. Produit vectoriel b) Propriétés

Remarque 5.3
Dans toute base orthonormée directe de l’espace (~ex ,~ey ,~ez ), on a

~ex ∧~ey = −~ey ∧~ex = ~ez
~ey ∧~ez = −~ez ∧~ey = ~ex
~ez ∧~ex = −~ex ∧~ez = ~ey

Démonstration de l’expression analytique (cf. propriété 5.2)

~u ∧ ~v = (ux~ex + uy~ey + uz~ez ) ∧ (vx~ex + vy~ey + vz~ez )
= (ux~ex ) ∧ (vx~ex + vy~ey + vz~ez ) + uy~ey ∧ (vx~ex + vy~ey + vz~ez )

+ uz~ez ∧ (vx~ex + vy~ey + vz~ez ) par linéarité par rapport à la 1re variable
= (ux~ex ) ∧ (vx~ex ) + (ux~ex ) ∧ (vy~ey ) + (ux~ex ) ∧ (vz~ez )

+ (uy~ey ) ∧ (vx~ex ) + (uy~ey ) ∧ (vy~ey ) + (uy~ey ) ∧ (vz~ez )
+ (uz~ez ) ∧ (vx~ex ) + (uz~ez ) ∧ (vy~ey ) + (uz~ez ) ∧ (vz~ez )

On simplifie tout ceci en utilisant ~ex ∧~ex =~0, ~ex ∧~ey = ~ez , ~ey ∧~ex = −~ez , etc.
On obtient ~u ∧ ~v = (uyvz − uzvy )~ex + (uzvx − uxvz )~ey + (uxvy − uyvx )~ez .
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5. Produit vectoriel c) Applications
Applications géométriques
• Calcul d’aire : l’aire du parallélogramme construit sur les vecteurs ~u et ~v est
donnée par ‖~u ∧ ~v‖.

~u

~v

‖~u‖

‖~v‖×××
∣∣ sin(θ)

∣∣
θ

aire = base (‖~u‖)××× hauteur
(
‖~v‖×××

∣∣ sin(θ)
∣∣) = ‖~u ∧ ~v‖

Remarque : dans le plan orienté,
∗∗∗ ‖~u‖×××‖~v‖×××

∣∣ sin(θ)
∣∣ représente l’aire géométrique (positive) du

parallélogramme ;
∗∗∗ ‖~u‖×××‖~v‖×××sin(θ) représente l’aire algébrique (avec un éventuel signe) du

parallélogramme.
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5. Produit vectoriel c) Applications
Applications géométriques
• Calcul d’aire : l’aire du parallélogramme construit sur les vecteurs ~u et ~v est
donnée par ‖~u ∧ ~v‖.
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5. Produit vectoriel c) Applications

Démonstration de l’aire d’un parallélogramme (cf. propriété 5.2)
Soit ~u et ~v deux vecteurs du plan de base (~ex ,~ey ) de composantes respectives

~u

ux
uy
0

 et ~v

vx
vy
0

. Alors ~u ∧ ~v = (uxvy − uyvx )~ez .

~u

~v

ux

ux

uxuy/2

uxuy/2uy

uy

vx

vx

vy

vy
vxvy/2

vxvy/2

uy

uy

vx

vx

uyvx

uyvx

aire
uxvy − uyvx

aire du parallélogramme = aire du grand rectangle
− aire des 2 triangles sur ~u − aire des 2 triangles sur ~v
− aire des deux petits rectangles

(ux + vx)(uy + vy)− 2× uxuy/2− 2× vxvy/2− 2 uyvx = uxvy − uyvx 31

5. Produit vectoriel c) Applications

Démonstration de l’addition (cf. propriété 5.2)
Lorsque les vecteurs ~u, ~v , ~w sont coplanaires il est aisé de vérifier géométriquement
la bilinéarité :

~u∧(~v + ~w) = ~u∧~v + ~u∧~w
En effet, en notant ~n le vecteur unitaire orthogonal au plan engendré par les vecteurs
~u, ~v et ~w et tel que (~u, ~v ,~n) et (~u, ~w ,~n) soient des bases directes :

~u∧~v = ‖~u∧~v‖~n ~u∧~w = ‖~u∧~w‖~n ~u∧(~v + ~w) = ‖~u∧(~v + ~w)‖~n

Le schéma ci-dessous indique que
‖~u∧~v‖+ ‖~u∧~w‖ = ‖~u∧(~v + ~w)‖

d’où le résultat.

aire
‖~u∧~v‖

aire
‖~u∧~w‖

~u

~v

~w
aire∥∥~u∧(~v+~w)

∥∥
~u

~v+
~w

aire du parallélogramme construit sur ~u et ~v
+ aire du parallélogramme construit sur ~u et ~w
= aire du parallélogramme construit sur ~v + ~w 32

5. Produit vectoriel c) Applications
Applications géométriques
• Tester la colinéarité de deux vecteurs :

~u et ~v sont colinéaires ⇐⇒ ~u ∧ ~v =~0

• Tester l’orthogonalité de deux vecteurs :

~u et ~v sont orthogonaux ⇐⇒ ‖~u ∧ ~v‖ = ‖~u‖...‖~v‖

• Tester la coplanarité de trois vecteurs :

~u, ~v et ~w sont coplanaires ⇐⇒ ~u ··· (~v ∧ ~w) = 0
⇐⇒ ~v ··· (~w ∧ ~u) = 0
⇐⇒ ~w ··· (~u ∧ ~v) = 0

Remarque : la quantité ~u ··· (~v ∧ ~w) s’appelle produit mixte des trois vecteurs
~u, ~v , ~w , ce produit est noté

(
(~u, ~v , ~w)

)
(cf. paragraphe 6.1).

Il se trouve que les trois nombres ~u ··· (~v ∧ ~w), ~v ··· (~w ∧ ~u), ~w ··· (~u ∧ ~v) coïncident...
• Calcul d’un vecteur orthogonal à deux vecteurs ~u, ~v non colinéaires : ~u ∧ ~v .
• Calcul d’un vecteur normal à un plan défini par trois points A,B,C : −→AB ∧ −→AC .
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5. Produit vectoriel c) Applications
Applications physiques

• Le moment d’une force −→F appliquée à un
point M par rapport à un autre point O est
défini par

−→
MO

(−→
F
)

=
−−→
OM ∧

−→
F

C’est une grandeur physique vectorielle
traduisant l’aptitude de cette force à faire
tourner un système mécanique autour de ce
point, souvent appelé pivot.
Il s’exprime en N·m (Newton mètre).

• La relation de Lorentz exprime la force
magnétique exercée sur une particule de
charge électrique, animée d’une vitesse dans
un champ magnétique :

−→
F = q~v ∧

−→
B

La force de Lorentz a toujours une puissance
nulle car elle est constamment perpendiculaire
au vecteur vitesse de la particule :

P =
−→
F ··· ~v = 0
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6. Produit mixte a) Définition

Définition 6.1 (Produit mixte)

Soit ~u, ~v et ~w trois vecteurs de l’espace orienté. Le produit mixte de ces trois
vecteurs est le réel

(
(~u, ~v , ~w)

)
= (~u ∧ ~v) ··· ~w. Il est également noté

[
~u, ~v , ~w

]
.

Interprétation géométrique
Le volume du parallélépipède construit sur les vecteurs ~u, ~v et ~w est donné par∣∣ ((~u, ~v , ~w)

) ∣∣.

~u

~v

~w

~u ∧ ~v

‖~u ∧ ~v‖

‖~w‖×
∣∣ cos(θ)

∣∣
θ

volume = base
(
‖~u ∧ ~v‖

)
××× hauteur

(
‖~w‖×××

∣∣ cos(θ)
∣∣) =

∣∣ ((~u, ~v , ~w)
) ∣∣
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6. Produit mixte b) Propriétés

Propriété 6.2 (Permutations, trilinéarité)
1 De l’interprétation du produit vectoriel en tant que volume d’un parallélépipède,
on déduit l’invariance ou anti-invariance par permutations de

(
(~u, ~v , ~w)

)
.

De manière plus précise :
a Le produit mixte est antisymétrique : si on échange 2 vecteurs (côte à
côte), le résultat est multiplié par −1.(

(~u, ~v , ~w)
)

= −
(
(~v , ~u, ~w)

)
= −

(
(~u, ~w , ~v)

)
= −

(
(~w , ~v , ~u)

)
b Le produit mixte est invariant par permutations circulaires :(

(~u, ~v , ~w)
)

=
(
(~v , ~w , ~u)

)
=
(
(~w , ~u, ~v)

)
Par exemple, la première égalité s’écrit (~u ∧ ~v) ··· ~w = ~u ··· (~v ∧ ~w).

2 Le produit mixte de trois vecteurs dont deux sont colinéaires est nul.

3 Le produit mixte est trilinéaire, c’est-à-dire linéaire par rapport à chaque
variable : (

(~u, ~v , ~w + ~w ′)
)

=
(
(~u, ~v , ~w)

)
+
(
(~u, ~v , ~w ′)

)(
(~u, ~v , λ~w)

)
= λ

(
(~u, ~v , ~w)

)
et de même avec les deux autres variables.
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6. Produit mixte b) Propriétés

Propriété 6.3 (Expression analytique)
On se place dans une base orthonormée directe (~ex ,~ey ,~ez ) de l’espace.

Le produit mixte des vecteurs ~u

ux
uy
uz

, ~v

vx
vy
vz

 et ~w

wx
wy
wz

 vaut :

(
(~u, ~v , ~w)

)
= uxvywz + uyvzwx + uzvxwy − uzvywx − uyvxwz − uxvzwy

Le produit mixte de trois vecteurs est en fait un déterminant de matrice (cf. cours
de Mathématiques de 2e année). On le note alors de la manière suivante, et l’on
dispose d’une méthode mnémotechnique pour le calculer (règle de Sarrus) :

(
(~u, ~v , ~w)

)
=

∣∣∣∣∣∣
ux vx wx
uy vy wy
uz vz wz

∣∣∣∣∣∣
ux vx wx

uy vy wy

uz vz wz

ux vx wx

uy vy wy

	 uzvywx

	 uxvzwy

	 uyvxwz

⊕ uxvywz

⊕ uyvzwx

⊕ uzvxwy
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6. Produit mixte c) Applications
Applications géométriques
On peut
• tester la coplanarité de 3 vecteurs :

~u, ~v , ~w sont coplanaires ⇐⇒
(
(~u, ~v , ~w)

)
= 0

• tester l’orientation de 3 vecteurs :
~u, ~v , ~w forment une base directe ⇐⇒

(
(~u, ~v , ~w)

)
> 0

Démonstration du test de coplanarité
1 Sens direct (⇒⇒⇒) : supposons ~u, ~v , ~w coplanaires.
Alors l’un des vecteurs est combinaison linéaire des deux autres, par exemple
~w = a~u + b~v pour des réels a et b.
Dans ce cas, par trilinéarité (cf. propriété 6.2) :(

(~u, ~v , ~w)
)

=
(
(~u, ~v , a~u + b~v)

)
= a
(
(~u, ~v , ~u)

)
+ b
(
(~u, ~v , ~v)

)
Or, toujours d’après 6.2,

(
(~u, ~v , ~u)

)
=
(
(~u, ~v , ~v)

)
= 0. D’où

(
(~u, ~v , ~w)

)
= 0.

2 Sens réciproque (⇐⇐⇐) : supposons
(
(~u, ~v , ~w)

)
= 0.

a Si ~u et ~v sont colinéaires, alors ~u, ~v , ~w coplanaires.
b Supposons ~u et ~v non colinéaires.
D’après la définition 6.1 du produit mixte, ~u ∧ ~v est orthogonal à ~w .
Or, l’ensemble des vecteurs orthogonaux à ~u ∧ ~v est le plan engendré par ~u et ~v ,
c’est-à-dire l’ensemble des combinaisons linéaires a~u + b~v , a, b ∈ R.
Donc ~w est une combinaison linéaire de ~u et ~v . D’où ~u, ~v , ~w sont coplanaires.
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6. Produit mixte c) Applications
Applications géométriques : équation d’un plan
Cas particulier : soit a, b, c trois réels non nuls et A(a, 0, 0),B(0, b, 0) et C(0, 0, c).
Déterminons l’équation du plan (P) défini par les trois points A,B,C .
Soit M(x , y , z) un point générique de l’espace. On a :

M ∈ P ⇐⇒ les 4 points A,B,C ,M sont coplanaires
⇐⇒ les 3 vecteurs

−→
AB,
−→
AC ,
−−→
AM sont coplanaires

⇐⇒
(
(
−−→
AM,

−→
AB,
−→
AC)

)
= 0

• Premier calcul : partant de −−→AM

x − a
y
z

 ,
−→
AB

−ab
0

 ,
−→
AC

−a0
c

 :

(
(
−−→
AM,

−→
AB,
−→
AC)

)
=

∣∣∣∣∣∣
x − a −a −a
y b 0
z 0 c

∣∣∣∣∣∣ = bc(x − a) + acy + abz

• Deuxième calcul : partant de −−→AM

x − a
y
z

 et −→AB ∧ −→AC

bc
ac
ab

 :

(
(
−−→
AM,

−→
AB,
−→
AC)

)
=
−−→
AM ···

(−→
AB ∧

−→
AC
)

= bc(x − a) + acy + abz

En égalant alors
(
(−−→AM,

−→
AB,
−→
AC)

)
à 0, on tire l’équation x

a + y
b + z

c = 1.
39

6. Produit mixte c) Applications
Application physique : moment d’une force par rapport à un axe
• Le moment d’une force −→F appliquée en un point M par rapport à un axe ∆

orienté de vecteur directeur unitaire ~k passant par un point O est défini par

M∆
(−→
F
)

=
−→
MO

(−→
F
)
··· ~k =

(
(
−−→
OM,

−→
F , ~k)

)
C’est une grandeur physique scalaire traduisant l’aptitude de cette force à faire
tourner un système mécanique autour de cet axe.
Elle s’exprime en N·m (Newton mètre).

Remarque : cette quantité ne dépend pas du point O sur l’axe ∆.
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7. Barycentres a) Barycentre de deux points

Définition 7.1 (Barycentre de deux points)
Soit (A1,m1) et (A2,m2) deux points pondérés de l’espace tels que A1 6= A2 et l’un
des réels m1,m2 soit non nul.
Un barycentre de (A1,m1), (A2,m2) est un point G de l’espace vérifiant

m1
−−→
GA1 + m2

−−→
GA2 =~0.

Analyse
Supposons qu’un tel G existe. Soit M un point quelconque de l’espace.
Avec la relation de Chasles :

m1
−−→
GA1 + m2

−−→
GA2 =~0 ⇐⇒ m1(

−−→
GM +

−−→
MA1) + m2(

−−→
GM +

−−→
MA2) =~0

⇐⇒ (m1 + m2)
−−→
MG = m1

−−→
MA1 + m2

−−→
MA2

Disjonction de cas :
• si m1 + m2 6= 0, alors, en prenant pour M l’origine O d’un repère, on obtient

−→
OG = m1

m1 + m2

−−→
OA1 + m2

m1 + m2

−−→
OA2

Donc G existe et est défini de manière unique ;
• si m1 + m2 = 0, on obtient m1(−−→OA1 −

−−→
OA2) =~0 donc −−−→A1A2 =~0 puisque m1 6= 0.

Cela donne A1 = A2, qui est absurde : G n’existe pas.
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7. Barycentres a) Barycentre de deux points

Ce qui démontre la propriété suivante :

Propriété 7.2 (Formule du barycentre)
• Les points pondérés (A1,m1) et (A2,m2) de l’espace admettent un barycentre

si et seulement si m1 + m2 6= 0.
• Le barycentre, lorsqu’il existe, est unique.
• Lorsque m1 + m2 6= 0, si G est le barycentre de (A1,m1) et (A2,m2), pour tout

point M de l’espace :
−−→
MG = m1

m1 + m2

−−→
MA1 + m2

m1 + m2

−−→
MA2.

En particulier, si O est l’origine d’un repère de l’espace alors :
−→
OG = m1

m1 + m2

−−→
OA1 + m2

m1 + m2

−−→
OA2.

Si de plus m1 = m2, alors
−→
OG = 1

2
−−→
OA1 + 1

2
−−→
OA2.

Dans ce cas, G est le milieu du segment [A1,A2].
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7. Barycentres a) Barycentre de deux points

Propriété 7.3 (Position relative du barycentre)
Soit G le barycentre des points pondérés (A1,m1), (A2,m2) de l’espace. Alors :
• G appartient à la droite (A1A2),
• G appartient au segment [A1A2] si et seulement si m1m2 > 0
• G est le plus près du point Ai dont la pondération mi est la plus grande en valeur

absolue : |mi | = max(|m1|, |m2|),
• si m1 = m2 alors G est le milieu de [A1A2]. On l’appelle isobarycentre de A1 et A2.

Exemple 7.4 (Position relative du barycentre)
Soit A,B deux points. Sur la figure ci-dessous, on a placé les barycentres

1 G1 de (A, 2), (B, 2) :{−−→
OG1 = 1

2
−→
OA + 1

2
−→
OB

=⇒ −−→
AG1 = 1

2
−→
AB

2 G2 de (A,−2), (B, 1) :{−−→
OG2 = 2−→OA−−→OB
=⇒ −−→

AG2 = −−→AB

3 G3 de (A, 1), (B,−2) :{−−→
OG3 = −−→OA + 2−→OB
=⇒ −−→

AG3 = 2−→AB

4 G4 de (A,−1), (B,−3) :{−−→
OG4 = 1

4
−→
OA + 3

4
−→
OB

=⇒ −−→
AG4 = 3

4
−→
AB

• •
A B

•
G1

•
G2

•
G3

•
G4 43



7. Barycentres b) Barycentre de n points

Définition 7.5 (Barycentre de n points)
Soit A1,A2, . . . ,An n points distincts de l’espace et soit m1,m2, . . . ,mn n réels non
tous nuls.
Un barycentre des points pondérés (Ai ,mi ), i ∈ {1, . . . , n} est un point G de
l’espace vérifiant n∑

i=1
mi
−−→
GAi =~0.

Lorsque tous les mi sont égaux, on parle d’isobarycentre.

On peut facilement généraliser les propriétés du barycentre de 2 points :

Propriété 7.6 (Formule du barycentre)
Le barycentre des n points pondérés (Ai ,mi ), i ∈ {1, . . . , n} existe et est unique

si et seulement siM =
n∑

i=1
mi 6= 0.

Dans ce cas, en notant G le barycentre, on a pour tout point M de l’espace :

−−→
MG =

n∑
i=1

mi

M
−−→
MAi

M est la masse totale du système de points pondérés.
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7. Barycentres b) Barycentre de n points

Remarque 7.7 (Proportionnalité des poids)

Ce qui détermine un barycentre n’est pas le poids mi en lui-même mais le rapport mi

M .

En effet, le barycentre d’un système de points pondérés ne change pas si on multiplie
tous les poids par un même nombre.

En d’autres termes, pour tout α 6= 0, les systèmes de points pondérés

(Ai ,mi ), i ∈ {1, . . . , n} et (Ai , αmi ), i ∈ {1, . . . , n}

ont même barycentre.

Lorsque tous les poids mi coïncident, l’isobarycentre G des n points est donné par

−−→
MG = 1

n

n∑
i=1

−−→
MAi
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7. Barycentres c) Coordonnées d’un barycentre

Propriété 7.8 (Coordonnées d’un barycentre)
Dans l’espace muni d’un repère (O;~ex ,~ey ,~ez ), si G est barycentre de n points

pondérés (Ai ,mi ), i ∈ {1, . . . , n}, la relation vectorielle
−→
OG =

n∑
i=1

mi

M
−−→
OAi permet de

donner les coordonnées de G en fonction de celles des Ai :

(xG , yG , zG ) =
(

1
M

n∑
i=1

mixAi ,
1
M

n∑
i=1

miyAi ,
1
M

n∑
i=1

mizAi

)
Dans le cas d’un isobarycentre (c’est-à-dire lorsque tous les mi sont identiques) :

(xG , yG , zG ) =
(
1
n

n∑
i=1

xAi ,
1
n

n∑
i=1

yAi ,
1
n

n∑
i=1

zAi

)
Dans le plan les relations ci-dessus sont analogues, il suffit de supprimer la 3e

coordonnée en z.

Exemple 7.9 (Coordonnées d’un barycentre)
Les coordonnées du barycentre de 2 points

(
(A, a), (B, b)

)
avec a + b 6= 0 dans le

plan muni d’un repère (O;~ex ,~ey ) sont (xG , yG ) =
(
axA + bxB

a + b ,
ayA + byB

a + b

)
.
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7. Barycentres d) Associativité des barycentres

Théorème 7.10 (Associativité des barycentres, cas de 3 points)

Dans l’espace, si G est le barycentre de (A, a), (B, b), (C , c) avec a + b + c 6= 0, et si
H est le barycentre de (A, a), (B, b) avec a + b 6= 0, alors G est le barycentre de
(H, a + b) et (C , c). H est appelé barycentre partiel.

(A, a)

(H, a + b)

(B, b)

G

(C , c)

En d’autres termes :

Barycentre
(
(A, a), (B, b), (C , c)

)
= Barycentre

((
Barycentre

(
(A, a), (B, b)

)
, a + b

)
, (C , c)

)
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7. Barycentres d) Associativité des barycentres

Démonstration de l’associativité (cf. théorème 7.10)
Soit G le barycentre de (A, a), (B, b), (C , c) et H le barycentre de (A, a), (B, b).
Ils existent car a + b 6= 0 et a + b + c 6= 0.
On a pour tout point M de l’espace :

(a + b + c)
−−→
MG = a

−→
MA + b

−−→
MB + c

−−→
MC et (a + b)

−−→
MH = a

−→
MA + b

−−→
MB.

En remplaçant, on obtient (a + b + c)−−→MG = (a + b)−−→MH + c
−−→
MC donc

−−→
MG = a + b

a + b + c
−−→
MH + c

a + b + c
−−→
MC

ce qui prouve que G est le barycentre du (H, a + b), (C , c).
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7. Barycentres d) Associativité des barycentres

Théorème 7.11 (Associativité du barycentre, cas de n points)
Dans l’espace, si :
• GA est le barycentre de p points pondérés (Ai ,mi ), i ∈ {1, . . . , p},
• GB est le barycentre de q points pondérés (Bj , nj ), j ∈ {1, . . . , q},
• G est le barycentre des p + q points pondérés (Ai ,mi ), i ∈ {1, . . . , p} et

(Bj , nj ), j ∈ {1, . . . , q},

alors, sous réserve que
p∑

i=1
mi +

q∑
j=1

nj 6= 0, G est aussi le barycentre des deux points

pondérés
(
GA,

p∑
i=1

mi

)
et
(
GB ,

q∑
j=1

nj

)
.

49

7. Barycentres e) Lien avec la physique : centre d’inertie
Barycentre et centre d’inertie
• Le centre d’inertie de n masses ponctuelles est le barycentre des points affectés

de leur masse.
• Le centre d’inertie d’une plaque homogène ayant un centre de symétrie est

précisément ce centre de symétrie.

G
•

G
•

• Le centre d’inertie d’une tige homogène est son milieu.
• Le centre d’inertie d’une plaque
triangulaire homogène ABC est
l’isobarycentre des points A,B,C .
C’est le point de concours des mé-
dianes du triangle ABC .
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En résumé...

Notions à retenir
• Produit scalaire

? Maîtrise du calcul analytique et géométrique
? Calcul de projections
? Utilisation en physique

• Produit vectoriel
? Visualisation de l’orientation
? Maîtrise du calcul analytique et géométrique
? Utilisation en physique

• Produit mixte
? Maîtrise du calcul analytique et géométrique
? Utilisation en physique

• Barycentres
? Maîtrise du calcul
? Utilisation en physique
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Annexes
• Autres règles d’orientation
• Applications des produits
scalaire, vectoriel et mixte
• Applications des barycentres



A. Autres règles d’orientation Dans l’espace
Orientation de l’espace
En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.
• Règle du bonhomme d’ampère

bras droit : ~ex
bras gauche : ~ey

de bas en haut : ~ez

• Règle de la rotation de la Terre

La Terre tourne
autour de son axe polaire
orienté du Sud au Nord
de l’Ouest vers l’Est.
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A. Autres règles d’orientation Dans l’espace
Orientation de l’espace
En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.
• Règle du tire-bouchon

Un tire-bouchon
tenu dans la main droite

que l’on tourne dans le sens
qui amène le pouce vers l’index

visse dans le bouchon.

• Règle du tourne-vis

Un tourne-vis
tenu dans la main droite

que l’on tourne dans le sens
qui amène le pouce vers l’index

visse dans le support.
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A. Autres règles d’orientation Dans l’espace
Orientation de l’espace
En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.
• Règle du robinet

Un bouton de robinet pris dans la main droite
que l’on tourne dans le sens qui amène le pouce vers l’index

ferme la canalisation.
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B. Applications du produit scalaire a) Trigonométrie

Application trigonométrique : loi des cosinus (théorème d’Al-Kashi)
On considère un triangle quelconque ABC de côtés AB = c, BC = a, CA = b et
d’angles (non orientés) α = Â, β = B̂, γ = Ĉ .
La loi des cosinus permet d’exprimer chacun des angles α, β, γ en fonction des côtés
a, b, c du triangle.

γ
α β

a

c
b

C

B

A

•

•
•

γ
~v

~v −~u

~u

Notons ~u = −→CB et ~v = −→CA.
On a alors −→BA = ~v − ~u, ‖~u‖ = a, ‖~v‖ = b, ‖~u − ~v‖ = c et ~u ··· ~v = ab cos(γ).
D’autre part, par bilinéarité du produit scalaire, on a
‖~v − ~u‖2 =

(
~v − ~u

)
···
(
~v − ~u

)
= ~v ··· ~v − ~v ··· ~u − ~u ··· ~v + ~u ··· ~u = ‖~u‖2 + ‖~v‖2 − 2~u ··· ~v

d’où l’on tire c =
√
a2 + b2 − 2ab cos(γ)

ou encore cos(γ) = a2 + b2 − c2

2ab
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B. Applications du produit scalaire b) Projection plane

Exercice B.1 (Projection plane)

L’espace est rapporté au repère orthonormé (O;~ex ,~ey ,~ez ). On se donne :
• (P) le plan d’équation ax + by + cz = d (a, b, c, d non nuls) ;
• A(xA, yA, zA) un point de (P) ;
• M(xM , yM , zM) un point quelconque de l’espace ;

• −→V

vx
vy
vz

 un vecteur quelconque de l’espace.

1 Donner un vecteur ~n unitaire normal à (P). On note (D) la droite passant A
orthogonale à P. Elle est alors déterminée par A et ~n.

2 Aspect vectoriel
a Déterminer le projeté de −→V sur (D). Donner son expression en fonction de ~n
puis donner ses composantes.

b En déduire le projeté de −→V sur le plan (P) en fonction de vecteurs déjà
déterminés. Puis donner ses composantes.

3 Aspect ponctuel
Déterminer les projetés de M sur (D) et sur (P) en fonction de vecteurs
déterminés précédemment. Expliquer comment obtenir leurs coordonnées.
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B. Applications du produit scalaire b) Projection plane

Solution (Projection plane)

1 Le plan (P) est caractérisé par les trois points A( d
a , 0, 0),B(0, d

b , 0),C(0, 0, d
c ),

soit encore par le point A et les vecteurs −→AB

− d
a

d
b
0

 et −→AC

− d
a
0
d
c

.

Les vecteurs −→AB et −→AC sont colinéaires aux vecteurs ~u

 b
−a
0

 et ~v

 c
0
−a

.

Un vecteur ~n

αβ
γ

 est normal à (P) ssi il est orthogonal à ~u et ~v , ce qui donne

~u ··· ~n = 0 et ~v ··· ~n = 0.
D’où les équations bα− aβ = 0 et cα− aγ = 0. On a β = b

aα et γ = c
aα.

En choisissant par exemple α = a, on obtient le vecteur normal ~n

a
b
c

.

(Remarque : il suffit de supposer a, b, c non tous nuls.)
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B. Applications du produit scalaire b) Projection plane

Solution (Projection plane)

1 Autre méthode.
Comme A ∈ (P), on a axA + byA + czA = d .

Soit M(x , y , z) un point quelconque de l’espace et −→N

a
b
c

.

Le point M appartient à (P) ssi ax + by + cz = d
ou encore ssi ax + by + cz = axA + byA + czA
qui s’écrit aussi a(x − xA) + b(y − yA) + c(z − zA) = 0.
Or l’expression a(x − xA) + b(y − yA) + c(z − zA) n’est autre que le produit
scalaire −→N ··· −−→AM.
Ainsi, M ∈ (P) ssi les vecteurs −−→AM et −→N sont orthogonaux.
Le vecteur −−→AM étant un vecteur générique de la direction du plan (P), on a
trouvé un vecteur −→N orthogonal à (P).
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B. Applications du produit scalaire b) Projection plane

Solution (Projection plane)

2 a On a −→VD = −→V~n =
−→
V ··· ~n
‖~n‖2 ~n = avx + bvy + cvz

a2 + b2 + c2 ~n.
Composantes :

1
a2 + b2 + c2

a2vx + abvy + acvz
abvx + b2vy + bcvz
acvx + bcvy + c2vz


b L’autre projection s’obtient en remarquant que−→

V = −→VP +−→VD donc −→VP = −→V −−→VD.
Composantes :

1
a2 + b2 + c2

 (b2 + c2)vx − abvy − acvz
−abvx + (a2 + c2)vy − bcvz
−acvx − bcvy + (a2 + b2)vz

 P

D

−→
V

−→
VD

−→
VP

MMD

MP
~n
•

A

3 En choisissant −→V = −−→AM, on trouve −−−→AMD = −→VD et −−−→AMP = −→VP , donc
MD = A +−→VD et MP = A +−→VP .
On peut ainsi obtenir les coordonnées de MD et MP à l’aide des composantes de−→
VD et −→VP en changeant les composantes vx , vy , vz en x − xA, y − yA, z − zA.
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C. Applications du produit vectoriel a) Trigonométrie
Applications trigonométriques : loi des sinus
On considère un triangle quelconque ABC de côtés AB = c, BC = a, CA = b et
d’angles (non orientés) α = Â, β = B̂, γ = Ĉ .
La loi des sinus permet d’exprimer une relation entre les rapports des sinus de chacun
des angles α, β, γ par leur côté opposé relatif a, b, c du triangle.

γ
α β

a

c
b

C

B

A

•

•
•

En calculant l’aire du triangle à l’aide du produit vectoriel de plusieurs façons :

1
2
∥∥−→AB ∧ −→AC∥∥ = 1

2
∥∥−→BA ∧ −→BC∥∥ = 1

2
∥∥−→CA ∧ −→CB∥∥

on tire
bc sin(α) = ac sin(β) = ab sin(γ)

soit, après division par abc :

sin(α)
a = sin(β)

b = sin(γ)
c
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C. Applications du produit vectoriel a) Trigonométrie
Applications trigonométriques : formulaire
• Formule trigonométrique : cos(ϕ− θ) = cos θ cosϕ+ sin θ sinϕ

+

~k

θ

ϕ

ϕ
−θ

O ~i

~j

cos θ

sin
θ

cosϕ

sin
ϕ

• A

•
B

Dans un repère orthonormé
(
O;~i ,~j

)
du plan, soit les points
A(cos θ, sin θ) et B(cosϕ, sinϕ).{−→

OA = cos θ~i + sin θ~j
−→
OB = cosϕ~i + sinϕ~j

Produit scalaire
1. Calcul analytique :

−→
OA ···

−→
OB =

cos θ cosϕ+ sin θ sinϕ

2. Calcul géométrique :
−→
OA ···

−→
OB =

‖
−→
OA‖×‖

−→
OB‖×cos

(−̂→
OA,
−→
OB
)

= cos(ϕ− θ)
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C. Applications du produit vectoriel a) Trigonométrie
Applications trigonométriques : formulaire
• Formule trigonométrique : sin(ϕ− θ) = cos θ sinϕ− sin θ cosϕ

+

~k θ

ϕ

ϕ
−θ

O ~i

~j

cos θ

sin
θ

cosϕ

sin
ϕ

• A

•
B

Dans un repère orthonormé direct(
O;~i ,~j, ~k

)
de l’espace, soit les points

A(cos θ, sin θ, 0) et B(cosϕ, sinϕ, 0).{−→
OA = cos θ~i + sin θ~j
−→
OB = cosϕ~i + sinϕ~j

Produit vectoriel
1. Calcul analytique :

−→
OA ∧

−→
OB =

(cos θ sinϕ− sin θ cosϕ)~k

2. Calcul géométrique :
−→
OA ∧

−→
OB =

‖
−→
OA‖×‖

−→
OB‖×sin

(−̂→
OA,
−→
OB
)
~k

= sin(ϕ− θ)~k
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C. Applications du produit vectoriel b) Distance dans l’espace
Applications géométriques : distance dans l’espace
• Distance d’un point à un plan : soit (P) un plan et M un point de l’espace.
On cherche à calculer la distance du point M au plan (P).

∗ Approche géométrique
(P) est défini par le point A et le vecteur ~n normal à (P).
Notons H la projection orthogonale du point M
sur le plan (P).

La distance du point M au plan (P) coïncide
avec la distance entre les points M et H :
d(M,P) = MH.
C’est aussi le projeté orthogonal du vecteur−−→
AM sur le vecteur ~n qui est donnée par la
propriété 2.6. Ainsi :

d(M,P) =
∣∣−−→AM ··· ~n ∣∣
‖~n‖

(P)

M

•H•
A

~n
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C. Applications du produit vectoriel b) Distance dans l’espace
Applications géométriques : distance dans l’espace
• Distance d’un point à un plan : soit (P) un plan et M un point de l’espace.
On cherche à calculer la distance du point M au plan (P).

∗ Approche analytique
L’espace est rapporté au repère orthonormé direct (O;~ex ,~ey ,~ez ).
(P) est défini par l’équation ax + by + cz + d = 0
(a, b, c non tous nuls) et M(x , y , z).

Un vecteur normal à (P) est donné par ~n
(a
b
c

)
(cf. exercice B.1).
D’après l’approche précédente :

d(M,P) = |ax + by + cz + d |√
a2 + b2 + c2

(P)

M

•H•
A

~n
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C. Applications du produit vectoriel b) Distance dans l’espace
Applications géométriques : distance dans l’espace
• Distance d’un point à un plan : exemple numérique
Soit le point M(6, 3, 4) et (P) le plan défini par les points A(1, 1, 0),B(0, 0, 1)
et C(0, 1, 1). On cherche la distance de M à (P).
C’est le plan passant par A de vecteur normal ~n = −→BC ∧ −→AC avec les vecteurs
−→
AC

−10
1

 et −→BC

0
1
0

. On a ~n

1
0
1

.

Un point P(x , y , z) quelconque de l’espace appartient à (P) ssi −→AP est
orthogonal à ~n, i.e. −→AP ··· ~n = 0, d’où l’équation x + z = 1.

Autre méthode : on recherche une équation de (P) de la forme
ax + by + cz + d = 0.
En traduisant A,B,C ∈ (P), on trouve le système
a + b + d = 0, c + d = 0, b + c + d = 0, d’où l’on tire a = c = −d et b = 0.
Ainsi (P) est caractérisé par l’équation x + z − 1 = 0.
Enfin, la distance du point M au plan (P) est donnée par

d(M,P) = |1× 6 + 0× 3 + 1× 4− 1|√
12 + 02 + 12

= 9√
2
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C. Applications du produit vectoriel c) Rotation dans l’espace
Applications géométriques : rotation dans l’espace
• Rotation dans l’espace

Soit (D) une droite orientée de vecteur unitaire ~n
dans l’espace orienté et A un point de (D).

Introduisons (P) le plan orthogonal à (D) passant
par A.

Pour tout point de l’espace M, notons MD et MP

ses projections orthogonales sur (D) et (P). On a
−−→
AM = −−−→AMP +−−−→AMD.
On dispose alors d’un repère orthogonal direct
(A;−−−→AMP ,~n∧

−−−→
AMP ,~n) de l’espace.

Soit θ un angle. Considérons dans le plan (P) la
rotation r de centre A et d’angle θ.

En se plaçant dans le repère orthogonal direct
(A;−−−→AMP ,~n∧

−−−→
AMP) du plan (P), on voit que

l’image r(M) de M par r est caractérisée par
−−−−−→
Ar(MP) = (cos θ)

−−−→
AMP + (sin θ)

(
~n∧
−−−→
AMP

)
.

D

P

θ

r(MP)
•

R(M)
•

MD •

MP•

M•

~n
A
•

MP
−−−→
AMP

cos θ

sin θ
θ

r(MP)

~n∧
−−−→
AMP

P
A
~n
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C. Applications du produit vectoriel c) Rotation dans l’espace
Applications géométriques : rotation dans l’espace
• Rotation dans l’espace

On définit ensuite dans l’espace R la rotation
de centre A, d’axe (D) et d’angle θ selon

−−−−→
AR(M) =

−−−−−→
Ar(MP) +

−−−→
AMD

Or −−−→AMD =
(−−→
AM ··· ~n

)
~n, donc

−−−→
AMP = −−→AM −−−−→AMD = −−→AM −

(−−→
AM ··· ~n

)
~n.

Puis ~n∧−−−→AMP = ~n∧
(−−→
AM −

−−−→
AMD

)
= ~n∧

−−→
AM

puisque ~n et −−−→AMD sont colinéaires.

En conséquence, on trouve
−−−−→
AR(M) = (cos θ)

[−−→
AM −

(−−→
AM ··· ~n

)
~n
]

+ (sin θ)
(
~n∧
−−→
AM

)
+
(−−→
AM ··· ~n

)
~n

c’est-à-dire :
−−−−→
AR(M) = (cos θ)−−→AM + (sin θ)

(
~n ∧
−−→
AM

)
+ (1− cos θ)

(−−→
AM ··· ~n

)
~n

Cas particulier : rotation d’angle droit (θ = π
2 )−−−−→

AR(M) = ~n ∧
−−→
AM +

(−−→
AM ··· ~n

)
~n

D

P

θ

r(MP)
•

R(M)
•

MD •

MP•

M•

~n
A
•

MP
−−−→
AMP

cos θ

sin θ
θ

r(MP)

~n∧
−−−→
AMP

P
A
~n
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D. Applications du produit mixte a) Équation d’un plan
Applications géométriques : équation d’un plan

Cas général : soit A(xA, yA, zA) un point et u

ux
uy
uz

, v
vx
vy
vz

deux vecteurs non colinéaires.

Déterminons l’équation du plan (P) défini par le points A et les vecteurs ~u, ~v .
Soit M(x , y , z) un point générique de l’espace. On a :

M ∈ P ⇐⇒ les 3 vecteurs
−−→
AM, ~u, ~v sont coplanaires

⇐⇒
(
(
−−→
AM, ~u, ~v)

)
= 0

Notons a, b, c les composantes du vecteur ~u ∧ ~v :

a=
∣∣∣∣ uy vy
uz vz

∣∣∣∣=uyvz−uzvy , b=−
∣∣∣∣ ux vx
uz vz

∣∣∣∣=uzvx−uxvz , c =
∣∣∣∣ ux vx
uy vy

∣∣∣∣=uxvy−uyvx

• Premier calcul :(
(
−−→
AM, ~u, ~v)

)
=
−−→
AM ···

(
~u ∧ ~v

)
= a(x − xA) + b(y − yA) + c(z − zA)

• Deuxième calcul :(
(
−−→
AM, ~u, ~v)

)
=

∣∣∣∣∣∣
x − xA ux vx
y − yA uy vy
z − zA uz vz

∣∣∣∣∣∣ = a(x − xA) + b(y − yA) + c(z − zA)

Notons enfin d = axA + byA + czA.
En égalant alors

(
(−−→AM, ~u, ~v)

)
à 0, on tire l’équation ax + by + cz = d . 63

D. Applications du produit mixte a) Équation d’un plan
Exercice D.1
L’espace est rapporté au repère orthonormé (O;~ex ,~ey ,~ez ).

On donne ~v1

2
0
3

 , ~v2

4
y
z

 et ~v3

 x
13
2

.

1 Déterminer y et z pour que ~v1 et ~v2 soient colinéaires.

Réponse : on a ~v1 ∧ ~v2

 −5y
30− 3z

3y

.

Donc : ~v1 et ~v2 sont colinéaires ssi ~v1 ∧ ~v2 =~0 ssi y = 0 et z = 10.

2 Déterminer x pour que ~v1 et ~v3 soient orthogonaux.
Réponse : on a ~v1 ··· ~v3 = 2x + 6.
Donc : ~v1 et ~v3 sont orthogonaux ssi ~v1 ··· ~v3 = 0 ssi x = −3.

3 Avec la valeur de x obtenue en question 2, quelle condition doivent vérifier y et z
pour que les vecteurs ~v1, ~v2, ~v3 soient coplanaires ?
Qu’observe-t-on lorsque y et z prennent les valeurs obtenues en question 1 ?

Réponse :
(
(~v1, ~v2, ~v3)

)
=

∣∣∣∣∣∣
2 4 −3
0 y 13
3 z 2

∣∣∣∣∣∣ = 13y − 26z + 156 = 13(y − 2z + 12).

Donc : ~v1, ~v2, ~v3 sont coplanaires ssi
(
(~v1, ~v2, ~v3)

)
= 0 ssi y − 2z + 12 = 0.

On observe que cette condition est satisfaite en particulier pour y = 0 et z = 6, ce qui
était prévisible puisque dans ce cas, les vecteurs ~v1 et ~v2 sont colinéaires. 64



D. Applications du produit mixte b) Distance dans l’espace
Applications géométriques : distance entre deux droites de l’espace
• Soit (D1) et (D2) deux droites de l’espace non parallèles non sécantes.

La droite (D1) est définie par un point A1 et un vecteur ~u1, et la droite (D2) est
définie par un point A2 et un vecteur ~u2.
On cherche à calculer la distance entre (D1) et (D2).

∗ Notons ~n = ~u1 ∧ ~u2. ~n est un vecteur
normal aux droites (D1) et (D2).
Introduisons :
? (P1) le plan orthogonal à ~n contenant
la droite (D1) ;

? (∆2) la droite projection orthogonale
de (D2) sur (P1) ;

? H1 le point d’intersection de (D1)
et (∆2).

On introduit de même les objets
géométriques similaires (P2), (∆1), H2
relatifs à la droite (D2).

La droite (H1H2) est la perpendiculaire
commune à (D1) et (D2).

(P1)

(P2)

~n

(D1)

(D2)

(∆2)

(∆1)

•
A1 ~u1

•
A2
~u2

~u2

~u1

•
H1

•
H2
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D. Applications du produit mixte b) Distance dans l’espace
Applications géométriques : distance entre deux droites de l’espace
• Soit (D1) et (D2) deux droites de l’espace non parallèles non sécantes.

La droite (D1) est définie par un point A1 et un vecteur ~u1, et la droite (D2) est
définie par un point A2 et un vecteur ~u2.
On cherche à calculer la distance entre (D1) et (D2).

∗ La distance entre (D1) et (D2) coïncide
avec la distance entre H1 et H2 :

d(D1,D2)=H1H2 =
∥∥−−−→H1H2

∥∥=
∣∣−−−→H1H2 ··· ~n

∣∣∥∥~n∥∥
En décomposant ensuite −−−→H1H2 selon−−−→
H1A1 +−−−→A1A2 +−−−→A2H2 et en remarquant
que −−−→A1H1 est colinéaire à ~u1 et que −−−→A2H2

est colinéaire à ~u2, donc que −−−→A1H1 et−−−→
A2H2 sont orthogonaux à ~n, on voit que
−−−→
H1H2 ··· ~n =

−−−→
A1A2 ··· ~n =

(
(
−−−→
A1A2, ~u1, ~u2)

)
Ainsi :

d(D1,D2) =
(
(−−−→A1A2, ~u1, ~u2)

)
‖~u1 ∧ ~u2‖

(P1)

(P2)

~n

(D1)

(D2)

(∆2)

(∆1)

•
A1 ~u1

•
A2
~u2

~u2

~u1

•
H1

•
H2
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D. Applications du produit mixte c) Force de Laplace
Application physique : force de Laplace
• Le dispositif des rails de Laplace consiste en

deux rails métalliques parallèles situés dans
l’entrefer d’un aimant en U engendrant un
champ magnétique −→B .
On y dépose une tige de longueur `
susceptible de se déplacer sans frottement.
Si on relie les deux rails à un générateur, un
courant continu d’intensité I circule dans le
circuit, et provoque une force −→F dite force de
Laplace sur la tige la mettant en mouvement.
La force −→F s’exprime selon la relation

−→
F = I

−→
` ∧
−→
B

le vecteur −→` étant dirigé le long de la tige
dans le sens du courant.
Le travail de −→F pendant un déplacement −→d de la tige le long des rails se calcule, en
notant −→S = −→d ∧ −→` et Φ le flux coupé à travers la surface balayée par la tige, selon

W =
−→
F ···
−→
d = I

(−→
` ∧
−→
B
)
···
−→
d = I

(
(
−→
` ,
−→
B ,
−→
d )
)

= I
(
(
−→
d ,
−→
` ,
−→
B )
)

= I
(−→
d ∧
−→
`
)
···
−→
B = I

−→
B ···
−→
S = I Φ
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E. Applications des barycentres a) Centre d’inertie

Barycentre et centre d’inertie (balance)
Considérons la balance ci-dessous permettant
de comparer deux solides de masses m1 et m2 :

A1 • A2•G•

m1
m2

−→
F1

−→
F2

−→
F3

• ~ex

~ez

O

On néglige la masse de la barre horizontale A1A2.
On cherche sur cette barre un point G pour que
ce système soit à l’équilibre.
Bilan des forces :
• poids du solide de masse m1 : −→F1 = −m1g ~ez , appliqué en A1 ;
• poids du solide de masse m2 : −→F2 = −m2g ~ez , appliqué en A2 ;
• réaction du support : −→F3 = F3~ez , appliquée en G .

Les objets étant immobiles, d’après la relation fondamentale de la statique, la somme
des forces et la somme des moments (en n’importe quel point) sont nulles :

−→
F1 +

−→
F2 +

−→
F3 =~0 et

−−→
MG (

−→
F1) +

−−→
MG (

−→
F2) +

−−→
MG (

−→
F3) =~0 67
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de comparer deux solides de masses m1 et m2 :

A1 • A2•G•

m1
m2

−→
F1

−→
F2

−→
F3

• ~ex

~ez

O

Or


−−→
MG (−→F1) = −−→GA1 ∧

−→
F1 = m1g

−−→
GA1 ∧~ez−−→

MG (−→F2) = −−→GA2 ∧
−→
F2 = m2g

−−→
GA2 ∧~ez−−→

MG (−→F3) = −→GG ∧
−→
F3 =~0

L’équation des moments donne g(m1
−−→
GA1 + m2

−−→
GA2) ∧~ez =~0.

Comme g 6= 0 et m1
−−→
GA1 + m2

−−→
GA2 est colinéaire à ~ex , on en déduit l’équation :
m1
−−→
GA1 + m2

−−→
GA2 =~0

Ainsi, le point d’équilibre G n’est autre que le barycentre de A1(m1) et A2(m2) :
−→
OG = m1

m1 + m2

−−→
OA1 + m2

m1 + m2

−−→
OA2

Par exemple, en choisissant O = A1 : −−→A1G = m2

m1 + m2

−−−→
A1A2.
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E. Applications des barycentres a) Centre d’inertie

Barycentre et centre d’inertie (plaque)
On examine une plaque carrée homogène de côté 3 unités amputée d’un carré de côté
1 unité situé au milieu d’un bord de la plaque. Déterminons son centre d’inertie.
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E. Applications des barycentres b) Moyennes statistiques

Barycentre et moyennes multiples
On considère un groupe de n élèves passant m épreuves.
Pour 16 i6n et 16 j6m, notons Nij la note obtenue à la je épreuve par l’élève no i .

élève
épreuve no 1

coef. α1
no 2

coef. α2
· · · no m

coef. αm
moyenne
élève

no 1 N11 N12 · · · N1m M ′′
1

no 2 N21 N22 · · · N2m M ′′
2

...
...

...
...

...

no n Nn1 Nn2 · · · Nnm M ′′
n

moyenne
épreuve M ′

1 M ′
2 · · · M ′

m M

• M ′
j = 1

n

n∑
i=1

Nij est la moyenne (arithmétique) du groupe à la je épreuve

• M ′′
i =

m∑
j=1
αjNij/

m∑
j=1
αj est la moyenne (pondérée) de toutes les épreuves de l’élève no i

Le théorème de composition des barycentres permet de calculer la moyenne générale de
toutes les épreuves du groupe et se traduit par l’identité entre les moyennes des moyennes :

M =
n∑

i=1

m∑
j=1

αj

n Nij/

n∑
i=1

m∑
j=1

αj

n =
m∑

j=1
αjM ′

j/
m∑

j=1
αj = 1

n

n∑
i=1

M ′′
i
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