1.

1.

INSTITUT NATIONAL
DES SCIENCES
APPUUUEES

INSA';

Calcul vectoriel

Aimé Lachal

Cours d’'OMNI
1< cycle, 1" année

Géométrie vectorielle de

Vecteurs et points

Un vecteur du plan ou de I'espace est géométriquement représenté par un bipoint
(A, B) surmonté d'une fléche indiquant le sens : i = A

Il est ainsi représenté par un segment de droite orienté. Deux segments de droites
orientés paralléles, de méme longueur et de méme sens représentent le méme vecteur
(régle du parallélogramme).

]

<= AB est un parallélogramme

i=AB=
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Géométrie vectorielle de I'espace

Coordonnées/repéres

Un repére de I'espace est la donnée d'un point O et d'une base (&, &, €,), on I'écrit
(0; &, ey, &,). Il permet de repérer n'importe quel point de I'espace a I aide de ses
coordonnées.

Repérage sur une droite

Dans un repére (O; &
abscisse xa : O,

), un point quelconque A de la droite est repéré par son
= Xa&,.

<90

Noll
X

Repérage dans un plan
Dans un repére (O; &, €,), un point quelconque A du plan est repéré par son

abscisse x4 et son ordonnée y, : OA = xa8, + yAey.

A
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Géométrie vectorielle de I'e

Vecteurs et points

Si (xA,yA, zA) et (xs, yB, zg) sont les coordonnées de A et B dans le repére
(0;&,&,,¢ ) on écrit A(xa, ya, za) et B(xs,yg,zB) Ona
OA = xa& + ya€, +24€, et OB = xg€, + yB€, + z8E,

—
Alors le vecteur ﬁ = O_B> — OA a pour composantes dans la base (€,,€,,€,) :

XB — XA XB — XA
¥8 — YA | . On écrit usuellement en colonne : ﬁ yB — YA
ZB — ZA ZB — ZA

Remarque : on note parfois les composantes en ligne : /ﬁ (x8 — xa,¥B — YA, 2B — Z4).

On écrit aussi parfois A_é B — A en cohérence avec la relation entre coordonnées
de A et B et composantes de /ﬁ décrite ci-dessus.

2. Produit scalaire

Attention : il existe plusieurs produits scalaires (cf. cours de Mathématiques de 2¢
année). On parle ici du produit scalaire « usuel » (euclidien...)

Défi

@ Soit U et V deux vecteurs de I'espace. Leur produit scalaire est le réel

ion 2.1 (Produit scalaire/norme)

- = @] x |7 x cos(d, v

ol (U/\V) est I'angle entre U et V.

Remarque : I'angle n'est pas nécessairement orienté.

@ La norme se déduit inversement du carré scalaire : ||id|| = Vi - 4.

Un vecteur est dit normé ou unitaire lorsque sa norme vaut 1.

1.

2. Prod

Un vecteur du plan ou de I'espace est caractérisé par sa direction, son sens et sa
longueur (ou norme).

Une base du plan est la donnée de deux vecteurs non colinéaires.

Une base de I'espace est la donnée de trois vecteurs non coplanaires.

Elle permet de repérer n'importe quel vecteur du plan ou de I'espace a I'aide de ses
composantes (on dit aussi parfois coordonnées).

Composantes/bases dans |'espace : diverses notations
X

° i y

z

< notation simple en dimension 2 ou 3.

dans la base (i7,], k) signifie : i = Xi +yj+zk

X1

o il x
X3

< notation généralisable en dimension supérieure (cf. cours de Mathématiques).

dans la base (&, &, &) signifie : 1 = x1€1 + x2& + X363

Uy
o il u,
uz

< notation utile pour les changements de systéemes de coordonnées
(cartésiennes, polaires, cylindriques, sphériques... Cf. cours d'OMNI).

dans la base (&,,&,,¢,) signifie : U = uxé, + u,&, + u.€E,

Géométrie vectorielle de I'espace

Repérage dans I'espace

Dans un repére (O; €, €,), un point quelconque A de |'espace est repéré par son

) eya
abscisse x4, son ordonnée y, et sa cote zs : OA = x4€, +yAé‘y + Z4E,.
On note usuellement les coordonnées d’'un point en ligne, les composantes d'un

1 0 0 XA
vecteur en colonne : 0(0,0,0), A(xa, ya,2a) et €| 0 | ,€(1],&[0], CTA) YA
0 0 1 Za

Remarque : on parle parfois de coordonnées d'un vecteur, et on les écrit parfois en
ligne : OA(xa, ya, za)-

scalaire

Propriété 2.

A I'aide du théoréme de Thalés et de la trigonométrie dans un triangle rectangle,
en notant 0 = (u, V) I'angle géométrique entre U et V (attention, I'angle 6 peut étre
aigu ou obtus, donc cos(0) peut changer de signe), on peut visualiser le produit
scalaire de U et V selon la figure ci-dessous. :

N
o\\+\\\l
\\
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<




© Le produit scalaire est symétrique :

i-w

)

. . Lo i SV +
® Le produit scalaire est bilinéaire : {_‘ L
i i-v

(o0 X est un réel).

© Le produit scalaire est défini positif : i- i = ||d||> > 0 pour i # 0.

Propriété 2.4 (Expression analytique)

Soit une base orthonormée de |'espace et soit U et V deux vecteurs de composantes

Uy Vx
respectives u| u, | et V| v, | dans cette base.
Uz Vz

Le produit scalaire et la norme s'expriment alors en réel selon :

)l = \/ vz + uf + u2

U-V=uxvx+uyvy +uv, et

)

L7 est un vecteur unitaire de mémes sens et

a

Remarque 2.5 (Vecteur un

Pour tout vecteur 4 # 6, le vecteur
direction que 0.

2. Produit scalaire
Propriété 2.6 (Projection orthogonale d’un vecteur sur un autre)

Le projeté orthogonal V; d’un vecteur . sur un vecteur non nul i s'exprime selon

=Ll
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Si I'on note v;; la mesure algébrique de V; sur |'axe orienté par i, alors on a :
-

Ml

Cas particulier : lorsque U est un vecteur unitaire, la formule se simplifie selon

V= . En conséquence, vy et ii- © ont méme signe.

2. Produit scalaire
Démonstration de I'addition (cf. propriété
i-

i-w

Partant des projetés de v et w : 1z = ”‘_jHZU et wg = R u
on obtient ;4 wy; = u H;'-H’; . WD‘.
D’autre part, le projeté de v + v est donné par (v + w)z = 4 ”‘:7”2 ") g
On a I'égalité des projections : (V -+ W)z = g+ Wy
d’ol par identification : G- (v -+ w) =d- v+ G- w.
u

(V+wW)z
lllustration pour trois vecteurs coplanaires

2. Produit scalaire

2. Produit scalaire
Applications géométriques

© Tester |'orthogonalité de deux vecteurs :

i et V sont orthogonaux <<= i-V=0
® Tester la colinéarité de deux vecteurs :
U et Vsont colinéaires <  u- vV = =£|dl.||V|

Les vecteurs sont alors de méme sens ssi le produit scalaire est positif.

Exemple 2.8 (Plan orthogonal a un vecteur)
On se place dans une base orthonormée de I'espace.
a

Soit a, b, ¢ trois réels non simultanément nuls et | b
c

un vecteur fixé.

X
Alors I'ensemble des vecteurs V| y
z
ax + by + cz = 0. Il s’agit d'une équation cartésienne du plan vectoriel orthogonal

av.

orthogonaux a & sont caractérisés par la relation

2. Produit scalaire

Applications physiques

¢ Dans divers domaines de la physique (mécanique des fluides, électromagnétisme,
thermodynamique, acoustique, etc.) le flux d'un champ de vecteurs ? a travers
une surface orientée ¥ est donné par l'intégrale de surface d’un produit scalaire

b
// F - dS ou 3 représente un vecteur normal « élémentaire » a la surface X.
b=

panneau
solaire

Flux maximal Flux nul

2. Produit scalaire
Applications physiques

écoulement hydrodynamigue
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Démonstration de la projection (cf. propriété - ‘)

Par trigonométrie dans un triangle rectangle, vz = ||V||X cos 6 ot 0 = (4, V) est
I'angle géométrique entre i et V.
i-v

v u-v
@l (vl

, donc vy = A

Par ailleurs, on a cos =

. = o T3 o i
On obtient alors le vecteur v; le long de la droite dirigée par le vecteur unitaire HTHU

v, a-v

=

selon v; = vy i) = ]

||

Exemple 2.7 (Projections sur une base orthonormée)

Ux
Uy
uz
I'espace, c'est-a-dire i = ux€, + uy€, + UE,.

aux produits scalaires (projections sur les

Soit & un vecteur de composantes dans la base orthonormée (&,,¢€,,€,) de

On peut obtenir ses composantes grace

vecteurs de la base) selon U =10-8
uy =1-8
u;=1-é€,

Applications physiques

* En mécanique, le travail de la force constante ? qui déplace en ligne droite son
point d'application de A a B est le produit scalaire F-A

A

A

I

Travail de ?5 :
négatif minimal

Travail de ?A :
positif maximal

Travail de ?c : nul

Une forme linéaire sur R" est une application f : R" — R telle que (cf. cours de
Mathématiques, chapitre Algébre linéaire)
{va, VER", f(i+7) = f(d)+ ()

Va € R, Vi € R", f(ou'i) = af(l'i)

Proposition 3.2 (Représentation explicite sur R3)

¢ Formulation vectorielle
Toute forme linéaire f sur R® vue comme fonction d’une variable vectorielle peut
s'écrire dans une base (é'x, &yo &,) de I'espace des vecteurs sous la forme :

f(x& +y& +28,) =ax+ by + cz

® Formulation ponctuelle (scalaire)
Toute forme linéaire f vue comme fonction de 3 variables réelles (scalaires) peut

s'écrire sous la forme :
f(x,y,z) = ax + by + cz

Remarque 3.3 (Coefficients d’une forme linéaire)

Les coefficients a, b, ¢ peuvent s'exprimer en fonction de f suivant chacune des deux

formulations selon
a=f(&),b="(&),c=f(&) ou a=f(1,0,0),b=7(0,1,0),c=F(0,0,1) 6




3. Forme

(x

° Si

Remarque 3.4 (

n avec le calcul différentiel)

* Pour toute forme linéaire f sur R®, ses coefficients a, b, ¢ s'obtiennent par
dérivations partielles (cf. chapitre Calcul différentiel) :

of of of
Geva)=a  Sxya=b  Slxyz)=c

Ces dérivées partielles définissent un vecteur appelé « gradient » de f en

,¥,2), noté grad f(x, y, z) ou V f(x,y,z) (opérateur « nabla »).

Dans le cas présent d'une forme linéaire, ce vecteur gradient est constant.

la base (&, &,,€,) est orthonormée, la forme linéaire f peut s'exprimer 3

I"aide d'un produit scalaire par son gradient selon

—
f(x,y,z) =gradf(x,y,z)- (Xéx +yé, + zé’z)

3. Forme

Exemple

ol

6 (Ensembles de niveau pour les formes |

A

z S

02

0
0P
A

Surfaces de niveau d’une forme linéaire 3D : plans paralléles

(

4. Orientation

entation et permutations

.

, €., &) indirecte

20

3. Forme linéaire
Ensembles de niveau

Les ensembles de niveau pour une fonction a valeurs réelles f : R” — R sont les
sous-ensembles de R” des points dont la valeur de f est constante.
® Cas du plan (n = 2)
Les ensembles de niveau sont des courbes de niveau :

Ec={(x,y) eR*: f(x,y) =k}, keR
® Cas de I'espace (n = 3)
Les ensembles de niveau sont des surfaces de niveau :
Ea— {(x,y,z) eR®: f(x,y,z) = k}, keR

Exemple 3.5 (Ensembles de niveau pour les formes linéaires)

® Cas du plan

Les ensembles de niveau d'une forme linéaire f :  R>— R
(x,y)— ax + by
non simultanément nuls) sont les droites paralléles d'équation ax+by =k, kER,

perpendiculaires au vecteur (a, b).

(pour a, b

® Cas de I'espace

Les ensembles de niveau d'une forme linéaire f : RS — R
(x,y,z)—> ax + by + cz
(pour a, b, ¢ non simultanément nuls) sont les plans paralléles d'équation

ax + by + cz = k, k € R, perpendiculaires au vecteur (a, b, c).

3. Forme

es)

Exemple 3.6 (Ensembles de niveau pour les formes liné

R>_ flzy)=a+2y

Zy y

L g 3’::‘? A
&, 2

g U |
> s

3% N

£ N

‘-3 H H f

Lignes de niveau d'une forme linéaire 2D : droites paralléles

4. Orientation
Orientation d’une droite

Pour orienter une droite, on choisit une origine O et un sens de parcours sur la droite
(2 orientations possibles).
Le vecteur unitaire choisi € donne |'orientation choisie. On définit ainsi un repére

normé orienté (O; €,). sens direct
—_—

Orientation d’un plan

On choisit un axe de repére normé (O; &) puis un deuxiéme axe passant par O de
repére normé (O; é'y), perpendiculaire au premier. On choisit un sens de rotation pour
passer des vecteurs unitaires € a €, c'est le sens direct ou trigonométrique.

On obtient ainsi un repére orthonormé direct (O; €, ,€,).

sens direct

B

g &
+ ( ‘\"’ + ( ‘\Jr + ( ‘\"’
/—> g, é,
& J g, J
+ + +
(€., ,€&,) directe (€,, €., ) directe (¢ ,&,,€,) directe

Une permutation circulaire conserve |'orientation

oL
™)

1

</

, €,) indirecte

g

oL

(€., &, ) indirecte (&,

Une permutation de deux vecteurs inverse |'orientation

23

4. Orienta
(o]

Considérons une base (&, V, w) de I'espace non orthogonale.

ntation d’une base quelconque de I'espace

® On introduit les vecteurs

=w—g—

et

ol v est le projeté orthogonal de V sur 4,
et 1y et 1y sont respectivement les
projetés orthogonaux de w sur v et v'.
On construit ainsi une base orthogonale

(g, V', ') de I'espace.
© On norme ensuite les vecteurs i, v/, /' en
posant :
= | — 1, 1
i ==t V' = vV, w'= "

dll v 1l

On construit ainsi une base orthonormée

(', v, w'") de I'espace.

On définit alors I'orientation de la base quelconque (i, V, w) comme étant celle de la

base orthonormée (', v, w').

4. Orientation

entation de |'espace

Une fois un plan de I'espace muni d'un repére orthonormé (O; €, €,), il y a deux
choix possibles (opposés) du dernier vecteur unitaire €, orthogonal aux deux
premiers, pour orienter |'espace.

En physique, le sens direct du repére (O; €, &, €,) correspond a la régle des trois
doigts de la main droite :

pouce : &

Les trois doigts
de la main droite

index : &, majeur : &

=
€y

(&,,&,,€:) base directe

On obtient un repére (O; &, €, &), dans lequel les trois vecteurs €, €, et €, sont
unitaires et orthogonaux deux a deux, orienté selon la regle précédente.
On dit que c’est un repére orthonormé direct.

n 5.1 (Prod
Soit i et V deux vecteurs de |'espace orienté. Leur produit vectoriel est le vecteur
i AV défini par :

® si U et V sont colinéaires ou que I'un des deux est nul, i\ V = 0:

® si i et V ne sont ni nuls ni colinéaires, alors i A\ V est I'unique vecteur dont les
caractéristiques sont :

« direction : Ui \ V est orthogonal 3 i et V ;
« sens : la base (U, V, T \ V) est directe ;
« longueur : || A V|| = ||d|| x ||V|| x| sin(d, V)|.

NV

Attention : le produit vectoriel de deux vecteurs n’existe qu'en dimension 3!




Le produit vectoriel est antisymétrique : i\ vV = —V A U.

Le produit vectoriel est bilinéaire, c'est-a-dire linéaire par rapport a chaque
variable :

(G+V)AW =dGAW+ VAW - GA(V+W) =GAV+TAW
NGy AV =AU AV) in (>\\7) AT A V)
Dans une base orthonormée directe de Iespace (&, €,,¢€,), soit ii et V deux

vecteurs de composantes respectives U uy et v< .

Le produit vectoriel i AV a pour composantes :
UyVz — UzVy
TA V| —(uxve — Uuzvx)
UxVy — Uy Vi

En particulier, si G et V sont deux vecteurs du plan de base (&, ,€,) donc de

Ux Vi
composantes respectives d| uy | et V| vy, |, alors G AV = (uxvy, — uyvx)E,
0 0

Retenir les expressions des composantes d'un produit vectoriel étant difficile, il est
pratique de procéder comme suit :

on écrit les composantes des vecteurs sous forme de matrices-colonnes ;
on recopie les deux premiéres composantes de chaque colonne en dessous ;

on note I'emplacement des « produits en croix » et I'on effectue les différences
des produits en croix :

Ux Vx
uy A v
b7 y
— [uyv: — uzvy
uz Vz
— | Uzvx — uxv;
Uy Ve 1z Vx xVz
—> \UxVy — UyVx
uy Yy

On peut aussi calculer les composantes d'un produit vectoriel a I'aide d'un déterminant.

En posant b d = ad — bc (déterminant d'ordre 2) et en « développant » par
rapport a la 3¢ colonne :
uc vk &,
- = ’ Ux Vx Uy Vx| o
UAV = = & = €,
. uz Vz uz vz
u; vy €
= (uy Ve — U:vy)8, — (Uxvz — Uz vx)&, + (Uxvy — Uy V)&,

Dans toute base orthonormée directe de I'espace (&, €,,€,), on a
& NE, =& NE, =€
& NE =—& NE =§
E,NE =—E NE =8,
5.2
GAV=(ue + + u:&) A (€, + + vz€,)
= (&) A (wE + A L) A A (wE + + v:€,)
+ U8, A (vé, + + V;€,) par linéarité par rapport a la 1' variable

= ()N (e )+ (e )N (v )+ () A (v2E,)
+ (1 8) A (&) + (1) A (&) + (e ) A (vE)
+(uE) A (&) + (u8) A (v 6) + (1:8) A (v2E;)
On simplifie tout ceci en utilisant &, A &, =0, & =é€,, - NEé, = —§, etc.
On obtient G AV = (uyv; — uzvy)(? (uzve — uxvz)”y + (uxvy — uyw)E,

Calcul d’aire : I'aire du parallélogramme construit sur les vecteurs i et V est
donnée par || A V||

X | sin(9)|

aire = base (||@]|)x hauteur (| V| x|sin()]) = ||d A V||

Remarque : dans le plan orienté,
l[all |7 | sin(0)
parallélogramme;

‘ représente |'aire géométrique (positive) du

||d@]| % || V|| X sin(@) représente |'aire algébrique (avec un éventuel signe) du
parallélogramme.

Calcul d’aire : I'aire du parallélogramme construit sur les vecteurs i et V est
donnée par ||d A V||

> >
UI\VJ

Soit I et v deux vecteurs du plan de base (&,
Uy
al uy | et Alors G A v = (uxv. — uyv.)E,

5.2

€,) de composantes respectives

= aire du grand rectangle

— aire des 2 triangles sur i —
— aire des deux petits rectangles

(ue + v )(uy + v)) — 2 X uguy /2 —2 %

—2uyv, =

Lorsque les vecteurs d,
la bilinéarité :

En effet, en notant 7 le vecteur unitaire orthogonal au plan engendré par les vecteurs

G, v et w et tel que (4, v, A) et (&, w, i) soient des bases directes :
GAV = ||anv||a UAw = ||[gAw||A an( ) = |lan( )7
Le schéma ci-dessous indique que
NEAVI+ ldaw]l = [ldA( )
d’oul le résultat.
/ /
— // l/
w ’ ’
, .
o LI Ca |
llaA V|
—_——
u u

5.2
, w sont coplanaires il est aisé de vérifier géométriquement

aA( ) =0AV + iAW

construit sur i et
+ aire du parallélogramme construit sur i et w
= construit sur

32

Tester la colinéarité de deux vecteurs :

ii et V sont colinéaires <= GAV=0
Tester I'orthogonalité de deux vecteurs :
U et V sont orthogonaux < ||[d A V| = ||dl.||V]
Tester la coplanarité de trois vecteurs :
G,V et w sont coplanaires <= G- (VAW)=0
— V-(WAU)=0
<~ w-(GAV)=0

Remarque : |a quantité G- (V A w) s'appelle produit mixte des trois vecteurs

ii, V, W, ce produit est noté ((i,V,w)) (cf. paragraphe 6.1).

Il se trouve que les trois nombres - (VA W), V- (W A &), w- (4 A V) coincident...

Calcul d'un vecteur orthogonal a deux vecteurs i, V non colinéaires : 4 A V.

Calcul d'un vecteur normal a un plan défini par trois points A, B, C : Z_é A Zé

—
Le moment d'une force F appliquée a un
point M par rapport a un autre point O est
défini par
— = — =
My(F)=0OMAn F
C'est une grandeur physique vectorielle
traduisant |'aptitude de cette force a faire
tourner un systéme mécanique autour de ce
point, souvent appelé pivot.
Il s’exprime en N - m (Newton métre).

La relation de Lorentz exprime la force
magnétique exercée sur une particule de
charge électrique, animée d’une vitesse dans
un champ magnétique :

F =qVvA
La force de Lorentz a toujours une puissance
nulle car elle est constamment perpendiculaire
au vecteur vitesse de la particule :

P=Fo5=0

< .
composante X4~
travail

i




Soit Ui, V et w trois vecteurs de I'espace orienté. Le produit mixte de ces trois
vecteurs est le réel (i, vV, w)) = (G A V) - w. Il est également noté [, V, w].

Le volume du parallélépipéde construit sur les vecteurs i, V et w est donné par

| (@7, )

TN

4
i
i

9 \

X | cos(9)| :g 5
P T
r_,,' [|[d@ A v /
i
volume = base (||i A V||)x hauteur ( x | cos(0)| | (@@ v, w)) |

De l'interprétation du produit vectoriel en tant que volume d’un parallélépipéde,

on déduit I'invariance ou anti-invariance par permutations de ((i, V, w)).
De maniére plus précise :

Le produit mixte est antisymétrique : si on échange 2 vecteurs (céte a
céte), le résultat est multiplié par —1.

(@7, w)) = =((v, &, w)) = =((d. w, V) = =((w, v, 1))
Le produit mixte est invariant par permutations circulaires :
(@ v,w) = (v, w, 1) = (%, 4, 7))
Par exemple, la premiére égalité s'écrit (i A V)-w = ii- (VA W).
Le produit mixte de trois vecteurs dont deux sont colinéaires est nul.

Le produit mixte est trilinéaire, c'est-a-dire linéaire par rapport a chaque
variable :

et de méme avec les deux autres variables.

On se place dans une base orthonormée directe (€, €,,€,) de I'espace.
Uy Vi Wy

Le produit mixte des vecteurs i| uy |, V| v, | et W[ w, | vaut :
uz Vz wz

(G, 7, W) = uevyws + Uy Vaus + Uz Wy — UV We — Ly VieWz — Ux V2 W,

Le produit mixte de trois vecteurs est en fait un déterminant de matrice (cf. cours
de Mathématiques de 2° année). On le note alors de la maniére suivante, et I'on
dispose d'une méthode mnémotechnique pour le calculer (régle de Sarrus) :

Uz Vy Wy
ux\ Vi o Wi U Vz Wy,
Ux  Vx Wy Wy | Uy Vx Wz
((u,v,w)) =lu v w \ \WZ|
u; vy w: g \ \ \
Uy \ Uy Vy Wy
i Wy\ Uy Vz Wy
\ Uz Vi wy

On peut
tester la coplanarité de 3 vecteurs :
i, V, w sont coplanaires <= ((d,V,w)) =0
tester |'orientation de 3 vecteurs :
@i, V, W forment une base directe <> ((,V, w)) >0

Sens direct (=) : supposons i, V, w coplanaires.

Alors I'un des vecteurs est combinaison linéaire des deux autres, par exemple

W = ai + bV pour des réels a et b.

Dans ce cas, par trilinéarité (cf. propriété 6.2
((d@,v,w)) = ((@,v,ati + bV)) = a

Or, toujours d'aprés 6.2, ((i, v, i) = ((d,

V,v)) =0. D'ou ((&,v,w)) =0
Sens réciproque (<) : supposons ((i, v, w)) =0
Si 4 et V sont colinéaires, alors i, vV, w coplanaires

Supposons i et V non colinéaires.

D'aprés la définition 6.1 du produit mixte, & A V est orthogonal & w.

Or, I'ensemble des vecteurs orthogonaux a d A v est le plan engendré par i et v,
c'est-a-dire I'ensemble des combinaisons linéaires aii + bV, a,b € R.

Donc w est une combinaison linéaire de i et v. D'ol @, V, w sont coplanaires.

Cas particulier : soit a, b, ¢ trois réels non nuls et A(a,0,0), B(0, b,0) et C(0,0, c).
Déterminons I'équation du plan (P) défini par les trois points A, B, C.
Soit M(x,y, z) un point générique de |'espace. On a :

M € P < les 4 points A, B, C, M sont coplanaires

— — — .
<= les 3 vecteurs AB, AC, AM sont coplanaires

— ((m,A—é,A—L}‘)) =0
X —a —a
y ,ﬁ b ,R

. —
Premier calcul : partant de AM

z 0 c
= == x—a —a -a
((AM,AB,AC)) =| vy b 0 |=bc(x— a)+ acy + abz
z 0
_(x—a bc
Deuxiéme calcul : partant de AM| y et ﬁ A /LTC> ac
z ab

— = — — = —
((AM, AB, AC)) = AM - (AB A AC) = bc(x — a) + acy + abz
En égalant alors ((m, ﬁ, R)) a 0, on tire I'équation §+ % + % =1,

=
Le moment d'une force F appliquée en un point M par rapport a un axe A
orienté de vecteur directeur unitaire k passant par un point O est défini par

— — = - — =
/MA(F) :MO(F) ck= ((OM, F-,k))
C'est une grandeur physique scalaire traduisant I'aptitude de cette force a faire

tourner un systéme mécanique autour de cet axe.
Elle s’exprime en N - m (Newton métre).

Remarque : cette quantité ne dépend pas du point O sur I'axe A.

Soit (A1, m) et (A2, mz) deux points pondérés de I'espace tels que Ay # Az et I'un
des réels my,my soit non nul.
Un barycentre de (A1, m), (A2, m2) est un point G de I'espace vérifiant

s —
my GA1 + mpGAx = 0.

Supposons qu'un tel G existe. Soit M un point quelconque de |'espace.
Avec la relation de Chasles :

— — —_— — —  —
m1GAL + myGA, =0 <= my(GM + MA;) + my(GM + MA;) =0
— — ey
<~ (m + m)MG = miMA; + maMA;
Disjonction de cas :
si my 4+ my # 0, alors, en prenant pour M I'origine O d'un repére, on obtient
— — —
06=—""_oa+—"_ 04,
my + ma my +
Donc G existe et est défini de maniére unique;
—
si my + my = 0, on obtient m;(OA; —

Cela donne A; = A, qui est absurde : G n'existe pas.

— —
OAz) = 0 donc A1 A; = 0 puisque my # 0.

a1

Ce qui démontre la propriété suivante :

Les points pondérés (A1, m) et (A2, my) de I'espace admettent un barycentre
si et seulement si my + my # 0.

Le barycentre, lorsqu'il existe, est unique.

Lorsque my + my # 0, si G est le barycentre de (A1, m1) et (A2, mz
point M de I'espace :

), pour tout

— — —
MG = A+ 2 a;,
my + my my + my

En particulier, si O est I'origine d’un repére de I'espace alors :

— — —
06=—""_0a+ " 0a,.
my + ma my + my
Si de plus my = my, alors
—

1— 1=
oG = EOAI + EOAZ.

Dans ce cas, G est le milieu du segment [As, Az].

Soit G le barycentre des points pondérés (A1, m1), (A2, mz) de I'espace. Alors :
G appartient a la droite (A1Az),
G appartient au segment [A1A;] si et seulement si mym; > 0

G est le plus prés du point A; dont la pondération m; est la plus grande en valeur
absolue : ),

simy = my alors G est le milieu de [A1A]. On I'appelle isobarycentre de A; et A,.

Soit A, B deux points. Sur la figure ci-dessous, on a placé les barycentres
Gy de (A, 2) (B,2) : Gz de (A,1),(B,—2)

0C — 10A+ 08 0G, — —OA+ 20,
iAG\Z%A‘é — AG, = 2AB

de (A, (B, 1) : de (A, :
oc, = 63\ 0B O —'0A+ 0B
— AT = AB — AC = AB

A Gy B Gs
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Définition 7.5 (Barycentre de n points)

Soit A1, Az, ..., An n points distincts de I'espace et soit myi, ma, ..., m, n réels non
tous nuls.

Un barycentre des points pondérés (Ai, m;), i € {1,...,n} est un point G de
I'espace vérifiant

S m A 5.
i=1

Lorsque tous les m; sont égaux, on parle d’isobarycentre.

On peut facilement généraliser les propriétés du barycentre de 2 points :

Propriété 7.6 (Formule du barycentre)

Le barycentre des n points pondérés (A;, m;), i € {1,...,n} existe et est unique
n
si et seulement si M = Z m; # 0.

i=1
Dans ce cas, en notant G le barycentre, on a pour tout point M de I'espace :

= " mi—
MG = — MA;
2 M

M est la masse totale du systéme de points pondérés.

Théoréme 7.10 (Associativité des barycentres, cas de 3 points)

Dans 'espace, si G est le barycentre de (A, a), (B, b),(C,c) aveca+ b+ c #0, et si
H est le barycentre de (A, a), (B, b) avec a+ b # 0, alors G est le barycentre de
(H,a+ b) et (C,c). H est appelé barycentre partiel.

(A, a) (B, b) (C,o)

(H,a+b)

En d’autres termes :
Barycentre((A, a), (B, b), (C, c))
= Barycentre((Barycentre((A, a),(B,b)),a+ b) ,(C, c))

7. Barycentres

Barycentre et centre d’inertie

® Le centre d’inertie de n masses ponctuelles est le barycentre des points affectés
de leur masse.

* Le centre d’inertie d'une plaque homogeéne ayant un centre de symétrie est
précisément ce centre de symétrie.

G G

® Le centre d’inertie d'une tige homogene est son milieu.

® Le centre d'inertie d'une plaque
triangulaire homogene ABC est
I'isobarycentre des points A, B, C.
C'est le point de concours des mé-
dianes du triangle ABC.

4
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Remarque 7.7 (Proportionnalité des poids)
ﬂ
T

En effet, le barycentre d'un systéme de points pondérés ne change pas si on multiplie
tous les poids par un méme nombre.

Ce qui détermine un barycentre n'est pas le poids m; en lui-méme mais le rapport

En d’autres termes, pour tout o # 0, les systémes de points pondérés
(Ai,m;), i €{1,...,n} et (Ai,am;), i €{1,...,n}
ont méme barycentre.

Lorsque tous les poids m; coincident, |'isobarycentre G des n points est donné par

I
MG = = MA;

Démonstration de I'associativité (cf. théoréeme

Soit G le barycentre de (A, a), (B, b),(C,c) et H le barycentre de (A, a), (B, b).
Ils existent car a+ b# 0O et a+ b+ c #0.
On a pour tout point M de I'espace :

— = = — — = —
(a+ b+ c)MG = aMA + bMB + cMC et (a+ b)MH = aMA + bMB.
En remplacant, on obtient (a+ b+ C)MZ =(a+ b)m aF cM¢ donc

—
MC

a+b+c
ce qui prouve que G est le barycentre du (H,a+ b), (C,c).

7. Barycentres d) Associativité des barycentres

a5

Propriété 7.8 (Coordonnées d’un barycentre)

Dans I'espace muni d’un repére (O;&,,€,,&,), si G est barycentre de n points

A . . T v " m =
pondérés (Ai, m;),i € {1,...,n}, la relation vectorielle OG = Z HOAi permet de
=
donner les coordonnées de G en fonction de celles des A; :

il & i1 & i &
(revyesze) = (g o mnn 3 mon, S man )
M i=1 M i=1 M i=1

Dans le cas d’un isobarycentre (c'est-a-dire lorsque tous les m; sont identiques) :

1¢ 1¢ 1
(x6,y6,2¢) = (; E;XA,» ;_E;,VA,-, ;Zm)
= =

i=1
Dans le plan les relations ci-dessus sont analogues, il suffit de supprimer la 3°
coordonnée en z.

Exemple 7.9 (Coordonnées d’un barycentre)

Les coordonnées du barycentre de 2 points ((A, a), (B, b)) avec a+ b # 0 dans le
axa + bxg aya + b}’B)

plan muni d'un repére (O; &, €,) sont (xc, yc) = 2tb ' ath

Théoréme 7.11 (Associativité du barycentre, cas de n points)

Dans I'espace, si :
© Ga est le barycentre de p points pondérés (A;, m;),i € {1,...,p},
.a},
® G est le barycentre des p + q points pondérés (A, m;),i € {1,...,p} et
(Bj,m),j €{1,....q},
P

® Gg est le barycentre de q points pondérés (B;, n;),j € {1,...

q
alors, sous réserve que Z m; + Z nj # 0, G est aussi le barycentre des deux points
i=1 j=1
q
o).

J=1

P

Z m,-) et (GB,

i=1

pondérés (GA,

otions a retenir

Produit scalaire
+ Maitrise du calcul analytique et géométrique
+ Calcul de projections
+ Utilisation en physique
Produit vectoriel
+ Visualisation de I'orientation
+ Maitrise du calcul analytique et géométrique
+ Utilisation en physique
Produit mixte
+ Maitrise du calcul analytique et géométrique
+ Utilisation en physique
Barycentres
+ Maitrise du calcul
+ Utilisation en physique
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En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.

* Reégle du bonhomme d’ampére

La Terre tourne
autour de son axe polaire
orienté du Sud au Nord

de I'Ouest vers I’Est.

bras droit : &,
bras gauche : €,
de bas en haut : g,

(&x,€,,€;) base directe

© Reégle de la rotation de la Terre
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A. Autres régles

ntation de I’'espace

En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.

® Regle du tire-bouchon ® Regle du tourne-vis

Un tire-bouchon
tenu dans la main droite
que ['on tourne dans le sens
qui améne le pouce vers |'index
visse dans le bouchon.

[

'
progression
€ X

\_Atalion ey

+ (visse)

Un tourne-vis
tenu dans la main droite
que I'on tourne dans le sens
qui améne le pouce vers l'index
visse dans le support.

A. Autres régles d’orientation

entation de |'espace

En physique, on retrouve naturellement la notion de sens direct spatial dans
diverses situations de la vie courante.

© Régle du robinet

Un bouton de robinet pris dans la main droite
que l'on tourne dans le sens qui améne le pouce vers |'index
ferme la canalisation.

En tournant le robinet
dans le sens DIRECT
on FERME la canalisation

En tournant le robinet
dans le sens INDIRECT
on OUVRE la canalisation

B. Applications du produit scalaire

Application trigonomé

On considére un triangle quelconque A”C de cotés A
d'angles (non orientés) a = A, | =
La loi des cosinus permet d’'exprimer chacun des angles «,
a, b, ¢ du triangle.

=c¢,BC=a CA=bet

=G

—u
Y =
u
—
Notons & = et v = a
On a alors =v—i |dl=a |vll=0h lli—Vv]|=ceti-v=abcos(y).

D'autre part, par bilinéarité du produit scalaire, on a
=12 = =

Il = (7= 5)- (V) =

|c: Vat+ 1?2 —2a cos('y)l

d’oul I'on tire

22— 2
2a

ou encore cos(v) =

,7 en fonction des cotés

—Ved—id-v4a-a= P+ |V)* - 2a-

B. Applications du produit scalaire

© Autre méthode.

Comme A € (P), on a axa + bya + cza =d.

a

_

Soit M(x,y,z) un point quelconque de I'espace et N| b

G
Le point M appartient a (P) ssi ax + by + cz=d
ou encore ssi ax + by + cz = axa + bya + cza
qui s'écrit aussi a(x — xa) + b(y — ya) + c(z — za) = 0.
Or I’expressiol;a(x — xa) + b(y — ya) + ¢(z — za) n’est autre que le produit
scalaire N - AM.
Ainsi, M € (P) ssi les vecteurs AM et N sont orthogonaux.

—
Le vecteur AM étalt un vecteur générique de la direction du plan (P), on a
trouvé un vecteur N orthogonal a (P).

Solution (Projection plane)

Exercice B.1 (Projection plane)

L’espace est rapporté au repére orthonormé (O; &,, e &,). On se donne :
® (P) le plan d'équation ax + by + cz = d (a, b, ¢, d non nuls);
® A(xa, ya, za) un point de (P);
® M(xm, ym, zu) un point quelconque de I'espace;
Vi

-
® V| v, | un vecteur quelconque de I'espace.
Vz

® Donner un vecteur 7 unitaire normal a (P). On note (D) la droite passant A
orthogonale & P. Elle est alors déterminée par A et 7.

® Aspect vectoriel
“ q I v q q =
© Déterminer le projeté de V' sur (D). Donner son expression en fonction de 7
puis donner ses composantes.

phis
©® En déduire le projeté de V sur le plan (P) en fonction de vecteurs déja
déterminés. Puis donner ses composantes.

® Aspect ponctuel
Déterminer les projetés de M sur (D) et sur (P) en fonction de vecteurs
déterminés précédemment. Expliquer comment obtenir leurs coordonnées.

B. Applications du produit scalaire

B. Applications du produit scalaire
Solution (Projection plane)

=
— — \V1 avx + bvy +cv,
Ona Vp=V;= [ S A
@002 Vo= Va=1mr "= a2
Composantes : D
1 a%vy + abvy + acv, \ M
e abvy + b?v, + bev, \ ",

acvy + bevy + v,

© L'autre projection s'obtient en remarquant que
= = - =
V =Vp+ Vpdonc Vp =V — Vp.

Composantes :
1 (b% + ¢®)vx — abvy — acv;
Frrie —abvy + (2% + ¢®)vy — bev,

—acvx — bevy + (a° + b?)v;

©® En choisissagt V = m on tnguve A—Mn> E \71) et /Wp) E Vp, donc
Mp =A+ Vp et Mp =A+ Vp.
On peut ainsi obtenir les coordonnées de Mp et Mp a I'aide des composantes de
Vp et Vp en changeant les composantes vy, vy, v; en X — Xa,y — ya,Z — Za.

C. Applications du produit vectoriel

Solution (Projection plane)

© Le plan (P) est caractérisé par les trois points AS%,0,0), B(0, d%,O), C(0,0,% s

T a T a
soit encore par le point A et les vecteurs /ﬁ % et R 0 |.
d
0 &
b c
Les vecteurs /@ et R sont colinéaires aux vecteurs i —a | et V| 0
0 —a
«
Un vecteur 7i| B | est normal a (P) ssi il est orthogonal a i et V, ce qui donne
¢

G-n=0etv-n=0.

D’ol les équations ba —af =0et ca —ay=0.0na = ‘—;a ety = Sa.
a

En choisissant par exemple @ = a, on obtient le vecteur normal 7| b

c
(Remarque : il suffit de supposer a, b, ¢ non tous nuls.)

Applications trigonométriques : loi des sinus

On considére un triangle quelconque A" C de cbtés A
d'angles (non orientés) a = A, ' =1, v = C.

La loi des sinus permet d'exprimer une relation entre les rapports des sinus de chacun
des angles «, ', par leur cété opposé relatif a, 1, c du triangle.

=c¢,BC=a CA=bet

En calculant I'aire du triangle a I'aide du produit vectoriel de plusieurs fagons :

1,— —

QHA | 1,— —y 1,= —

= LFAn T = JIcAA T
on tire
csin(a) = acsin( /) = absin(7)

soit, aprés division par a’c :

sin(a)

_sin() _ sin(y)

a G




Formule trigonométrique : [ cos(o — ) = cosf cos  +sinfsinp |

Formule trigonométrique : [sin(p — #) = cosfsin ¢ —sinfcos o |

Distance d’un point a un plan : soit (P) un plan et /\/ un point de I'espace.
On cherche a calculer la distance du point /\/ au plan (P).

On cherche a calculer la distance du point

Approche analytique

au plan (P).

L'espace est rapporté au repére orthonormé direct (O; &, &, E,).

(P) est défini par I'équation ax + by +cz+d=0
(a, b, ¢ non tous nuls) et

Un vecteur normal a (P) est donné par 7
(cf. exercice B.1).

D'apres I'

approche précédente :

d(

la-+ b/ +c +d|

,P) =
)= JErria

()

y >

W

Soit le point M(6,3,4) et (P) le plan défini par les points A(1,1,0), B(0,0,1)
et C(0,1,1). On cherche la distance de M a (P).
Clest Ie plan passant par A de vecteur normal i = ? A A? avec les vecteurs

0 1
R etﬁl .Onail0
1 0 1

ssi ﬁ est

Un point P(x,y, z) quelconque de |'espace appartient a (P)

orthogonal a A, i.e. AP- 7 =0, d’ou I'équation x + z = 1.

Autre méthode : on recherche une équation de (P) de la forme
ax+by+cz+d=0.

En traduisant A, B, C € (P), on trouve le systéme
a+b+d=0,c+d=0,b+c+d=0,doulontircea=c=—det b=0.
Ainsi (P) est caractérisé par I'équation x +z — 1 = 0.

Enfin, la distance du point M au plan (P) est donnée par

Rotation dans I'espace

Soit (D) une droite orientée de vecteur unitaire
dans I'espace orienté et A un point de (D).
Introduisons () le plan orthogonal a (D) passant
par A.

Pour tout point de I'espace M, notons
ses projections orthogonales sur (D) et
— ——

AM = AMp +

On dispose alors d’'un repére orthogonal direct
(A;AM;, AN AMrj, ) de I'espace.

et M,
(P). On a

Soit 6 un angle. Considérons dans le plan (P) la
rotation r de centre A et d'angle 6.

En se placant dans le repére orthogonal direct
(A AMp, AAAMz ) du plan (P), on voit que

= Dans un repére orthonormé (O,T,j) = Dans un repére orthonormé direct
. ’ 2 du plan, soit les points . J (O i )de I'espace, soit les points Approche géométrique
! A(cos 0, sin 0) et B(cos ¢, sin ). ! A(cos8,sin6,0) et B(cos ¢, sin ¢, 0). (P) est défini par le point A et le vecteur i normal a (P).
' '
! B‘A’ = s sin(-)f ! 5;" = @s@F sinﬂf Notons H la projection orthogonale du point
! A — I, ] A — .. sur le plan (P).
! £ OB = cospi+singj ! OB = cospi+singj
N ' N La distance du point // au plan (P) coincide
= 0 0 Produit scalaire £ 0 Produit vectoriel avec la distance entre les points /\/ et H :
3 ii \ 1. Calcul analytique : 3 2 1. Calcul analytique : d(I,P) = MH.
L@ (s 5& . 0B = @ 5’4 AOB = C'est aussi le projeté orthogonal du vecteur
1 1 - 1 - - . ,
. ' cos f cos ¢ + sin sin . (cos Bsin g — sinf cos o) k Al7 sur le vecteur 7i qui est donnée par la
' ' 7\ 0 ' propriété 2.6. Ainsi :
2 T Z . 2 T
0: 2. Calculf}eonfrlque g (o F 2. Calcul géométrique : J | AV |

< I — —_— 2 QL

e OA-0B= e > OANOB = (1, P) ||A]|

8 i — — = 8 7 N _ =

: | OA|| x || OB|| x cos(OA,0B) : [|OA|| x | OF|| x sin(OA, 0B )k

B R B > -

cos = cos = k
59 59 60
Distance d’un point a un plan : soit (P) un plan et \/ un point de I'espace. Distance d’un point a un plan : exemple numérique

I'image r(M) de M par r est caractérisée par
I1x6+0x3+1x4-1
d(m,p) = [1x0+0x3+ l_ . .
V12 4+ 0%+ 12 \ﬁ Ar(Mp) = (cos 0)AMp + (sin 0) (A ANAMp ).
60 61 62

Rotation dans I'espace D Uy Vx L'espace est rapporté au repére orthonormé (O; €, , €, ,€,).
On définit ensuite dans I'espace R la rotation \ Cas général : soit A(xa, ya,za) un point et uf uy |, v| v, | deux vecteurs non colinéaires. ) 4 x
de centre A, d’axe (D) et d'angle 0 selon 3 . ) . Lo \Hz/ Ve . Ondonne ¥ 0 |,z y | et i5{ 13

- s Déterminons I'équation du plan (P) défini par le points A et les vecteurs &, v 3 z 2

= Ar(Mp) + ) R , )
Or = (m ) donc Soit M(x,y,) un point générique de | espaiOn a: Déterminer y et z pour que Vi et V» soient colinéaires.
AT AT — VAT M € P <= les 3 vecteurs AM, i, V sont coplanaires —3y
AMp = AM — =AM — (AM . ) b SN ? P Réponse : on a V1 A »| 30 — 3z
) —= = <~ ((AM,i,v)) =0 3y

Puis 7 AM A(AM — ) = AAM Notons a, b, ¢ les composantes du vecteur G A ¥ Donc : Vi et V> sont colinéaires ssi Vi A v = 0 ssiy = 0 et z = 10.
puisque 1 et sont colinéaires. PO 2 PV S Y ISRV Ll Déterminer x pour que Vi et V3 soient orthogonaux.
D TS, @ e U, v, lyVz zVy, U v, Iz Vx IxVz, u v Ix Vy — Uy Vx Réponse : on a vy - V3 = 2x + 6.

— — Donc : Vi et V3 sont orthogonaux ssi vy - V3 = 0 ssi x = —3.

= (cos 0)[ AM (AM )] Premier calcul : . . .
N = G G = Avec la valeur de x obtenue en question 2, quelle condition doivent vérifier y et z
. A g - - — o - . .
+ (sin ) ( /\A )+ (AM- ) A ((AM, @, %)) = AM - (G A V) = a(x — xa) + b(y — ya) + c(z — za) pour que les vecteurs V1, v», V3 soient coplanaires ?

c’est-a-dire :

= (cos §)AM + (sin 6')( AAM)

(L = cosé))(AM )

Cas particulier :

rotation d’angle droit (6 =
— =
= AAM+ (AM- )

s
2

3)

P
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Deuxieme calcul :
X — XA Ux Vx
V)) =|y—ya u v
Z—2Zp Uz Vz

((AM, 5 = alx = xa) + bly — ya) + c(z — 24)

Notons enfin d = axa + bya + cza.
—
En égalant alors ((AM, i, V)) a 0, on tire I'équation ax + by + cz = d.

Qu'observe-t-on lorsque y et z prennent les valeurs obtenues en question 17

2 4 -3
Réponse : (1,2, v3)) = |0 y 13| =13y — 26z + 156 = 13(y — 2z + 12).
3 z 2

Donc : v, Vo, V3 sont coplanaires ssi ((\71, Vo, \73)) =0ssiy—2z+12=0.
On observe que cette condition est satisfaite en particulier pour y = 0 et z = 6, ce qui

était prévisible puisque dans ce cas, les vecteurs Vi et V» sont colinéaires.




Soit (D1) et deux droites de |'espace non paralléles non sécantes. Soit (D1) et deux droites de |'espace non paralléles non sécantes. Le dispositif des rails de Laplace consiste en

La droite (D1) est définie par un point A; et un vecteur @, et la droite est La droite (D1) est définie par un point A; et un vecteur @, et la droite est deux rails métall.iques paralleles situés dans
définie par un point et un vecteur /. définie par un point et un vecteur I'entrefer d'un aimant en U engendrant un
On cherche a calculer la distance entre (D;) et . On cherche a calculer la distance entre (D1) et champ magnétique 5.
On y dépose une tige de longueur ¢
Notons 7i = iy A /.. i est un vecteur La distance entre (D;) et coincide susceptible de se déplacer sans frottement.
normal aux droites (D1) et ' avec la distance entre H, et H> : Si on relie les deux rails & un générateur, un
Introduisons --__H 5 — ‘}—/1 H, . ﬁ{ - H, courant continu d’intensité / circule dans le
L pat D) =HiHo=||HiHb|| = L2 21 ahrY e o ;
(P1) le plan orthogonal 3 7 contenant — (By) d(D1, D2) 1M H 1 ”ﬁ” — (B circuit, et provoque une force ? dite force de
la droite (D1); th dil Laplace sur la tige la mettant en mouvement.

A o TITTTE
En décomposant ensuite HH- selon

la droite projection orthogonale La force ? s'exprime selon la relation

de sur (P1); o HiAr + A1/l 4 /1 Ho et en remarquant S
h o ) nT AH linéaire 3 i '7_7 nT F=I1¢AB
H, le point d'intersection de (D1) que AiH, est colinéaire a i et que > —
et : est colinéaire 3 1, donc que A;H; et le vecteur ¢ étant dirigé le long de la tige
=5 " .
On introduit de méme les objets H> sont orthogonaux a 7, on voit que dans le sens d;}courant_ 7
geonjetlzlques Sl.ml|all'eS , (A1), H2 Hr A D) HiHs - i = AtA - i = (A4, T, )) A o) Le travail de pendant un deplaceme{nt‘ de la tige le long de? rails se c.alcule, en
relatifs a la droite . Py 1 G Ainsi - Py 1 b i notant S = d A £ et ® le flux coupé a travers la surface balayée par la tige, selon
! e e - 2 - = - = = - = =
La droite (H:H-) est la perpendiculaire (A3, T, 1)) W=F.-d=I({AB)-d=I((,B,d))
commune 3 (D1) et . d(Ds, = IR ) - > = - o = = =
(D1) " (D1, ) N A ]l . =I1((d, €, B)=1(dAF)-B=IB-S=1I0
Considérons la balance ci-dessous permettant Considérons la balance ci-dessous permettant On examine une plaque carrée homogene de c6té 3 unités amputée d’un carré de coté
de comparer deux solides de masses m; et : de comparer deux solides de masses m; et : 1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.
— —=
m & F3 m & F3
1 1
L.g L.g
o G % G
Art= At
F1 F1
— — — 2
On néglige la masse de la barre horizontale A; MG(F{) = GAI A ?1 =mg GAL N\ &
f — ——
On cherche sur cette barre un point G pour que Or { Mc(F)=GA A =mgGA A&
5 PO — =
ce systéme soit a |'équilibre. Me(F) = R AF =0
g . — — =
Bilan des forces : ? L’équation des moments donne g(m GA1 + -G/ -) A& = 0.
poids du solide de masse my : F1 = —mig &, appliqué en Ar; Comme g # 0 et mi GA1 + -G/ est colinéaire 3 &, on en déduit I'équation : 1
; ; o B = 2 fqué . — —_—
poids du solide de masse : = —11.8§€,, appliqué en /' ; mGAL + m»GAs = 0
réaction du support : f3 = F3&,, appliquée en G. Ainsi, le point d’équilibre G n’est autre que le barycentre de A;(m;) et
Les objets étant immobiles, d'aprés la relation fondamentale de la statique, la somme O—>G _ (e OA +
des forces et la somme des moments (en n'importe quel point) sont nulles : m m:
— - —_— = — — = i — A - — 1 2
Fi+F +F=0 et Mc(F)+Mc(F)+Mc(F)=0 o Par exemple, en choisissant O = A; : A1G = g A/, o
On examine une plaque carrée homogene de cété 3 unités amputée d'un carré de coté On examine une plaque carrée homogene de cété 3 unités amputée d'un carré de coté On examine une plaque carrée homogeéne de cété 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie. 1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie. 1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.
Premiére méthode Premiére méthode Premiére méthode
On subdivise la plaque en 8 On subdivise la plaque en 8 On subdivise la plaque en 8
carrés de coté lu. carrés de coté 1lu. Gl GG carrés de coté 1u.
Le centre d’inertie de la 25 o [ Le centre d’inertie de la
plaque est |'isobarycentre des plaque est |'isobarycentre des
, centres d’inertie des 8 carrés : centres d’inertie des 8 carrés :
__________ s s
— 1 — — 1 —
0G = OGy 0G = OGk ' 1
i | 52 G P Gi(3) | L eB)
- B 15
| | 2z GZ. | ® | .G7 I coincide avec le centre 1 |
| | I | d’inertie des barycentres
P _ __—_—_—_J 1 Lo Lo de 3 bandes de base 1u 1 | !
! ! | ! et de hauteurs 2u et 3u | GL(2 !
: : : : pondérés par les aires relatives : : 2( ) :
— — —
| | > o z | .G 06 = é( 0C/+206]+306}) i |
| | 3 I 5 | 8 | |
| | | | I |
1 2 0,5 15 25 0,5 15 25
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On examine une plaque carrée homogene de coté 3 unités amputée d'un carré de c6té
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.

Premiére méthode

On subdivise la plaque en 8
carrés de coté 1lu.

Le centre d’inertie de la
plaque est |'isobarycentre des
centres d’inertie des 8 carrés :

8
— 1 —
ocfggo@

Gi(3) ' ' G3(3)

=
n

Il coincide avec le centre
d’inertie des barycentres

de 3 bandes de base 1u

et de hauteurs 2u et 3u
pondérés par les aires relatives :
— 1, = =
06 = g( 0C+20G}+30G;)

En choisissant O = G} :

[ 2K

|z

-

G3(2)

— — —
e = §(G§ 1 G Gé) 0,5 15 2,5

68

On examine une plaque carrée homogene de coté 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.

Deuxiéme méthode

On subdivise la plaque en 8
carrés de coté 1lu.

o — - - 1 _ _ _ _ _

On examine une plaque carrée homogene de coté 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.
Deuxiéme méthode

On subdivise la plaque en 8
carrés de coté 1u. Gl G2
Le centre d’inertie de la 2,5 () @

plaque est I'isobarycentre des
centres d’inertie des 8 carrés :

8
. 3
0G=_-5"06
8k:1 ‘

Gs
15 G3@ ° oG;
0,5 @ @ @
Gg Gy Gg
0,5 1,5 2,5

On examine une plaque carrée homogéne de c6té 3 unités amputée d’'un carré de c6té
1 unité situé au milieu d’'un bord de la plaque. Déterminons son centre d’inertie.

Deuxiéme méthode

On subdivise la plaque en 8
carrés de coté 1lu. G:'l'(Z)
Le centre d'inertie de la 2,5
plaque est I'isobarycentre des
centres d’inertie des 8 carrés :

8
— 1 -
oc_ggoc;k

Il coincide aussi avec le centre
d’inertie des barycentres de
deux carrés de coté 1u et d'un
rectangle de cotés 2u et 3u,
pondérés par les aires relatives :

&f:%( T+6WQ)

1

G3(6)

68

On examine une plaque carrée homogene de c6té 3 unités amputée d’'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.

Deuxiéme méthode

On subdivise la plaque en 8
carrés de coté lu. G:'l'(Z)
Le centre d’inertie de la 25
plaque est I'isobarycentre des
centres d’inertie des 8 carrés :

8
— 1 —
G = = G,
@) 8;0 «

-
=

Il coincide aussi avec le centre
d’inertie des barycentres de
deux carrés de coté 1u et d'un
rectangle de cotés 2u et 3u,
pondérés par les aires relatives :

— 17— 7

06 = g( 0c! +60G7)
En choisissant O = G, :

G

oo

G3(6)

—)Gz”G _ 1—’6, 1,5

On examine une plaque carrée homogene de c6té 3 unités amputée d’un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.

Troisieme méthode

Le centre d’inertie de la

plaque peut aussi s'obtenir

a l'aide des centres d’inertie

de la plaque carrée compléte

de c6té 3u et du carré retiré

de c6té 1u au milieu d'un bord. 2

On examine une plaque carrée homogene de cété 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.
Troisieme méthode

Le centre d’inertie de la

plaque peut aussi s'obtenir

a l'aide des centres d’inertie 25
de la plaque carrée compléte

de c6té 3u et du carré retiré

de coté 1u au milieu d'un bord.

Partant de la plaque compléte
de centre d’inertie G5’ 15
(de masse 9 fois celle d'un carré G

de cbté 1u) :

o6 - 3(o +o5%)
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On examine une plaque carrée homogene de cété 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.
Troisieme méthode

Le centre d’inertie de la

plaque peut aussi s’obtenir

a I'aide des centres d’inertie 25
de la plaque carrée compléte

de c6té 3u et du carré retiré

de coté 1u au milieu d'un bord.

Partant de la plaque compléte

de centre d’inertie G5’ 15
(de masse 9 fois celle d'un carré G
de cbté 1u) :

0 Li=—=0 =2
o6 = §(oc1 + 806)

0é = 5(95@7’ T)

On examine une plaque carrée homogeéne de cété 3 unités amputée d'un carré de coté
1 unité situé au milieu d'un bord de la plaque. Déterminons son centre d’inertie.

Troisieme méthode

Le centre d’inertie de la

plaque peut aussi s'obtenir

a 'aide des centres d’inertie 25
de la plaque carrée compléte

de c6té 3u et du carré retiré

de coté 1u au milieu d'un bord.

Partant de la plaque compléte
de centre d’inertie G’ 1,
(de masse 9 fois celle d'un carré

de coté 1u) :
== /= =
06} :—(OG +8OG)
9
d’'ou I'on tire
=2 W= ==
oc;:g(ooc. 06, )

"

En choisissant O = G,

1

w2
(0]

T B
G'G=36"G s




On consideére un groupe de n éléves passant m épreuves.
Pour 1<i<n et 1<j<m, notons Nj; la note obtenue a la j¢ épreuve par |'éléve n° i.

épreuve ne 1 n° 2 n° m moyenne
éleve coef. aq coef. as coef. am éleve
n° 1 Niy Nio 000 Nim M/ll
n° 2 Noy Nap co0 Nom My
n° n N1 N e Nom M,
1
== Z Njj est la moyenne (arithmétique) du groupe a la j¢ épreuve
o=
m m
M/ = Za, N,y/Zu, est la moyenne (pondérée) de toutes les épreuves de I'éleve n
j=1 j=1

Le théoreme de composition des barycentres permet de calculer la moyenne générale de
toutes les épreuves du groupe et se traduit par I'identité entre les « moyennes des moyennes » :
n

n

IS ST = e /Zﬁ‘:%ZMé’
j= =

i=1 j=1 i=1 j=1 i=1
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