

Limites et continuité Comparaison de fonctions

Aimé Lachal

Cours de mathématiques 1er cvcle. 1re année

- Propriétés dans l'ensemble des réels
 Continuité d'une fonction
 - Valeur absolue
 - Majorant, minorant
 - Borne supérieure et borne inférieure
 - Borne supérieure/inférieure et limite
- Limites d'une fonction ullet Voisinages dans ${\mathbb R}$
 - Limite en l'infini, limite en un réel
 - Limite à gauche, limite à droite
 - · Lien entre fonctions et suites
 - Opérations sur les limites
 - Branches infinies
 - Ordre et limites

- Continuité en un point
- Prolongement par continuité
- Opérations
- · Continuité sur un intervalle
- Fonctions trigonométriques réciproques
- Comparaison locale de deux fonctions
- Problématique
- Outil de comparaison
- Négligeabilité d'une fonction devant une autre
- Équivalence de fonctions

. Propriétés dans l'ensemble des réels a) Valeur absolu

Définition 1.1 (Valeur absolue

On appelle valeur absolue d'un réel x, le nombre réel noté |x| défini par :

$$|x| = \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x \leqslant 0 \end{cases}$$

Sur la droite représentant les nombres réels, |x| est la distance entre le point d'abscisse x et l'origine.

Proposition 1.2 (Propriétés)

- $\emptyset \ \forall (x,y) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ |x \times y| = |x| \times |y|, \ |x^n| = |x|^n \ \text{et, si} \ y \neq 0, \ \left|\frac{x}{y}\right| = \frac{|x|}{|x|}$

Théorème-définition 1.7 (Borne supérieure/inférieure)

 $\forall (x,y) \in \mathbb{R}^2, \begin{cases} |x \pm y| \leqslant |x| + |y| & (1^{re} \text{ inégalité triangulaire}) \\ ||x| - |y|| \leqslant |x \mp y| & (2^{re} \text{ inégalité triangulaire}) \end{cases}$ $\forall \alpha \in \mathbb{R}^*_+, \ \forall (x,x_0) \in \mathbb{R}^2, \begin{cases} |x| \leqslant \alpha \Longleftrightarrow -\alpha \leqslant x \leqslant \alpha \\ |x-x_0| \leqslant \alpha \Longleftrightarrow x_0 - \alpha \leqslant x \leqslant x_0 + \alpha \end{cases}$

n Pour toute partie **non vide et majorée** A de \mathbb{R} , il existe un **unique** réel α qui est

 $\alpha = \sup(A) \iff \begin{cases} \forall x \in A, & x \leqslant \alpha \\ \forall \varepsilon > 0, & \exists x_{\varepsilon} \in A, & \alpha - \varepsilon < x_{\varepsilon} \leqslant \alpha \end{cases}$ $A \xrightarrow{\alpha - \varepsilon} A \xrightarrow{\alpha} A$

② Pour toute partie non vide et minorée A de \mathbb{R} , il existe un unique réel β qui est

le plus grand des minorants de A; ce réel s'appelle la borne inférieure de A et

le plus petit des majorants de A; ce réel s'appelle la borne supérieure de A et

on le note sup (A). Autrement dit :

on le note inf (A). Autrement dit :

. Complément : cas des complexes

Définition 1.3 (Module)

On appelle **module** d'un complexe z = x + iy avec $x = \Re(z)$ et $y = \Im(z)$, le nombre réel noté |z| défini par :

$$|z| = \sqrt{x^2 + y^2}$$

Dans le plan représentant les nombres complexes, |z| est la distance entre le point de coordonnées (x, y) (ou d'affixe z) et l'origine.

Proposition 1.4 (Propriétés (facultatif))

- $\forall z \in \mathbb{C}, \ |z| = 0 \Longleftrightarrow z = 0$
- $\forall (z,z') \in \mathbb{C}^2, \forall n \in \mathbb{N}, |z \times z'| = |z| \times |z'|, |z^n| = |z|^n \text{ et, si } z' \neq 0, \left|\frac{z'}{z'}\right| = \frac{|z|}{|z'|}$
- $(z,z') \in \mathbb{C}^2, \begin{cases} |z\pm z'| \leqslant |z| + |z'| & \text{inégalités} \\ ||z|-|z'|| \leqslant |z\mp z'| & \text{triangulaires} \end{cases}$

- $\forall \alpha \in \mathbb{R}_{+}^{*}, \forall (z, z_{0}) \in \mathbb{C}^{2}, |z z_{0}| \leqslant \alpha \iff M(z) \in \mathcal{D}_{M(z_{0}), \alpha}$ $\forall z \in \mathbb{C}, [(\forall \varepsilon \in \mathbb{R}_{+}^{*}, |z| \leqslant \varepsilon) \iff z = 0]$ $Autre formulation : \bigcap_{\varepsilon > 0} \mathcal{D}_{O, \varepsilon} = \{O\}$

Définition 1.5 (Majorant/Minorant)

- Soit A une partie non vide de \mathbb{R} et α un réel. On dit que α est un majorant de A ou que α majore A si $\forall x \in A$, $x \leq \alpha$. On dit que α est un **minorant** de A ou que α **minore** A si $\forall x \in A$, $x \geqslant \alpha$.
- @ Si A est une partie non vide de $\mathbb R$ qui admet (au moins) un majorant (resp. un minorant), on dit qu'elle est majorée (resp. minorée).
- Si A est à la fois majorée et minorée, on dit qu'elle est bornée, ce qui équivaut $\dot{a}: \exists M > 0, \, \forall x \in A, \, |x| \leqslant M.$
- On dit que A admet un plus grand élément (resp. un plus petit élément) α lorsque α est à la fois un majorant (resp. un minorant) de A et un élément de A. S'il existe, α s'appelle aussi le **maximum** (resp. le **minimum**) de A et se note max(A) (resp. min(A)).

Remarque 1.6 (Cas des complexes)

On peut étendre la notion d'ensemble borné au cas des nombres complexes en remplacant la valeur absolue par le module :

Soit A une partie non vide de \mathbb{C} . On dit que A est **bornée** lorsque $\exists M > 0, \forall z \in A, |z| \leq M$

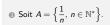
$\beta = \inf(A) \iff \begin{cases} \forall x \in A, & \beta \leqslant x \\ \forall \varepsilon > 0, & \exists x_{\varepsilon} \in A, \end{cases} \quad \beta \leqslant x_{\varepsilon} < \beta + \varepsilon$

Par convention,

- si A est une partie **non vide non majorée**, on pose $\sup (A) = +\infty$;
- si A est une partie **non vide non minorée**, on pose inf $(A) = -\infty$;
- on pose également $\sup (\emptyset) = -\infty$ et $\inf (\emptyset) = +\infty$.

Exemple 1.8

- ① Les ensembles \mathbb{Z} , \mathbb{Q} et \mathbb{R} ne sont ni majorés ni minorés, ils admettent $-\infty$ et $+\infty$ pour borne inférieure et borne supérieure.
- ② Soit a et b deux réels tels que a < b.
- Les intervalles [a, b], [a, b[,]a, b] et]a, b[sont bornés et admettent tous a pour borne inférieure et b pour borne supérieure.
- L'intervalle [a, b] admet a pour plus petit élément et b pour plus grand élément, alors que l'intervalle]a, b[n'admet ni plus petit ni plus grand élément.
- Les intervalles $[a, +\infty[$ et $]a, +\infty[$ sont minorés mais pas majorés, ils admettent a pour borne inférieure et $+\infty$ pour borne supérieure.



- L'ensemble A est non vide, majoré par 1 et minorée par 0.
- On a $1 \in A$ donc $\sup(A) = \max(A) = 1$.
- On a $\forall n \in \mathbb{N}^*$, $\frac{1}{n} > 0$ et $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}^*$, $\frac{1}{n} < \varepsilon$ (choisir un naturel $n > \frac{1}{\varepsilon}$) Donc $\inf(A) = 0$. Or $0 \notin A$, donc A n'a pas de plus petit élément.

Définition 1.9 (Bornes sup/inf d'une fonction

Soit $f: D \longrightarrow \mathbb{R}$ une fonction.

On dit que f est majorée (resp. minorée) sur D si

$$\exists \alpha \in \mathbb{R}, \forall x \in D, f(x) \leq \alpha \text{ (resp. } f(x) \geq \alpha).$$

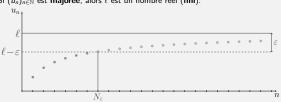
- Si f est majorée sur D alors $\sup\{f(x), x \in D\}$ est un nombre fini et se note $\sup\{f(x), x \in D\}$
- Si f est **minorée** sur D alors $\inf\{f(x), x \in D\}$ est un nombre **fini** et se note $\inf_{x \in D} f(x)$
- Si f est une fonction **non majorée**, on pose par convention $\sup_{x \in \mathbb{D}} f(x) = +\infty$.
- Si f est une fonction **non minorée**, on pose par convention $\inf_{x \in \mathbb{R}} f(x) = -\infty$. De manière analogue, si (u_n)_{n∈N} est une suite réelle, on note

$$\sup\{u_n, n \in \mathbb{N}\} = \sup_{n \in \mathbb{N}} u_n$$
 et $\inf\{u_n, n \in \mathbb{N}\} = \inf_{n \in \mathbb{N}} u_n$.

Exemple 1.10 (Limite d'une suite croissante)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle **croissante**. Posons $\ell=\sup u_n\in\mathbb{R}\cup\{+\infty\}$.

1 Si $(u_n)_{n\in\mathbb{N}}$ est **majorée**, alors ℓ est un nombre réel (fini)



Le nombre ℓ est caractérisé par

$$[\forall n \in \mathbb{N}, u_n \leqslant \ell]$$
 et $[\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, u_n > \ell - \varepsilon].$

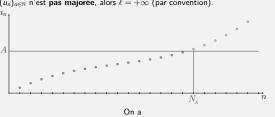
Par croissance, on a $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $[n > N_{\varepsilon} \Longrightarrow \ell - \varepsilon < u_n \leqslant \ell]$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et admet ℓ pour limite.

Exemple 1.10 (Limite d'une suite croissante)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle **croissante**. Posons $\ell = \sup u_n \in \mathbb{R} \cup \{+\infty\}$.

② Si $(u_n)_{n\in\mathbb{N}}$ n'est **pas majorée**, alors $\ell=+\infty$ (par convention).



 $\forall A \in \mathbb{R}, \quad \exists N_A \in \mathbb{N}, \quad u_{N_A} > A.$

Par croissance, on a $\forall A \in \mathbb{R}$, $\exists N_A \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $[n > N_A \Longrightarrow u_n > A]$. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **divergente** et admet $+\infty$ pour limite.

On note $\lim u_n = +\infty$.

Théorème 1.11 (Théorème de la limite monotone

- Toute suite croissante et majorée est convergente. Toute suite croissante et non majorée est divergente de limite $+\infty$.
- O Toute suite décroissante et minorée est convergente. Toute suite **décroissante** et **non minorée** est **divergente** de limite $-\infty$.

De manière unifiée :

- $si(u_n)_{n\in\mathbb{N}}$ est une suite réelle **croissante**, alors $lim\ u_n = \sup u_n$;
- $si(u_n)_{n\in\mathbb{N}}$ est une suite réelle **décroissante**, alors $\lim_{n\to\infty} u_n = \inf_{n\in\mathbb{N}} u_n$.

Exemple 1.12 (Suite des inverses)

La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée e.g. par 0. Elle est donc **convergente** et l'on a $\lim u_n = \inf u_n = 0$.

② Soit $\forall n \in \mathbb{N}^*$, $v_n = 1 - \frac{1}{n}$

La suite $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée e.g. par 1. Elle est donc **convergente** et l'on a $\lim v_n = \sup v_n = 1$.

En conclusion, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

Exemple 1.13 (Deux séries de Riemann)

 $\begin{aligned} & \text{Soit } \forall n \! \in \! \mathbb{N}^*, \ v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}. \quad \frac{1}{v_1} \underbrace{ \frac{2}{\sqrt{1}} + \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}} \\ & \text{On a } \forall n \in \mathbb{N}^*, \ v_{n+1} - v_n = \frac{1}{\sqrt{n+1}} > 0, \ \text{donc la suite } (v_n)_{n \in \mathbb{N}} \ \text{est croissante.} \\ & \text{On a } \forall k \in \mathbb{N}^*, \ \frac{1}{\sqrt{k}} > \frac{1}{\sqrt{k+1} + \sqrt{k}} = \sqrt{k+1} - \sqrt{k}, \end{aligned}$

Propriétés dans l'ensemble des réels d) De la borne sup/inf vers la limite

● Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. $\frac{1}{u_1} \frac{1.1}{u_2} \frac{1.3}{u_3} \frac{1.4}{u_4} \frac{1.5}{u_5} \frac{1.6}{u_5}$. On a $\forall n \in \mathbb{N}^*$, $u_{n+1} - u_n = \frac{1}{(n+1)^2} > 0$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**. $\frac{1}{(n+1)^2} \frac{1}{u_1} \frac{1.1}{u_2} \frac{1.3}{u_2} \frac{1.4}{u_3} \frac{1.5}{u_4} \frac{1.5}{u_5} \frac{1.6}{u_5}$. $\frac{1}{k} \frac{1.5}{k} \frac{1.6}{u_5} \frac{1.6$

donc $\forall n \in \mathbb{N}^*$, $v_n > \sum_{i=1}^n \left(\sqrt{k+1} - \sqrt{k} \right) = \sqrt{n+1} - 1$. Ainsi, la suite $(v_n)_{n\in\mathbb{N}}$ n'est pas **majorée**.

En conclusion, la suite $(v_n)_{n\in\mathbb{N}}$ est **divergente** et $\lim_{n\to+\infty}v_n=\sup_{n\to+\infty}v_n=+\infty$.

Un peu de vocabulaire qui sera utilisé dans la suite

Définition 2.1 (Notion de voisinage)

- On dit qu'une propriété dépendant d'un réel x est vraie au voisinage de xo lorsqu'il existe un intervalle ouvert de la forme $I = [x_0 - \alpha, x_0 + \alpha]$ avec $\alpha \in \mathbb{R}_+^*$ tel que la propriété soit vraie pour tout $x \in I \setminus \{x_0\}$ (ce qui ne l'empêche pas d'être éventuellement vraie pour x₀ également).
- ② On dit qu'une propriété est vraie au voisinage de $+\infty$ (resp. $-\infty$) lorsqu'il existe un intervalle ouvert de la forme $I = A, +\infty$ (resp. A = A) avec $A \in \mathbb{R}$ tel que la propriété soit vraie pour tout $x \in I$.

Définition 2.2 (Droite réelle achevée)

On appelle **droite réelle achevée** l'ensemble des réels auquel on adjoint $+\infty$ et $-\infty$. Cet ensemble est noté $\overline{\mathbb{R}}$. Formellement :

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty].$$

Dans toute la suite, sauf mention contraire, f désignera une fonction de $\mathbb R$ dans \mathbb{R} dont l'ensemble de définition D_{ℓ} est un intervalle ou une réunion d'intervalles

Définition 2.3 (Limite finie en l'infini)

On dit que f admet pour limite un réel ℓ en +∞ lorsque

 $\forall \varepsilon > 0, \quad \exists X_{\varepsilon} \in \mathbb{R}, \quad \forall x \in D_f, \quad x > X_{\varepsilon} \Longrightarrow |f(x) - \ell| < \varepsilon.$

② Soit une fonction f définie au voisinage de $-\infty$.

On dit que f admet pour limite un réel ℓ en $-\infty$ lorsque

 $\forall \varepsilon > 0, \quad \exists X_{\varepsilon} \in \mathbb{R}, \quad \forall x \in D_f, \quad x < X_{\varepsilon} \Longrightarrow |f(x) - \ell| < \varepsilon.$

 \bullet Soit une fonction f définie au voisinage de $+\infty$

Si une telle limite existe, alors elle est unique.

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{t \to \infty} f = \ell$, ou encore $f(x) \underset{x \to +\infty}{\longrightarrow} \ell$ ou $f \underset{t \to \infty}{\longrightarrow} \ell$.

On note alors $\lim_{x \to -\infty} f(x) = \ell$ ou $\lim_{x \to -\infty} f = \ell$, ou encore $f(x) \xrightarrow{} \ell$ ou $f \xrightarrow{} \ell$.

 $\lim f(x) = \ell$

 $\forall \varepsilon > 0, \quad \exists X_{\varepsilon} \in \mathbb{R}, \quad \forall x \in D_f, \quad [x > X_{\varepsilon} \Longrightarrow |f(x) - \ell| < \varepsilon]$

2. Limites d'une fonction

Définition 2.4 (Asymptote horizontale)

Lorsque $\lim f = \ell$ ou $\lim f = \ell$, on dit que la droite d'équation $v = \ell$ est une asymptote (horizontale) à la courbe représentative de f .



Exemple 2.5 (Fonction « inverse »)

Soit f la fonction de la variable réelle définie par

$$f(x)=\frac{1}{x}.$$

On a $\lim f = 0$, donc l'axe des abscisses est une asymptote horizontale à la courbe représentative de f

Définition 2.6 (Limite infinie en l'infini)

Soit une fonction f définie au voisinage de $+\infty$.

① On dit que f admet pour limite $+\infty$ en $+\infty$ lorsque

$$\forall A \in \mathbb{R}, \quad \exists X_A \in \mathbb{R}, \quad \forall x \in D_f, \quad x > X_A \Rightarrow f(x) > A.$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$ ou $\lim_{+\infty} f = +\infty$, ou encore $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$ ou $f \underset{+\infty}{\longrightarrow} +\infty$.

② On dit que f admet pour limite $-\infty$ en $+\infty$ lorsque

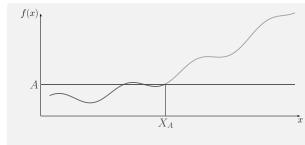
$$\forall B \in \mathbb{R}, \quad \exists X_B \in \mathbb{R}, \quad \forall x \in D_f, \quad x > X_B \Rightarrow f(x) < B.$$

On note alors $\lim_{x \to +\infty} f(x) = -\infty$ ou $\lim_{x \to +\infty} f = -\infty$, ou encore $f(x) \underset{x \to +\infty}{\longrightarrow} -\infty$ ou $f \underset{x \to +\infty}{\longrightarrow} -\infty$.

Les définitions précédentes s'adaptent aisément au cas d'une fonction définie au voisinage de $-\infty$ et qui peut donc avoir pour limite $-\infty$ ou $+\infty$.

Limites d'une fonction

f(x)



$$\lim_{x\to+\infty}f(x)=+\infty$$

$$\iff$$

 $\forall A \in \mathbb{R}, \exists X_A \in \mathbb{R}, \forall x \in D_f, [x > X_A \Longrightarrow f(x) > A]$

Définition 2.8 (Limite d'une suite)

1 On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers un nombre ℓ (ou tend vers ℓ) lorsque

$$\forall \varepsilon > 0, \quad \exists N_\varepsilon \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > N_\varepsilon \Longrightarrow |u_n - \ell| < \varepsilon.$$

On note alors $\lim u_n = \ell$ et on dit aussi que $(u_n)_{n \in \mathbb{N}}$ est **convergente**. Une suite qui ne converge pas est dite divergente.

② On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ a pour limite $+\infty$ (ou tend vers $+\infty$) si

$$\forall A \in \mathbb{R}, \quad \exists N_A \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > N_A \Longrightarrow u_n > A.$$

⑧ On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ a pour limite $-\infty$ (ou tend vers $-\infty$) si

$$\forall B \in \mathbb{R}, \quad \exists N_{\scriptscriptstyle B} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > N_{\scriptscriptstyle B} \Longrightarrow u_n < B.$$

Définition 2.9 (Limite infinie en un réel)

Soit x_0 un réel tel que : $x_0 \in D_f$ ou x_0 est une borne de D_f .

On dit que f admet pour limite +∞ en xo lorsque.

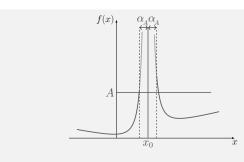
$$\forall A \in \mathbb{R}, \exists \alpha_A > 0, \forall x \in D_f, |x - x_0| < \alpha_A \Longrightarrow f(x) > A$$

On note alors $\lim_{x\to\infty} f(x) = +\infty$ ou $\lim_{x\to\infty} f = +\infty$, ou encore $f(x) \longrightarrow +\infty$ ou

② On dit que f admet pour limite -∞ en x₀ lorsque :

$$\forall B \in \mathbb{R}, \quad \exists \alpha_B > 0, \quad \forall x \in D_f, \quad |x - x_0| < \alpha_B \Longrightarrow f(x) < B$$

On note alors $\lim_{x\to x_0} f(x) = -\infty$ ou $\lim_{x\to x_0} f = -\infty$, ou encore $f(x) \underset{x\to x_0}{\longrightarrow} -\infty$ ou



$$\lim_{x\to x_0}f(x)=+\infty$$

 $\forall A \in \mathbb{R}, \quad \exists \alpha_A > 0, \quad \forall x \in D_f, \quad [|x - x_0| < \alpha_A \Longrightarrow f(x) > A]$

Définition 2.10 (Asymptote verticale)

Lorsque $\lim f = +\infty$ ou $\lim f = -\infty$, on dit que la droite d'équation $x = x_0$ est une asymptote (verticale) à la courbe représentative de f.

Exemple 2.11 (Fonction « inverse absolue »)

Soit f la fonction de la variable réelle définie par

$$f(x) = \frac{1}{|x|}$$

On a $\lim_{n} f = +\infty$, donc l'axe des ordonnées est une asymptote verticale à la courbe représentative de f.

Définition 2.12 (Limite finie en un réel)

Soit x_0 un réel tel que : $x_0 \in D_f$ ou x_0 est une borne de D_f .

On dit que f admet le réel l pour limite en xo lorsque

première formulation :

$$\forall \varepsilon > 0, \quad \exists \alpha_{\varepsilon} > 0, \quad \forall x \in D_f, \quad |x - x_0| < \alpha_{\varepsilon} \Longrightarrow |f(x) - \ell| < \varepsilon;$$

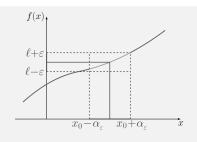
• deuxième formulation :

$$\forall \varepsilon>0, \quad \exists \alpha_\varepsilon>0, \quad \forall x\in D_f, \quad x\in \,]x_0-\alpha_\varepsilon, x_0+\alpha_\varepsilon[\Longrightarrow f(x)\in \,]\ell-\varepsilon, \ell+\varepsilon[;$$

troisième formulation .

$$\forall \varepsilon > 0, \quad \exists \alpha_{\varepsilon} > 0, \quad f(]x_0 - \alpha_{\varepsilon}, x_0 + \alpha_{\varepsilon}[\cap D_f) \subset]\ell - \varepsilon, \ell + \varepsilon[.$$

On note alors $\lim_{x \to x_0} f(x) = \ell$ ou $\lim_{x_0} f = \ell$, ou encore $f(x) \xrightarrow[x \to x_0]{} \ell$ ou $f \xrightarrow[x_0]{} \ell$.



$$\lim_{x\to x_0} f(x) = \ell$$

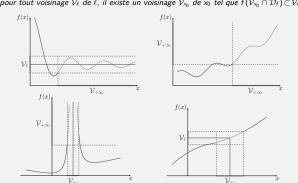
 $\forall \varepsilon > 0, \quad \exists \alpha_{\varepsilon} > 0, \quad \forall x \in D_f, \quad [|x - x_0| < \alpha_{\varepsilon} \Longrightarrow |f(x) - \ell| < \varepsilon]$ ou encore $x \in]x_0 - \alpha_\varepsilon, x_0 + \alpha_\varepsilon[\Longrightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$ ou encore $f(|x_0 - \alpha_{\varepsilon}, x_0 + \alpha_{\varepsilon}| \cap D_f) \subset |\ell - \varepsilon, \ell + \varepsilon|$

. Limites d'une fonction

Définition 2.13 (Unification des quatre cas)

Soit $x_0 \in \mathbb{R}$ tel que $x_0 \in D_f$ ou x_0 est une borne de D_f , et $\ell \in \mathbb{R}$. La fonction f admet l pour limite en x₀ lorsque :

pour tout voisinage V_{ℓ} de ℓ , il existe un voisinage V_{x_0} de x_0 tel que $f(V_{x_0} \cap \mathcal{D}_f) \subset V_{\ell}$.



. Limites d'une fonction

Proposition 2.14 (Unicité/continuité)

- Si f admet une limite en x₀ alors cette limite est unique.
- ② Si f admet une limite **finie** en x_0 alors f est **bornée** au voisinage de x_0 .
- § Si $x_0 \in D_f$ et si f admet pour limite ℓ en x_0 alors $\ell = f(x_0)$. On dit alors que f est continue en x_0 (cf. § 3).

Remarque 2.15 ((facultatif))

① Lorsque $x_0 \in D_f$ on définit parfois $\lim_{x \to \infty} f(x) = \ell$ par

$$\forall \varepsilon > 0, \quad \exists \alpha_{\varepsilon} > 0, \quad \forall x \in D_f, \quad \mathbf{0} < |x - x_0| < \alpha_{\varepsilon} \Rightarrow |f(x) - \ell| < \varepsilon.$$

On peut définir de même $\lim f(x) = +\infty$.

@ Les définitions 2.3 et 2.12 peuvent s'étendre au cas d'une fonction de $\mathbb R$ dans $\mathbb C$ (et même de ℂ dans ℂ pour la 2.12...) en remplacant les valeurs absolues par des modules. On a alors le résultat ci-dessous.

Soit f une fonction de \mathbb{R} dans \mathbb{C} , telle que $f(x) = f_1(x) + if_2(x)$ où f_1 et f_2 sont deux fonctions de \mathbb{R} dans \mathbb{R} . Soit $\ell_1 + i\ell_2 \in \mathbb{C}$ et $x_0 \in \overline{\mathbb{R}}$. On a

$$\lim_{\stackrel{x\to x_0}{\to x_0}}f(x)=\ell_1+\mathrm{i}\ell_2 \Longleftrightarrow \left(\lim_{\stackrel{x\to x_0}{\to x_0}}f_1(x)=\ell_1 \quad \text{et} \quad \lim_{\stackrel{x\to x_0}{\to x_0}}f_2(x)=\ell_2\right)$$

Limites d'une fonction

Définition 2.16

① On dit que f admet le réel ℓ pour limite à gauche en xo si

$$\forall \varepsilon > 0, \quad \exists \alpha_\varepsilon > 0, \quad \forall x \in D_f, \quad x_0 - \alpha_\varepsilon < x < x_0 \Longrightarrow |f(x) - \ell| < \varepsilon.$$
 On note alors $\lim_{n \to \infty} f(x) = \ell$ ou $\lim_{n \to \infty} f(x) = \ell$.

② On dit que f admet $+\infty$ (resp. $-\infty$) pour limite à gauche en x_0 si

 $\forall A \in \mathbb{R}, \exists \alpha_A > 0, \forall x \in D_f, x_0 - \alpha_A < x < x_0 \Longrightarrow f(x) > A (resp. f(x) < A).$ On note alors $\lim f(x) = +\infty$ ou $\lim f(x) = +\infty$.

On définit de la même manière la notion de limite à droite : il suffit, dans les définitions ci-dessus, de remplacer $x_0 - \alpha_{\varepsilon} < x < x_0$ par $x_0 < x < x_0 + \alpha_{\varepsilon}$.

Proposition 2.17

- ① Si $x_0 \notin D_f$, f admet une limite en x_0 ssi f admet une limite à droite et une limite à gauche en x₀ et si ces limites sont égales.
- @ Si $x_0 \in D_f$, il faut de plus que : $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0)$, ce qui revient à dire que f est continue en x_0 (cf. § 3).

Proposition 2.18 (Lien fonctions-suites

Soit $a, \ell \in \mathbb{R}$. Les deux énoncés suivants sont équivalents :

- ② Pour toute suite de réels $(u_n)_{n\in\mathbb{N}}$ telle que $\lim_{n\to +\infty} u_n = x_0$, on a $\lim_{n\to +\infty} f(u_n) = \ell$

Corollaire 2.19 (Un critère de divergence)

Soit $x_0 \in \overline{\mathbb{R}}$. S'il existe deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ telles que $\lim u_n = \lim v_n = x_0$ et les suites-images par $f: (f(u_n))_{n \in \mathbb{N}}$ et $(f(v_n))_{n \in \mathbb{N}}$ admettent des limites **différentes.** alors f **n'**admet **pas** de limite en x_0 .

Exemple 2.20 (Fonction « sinus inverse »)

Soit f définie sur \mathbb{R}^* par $f(x) = \sin \frac{1}{x}$. Examinons si elle admet une limite en $x_0 = 0$.

- Posons $u_n = \frac{1}{n\pi}$ et $v_n = \frac{1}{2n\pi + \pi/2}$. On a $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0$ et $f(u_n) = 0$ et $f(v_n) = 1$.
- Les suites $(f(u_n))_{n\in\mathbb{N}}$ et $(f(v_n))_{n\in\mathbb{N}}$ admettent des limites différentes.

Ainsi f n'admet pas de limite en 0.

Proposition 2.25 (Composition)

Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} et $x_0, \ell, \ell' \in \overline{\mathbb{R}}$.

- $Si \lim_{x \to \infty} f(x) = \ell \text{ et } \lim_{y \to \ell} g(y) = \ell' \text{ alors } \lim_{x \to \infty} (g \circ f)(x) = \ell'.$
- Application à $\lim_{x \to \infty} (f(x)^{g(x)}) = \lim_{x \to \infty} (e^{g(x) \ln f(x)})$ lorsque f > 0 au voisinage de x_0

$\lim_{x_0} f$	$\ell > 0$	$\ell > 1$ ou $+\infty$	$\ell\!\in\![0,1[$	+∞	$+\infty$	0+	0+	1
lim g ∞0	$\ell' \in \mathbb{R}$	+∞ (-∞)	+∞ (-∞)	$\begin{array}{c c} \ell' > 0 \\ (\ell' < 0) \end{array}$	0	$\ell' > 0$ ou $+\infty$ $\ell' < 0$ ou $-\infty$	0	±∞
$\lim_{x_0} f^g$	$\ell^{\ell'}$	+∞ (0 ⁺)	0 ⁺ (+∞)	+∞ (0 ⁺)	?	0 ⁺ (+∞)	?	?

Les formes indéterminées que l'on rencontre lors de cette opération sont de la forme • 0° • 1∞

Exemple 2.26 (Exponentielle)

À l'aide de $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ (cf. exemple 2.36), on voit que

$$\forall x \in \mathbb{R}, \ \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

. Limites d'une fonction

Théorème 2.29 (Théorème de la limite monotone

Soit a et b deux réels ou $\pm \infty$ tels que a < b et I = a, b[

- Soit f une fonction croissante sur I.
- Si f est maiorée sur l. alors f admet une limite à gauche finie en b.
- Si f n'est pas majorée sur l alors $\lim f(x) = +\infty$.

Dans les deux cas, on a $\lim_{x \to b^{-}} f(x) = \sup_{x \to b^{-}} f(x)$.

- Si f est minorée sur l. alors f admet une limite à droite finie en a.
- Si f n'est pas minorée sur l alors $\lim f(x) = -\infty$.

Dans les deux cas, on a $\lim_{x\to a^+} f(x) = \inf_{x\in [a,b[} f(x)$

On a des résultats similaires pour les fonctions décroissantes (en échangeant les rôles de a et b).

Proposition 2.21 (Addition/multiplication

Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} . Soit $x_0 \in \overline{\mathbb{R}}$ et ℓ, ℓ' deux nombres réels.

$\lim_{x_0} f$	$\ell \in \mathbb{R}$	$\ell \in \mathbb{R}$	+∞ (-∞)	+∞
lim g ∞	$\ell' \in \mathbb{R}$	+∞ (-∞)	+∞ (-∞)	$-\infty$
$\lim_{x_0} (f+g)$	$\ell + \ell'$	+∞ (-∞)	+∞ (-∞)	?

lim f	$\ell \in \mathbb{R}$	$\ell > 0$	$\ell < 0$	$+\infty$	$-\infty$	0
lim g ∞	$\ell' \in \mathbb{R}$	+∞ (-∞)	+∞ (-∞)	+∞ (-∞)	+ (− (−8)	$\pm \infty$
$\lim_{x_0} (f \times g)$	$\ell \times \ell'$	+∞ (-∞)	-∞ (+∞)	+∞ (-∞)	-∞ (+∞)	?

Les formes indéterminées que l'on rencontre lors de ces opérations sont de la forme $\bullet \infty - \infty$ $\bullet 0 \times \infty$

Exemple 2.22 (Polynômes en $\pm \infty$)

La limite en $\pm\infty$ d'une fonction polynôme est égale à la limite de son monôme de plus haut degré : si $a_p \neq 0$, $\lim_{x \to +\infty} \sum_{x \to +\infty}^p a_k x^k = \lim_{x \to +\infty} a_p x^p = \pm \infty$ si $p \geqslant 1$ (signe à préciser)

Définition 2.27 (Asymptote oblique/Branche parabolique)

Soit f une fonction définie au voisinage de $+\infty$.

S'il existe des réels a et b tels que

$$\lim_{x\to +\infty}\big(f(x)-(ax+b)\big)=0,$$

on dit que la droite d'équation y = ax + b est asymptote (oblique) à la courbe représentative de f au voisinage de $+\infty$. Dans ce cas, les nombres a et b sont donnés par

$$a=\lim_{x\to +\infty}rac{f(x)}{x}$$
 et $b=\lim_{x\to +\infty}(f(x)-ax)$.
• S'il existe un réel a tel que

$$\lim_{x\to +\infty} \frac{f(x)}{x} = a \quad \text{et} \quad \lim_{x\to +\infty} (f(x) - ax) = \pm \infty,$$
 on dit que la courbe représentative de f admet une **branche parabolique** de direction asymptotique

 $\text{ $Si \lim_{x \to +\infty} \frac{f(x)}{x} = \pm \infty,$ on dit que la courbe représentative de f admet une$ **branche parabolique**dedirection asymptotique l'axe des ordonnées en $+\infty$

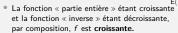
la droite d'équation $y = ax en +\infty$.

$\ \ y = f(x)$

Limites d'une fonction

Exemple 2.30 (Partie entière et inverse)

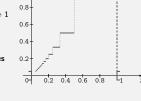
Soit f la fonction définie sur]0,1[par $f(x) = \frac{1}{F(1/x)}$



• Pour tout $x \in]0,1[,\frac{1}{x}>1 \text{ donc } E\left(\frac{1}{x}\right)\geqslant 1$ puis $f(x) \in [0, 1]$.

Ainsi la fonction f est **bornée** sur]0,1[.

En conséquence, f admet des limites finies en 0 à droite et en 1 à gauche. En fait, $\lim_{x \to 0} f(x) = 0$ et $\lim_{x \to 0} f(x) = 1$.



Limites d'une fonction

Proposition 2.23 (Division)

Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} . Soit $x_0 \in \overline{\mathbb{R}}$ et ℓ, ℓ' deux nombres réels.

Les formes indéterminées que l'on rencontre lors de cette opération sont de la forme $\bullet \frac{\infty}{\infty} \qquad \bullet \frac{0}{0}$

Exemple 2.24 (Fractions rationnelles en $\pm \infty$)

La limite en $\pm\infty$ d'une fraction rationnelle est égale à la limite du quotient des monômes de plus haut degré du numérateur et du dénominateur :

$$\text{si } a_p \neq 0 \text{ et } b_q \neq 0, \quad \lim_{x \to \pm \infty} \sum_{k=0}^{p} a_k x^k = \lim_{x \to \pm \infty} \frac{a_p x^p}{b_q x^q} = \begin{cases} \pm \infty & \text{si } p > q \text{ (signe à préciser)} \\ 0 & \text{si } p < q \\ \frac{a_p}{b_p} & \text{si } p = q \end{cases}$$

Exemple 2.28 (Asymptote oblique)

Soit f la fonction définie au voisinage

$$f(x) = \frac{x}{3} + 1 + 4\frac{\sin x}{x}.$$

On a $\lim_{x \to +\infty} \frac{\sin x}{x} = 0$ (cf. exemple 2.35) donc $\lim_{x\to +\infty} \left(f(x) - \frac{x}{3} - 1 \right) = 0.$

La courbe représentative de f admet une asymptote en $+\infty$ d'équation $y = \frac{x}{2} + 1$.

Soit g la fonction définie au voisinage

$$g(x) = \frac{x^2 - 6x + 14}{2x - 4}.$$

On a $\lim_{x \to +\infty} \frac{g(x)}{x} = \frac{1}{2}$ puis $\lim_{x \to \infty} \left(g(x) - \frac{x}{2} \right) = -2.$

La courbe représentative de g admet une asymptote en $+\infty$ d'équation $y = \frac{x}{2} - 2$.

Limites d'une fonction

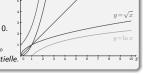
Partant de la limite $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, à l'aide de changements de variable on déduit les $\lim_{x\to 0^+} x \ln x = 0, \lim_{x\to +\infty} \frac{e^x}{x} = +\infty, \lim_{x\to -\infty} xe^x = 0 \text{ que l'on peut généraliser}$

• Pour tout $\alpha > 0$ et tout $\beta \in \mathbb{R}$.

devant les fonctions puissances positives.

② Pour tout $\alpha > 0$ et tout $\beta \in \mathbb{R}$,

Les fonctions puissances sont «négligeables» devant les puissances positives de l'exponentielle.



Limites d'une fonction

Proposition 2.32 (Ordre et limites

- Soit f et g des fonctions telles que $f \leq g$ au voisinage de x_0
 - Si f et g admettent des limites finies ℓ et ℓ' en x_0 alors $\ell \leq \ell'$.
 - Si $\lim_{x \to \infty} f(x) = +\infty$ alors $\lim_{x \to \infty} g(x) = +\infty$.
 - Si $\lim_{x \to \infty} g(x) = -\infty$ alors $\lim_{x \to \infty} f(x) = -\infty$.
- @ Si f et g admettent resp. ℓ et ℓ' comme limites en x_0 et si $\ell < \ell'$, alors f < g au voisinage de x₀.
- ® Soit $\alpha \in \mathbb{R}$. Si $\lim_{x \to \infty} f(x) = \ell$ et si $\ell > \alpha$ alors $f > \alpha$ au voisinage de x_0 .

En particulier, si $\ell > 0$ alors f > 0 au voisinage de x_0 .

On prendra garde aux inégalités strictes et larges : si f et g sont des fonctions telles que f < g au voisinage de x_0 et admettent des limites ℓ et ℓ' en x_0 , on **n'a pas nécessairement** $\ell < \ell'$ et l'on peut avoir $\ell = \ell'$.

Ex. :
$$f(x) = 0$$
 et $g(x) = \frac{1}{x}$ en $+\infty$. On a $f < g$ sur $]0, +\infty[$ et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$.

Théorème 2.34 (Théorème de l'encadrement)

Soit f, g et h des fonctions de \mathbb{R} dans \mathbb{R} et $x_0, \ell \in \overline{\mathbb{R}}$.

Si les fonctions f, g et h vérifient $g(x) \le f(x) \le h(x)$ au voisinage de x_0 , et si $\lim g(x) = \lim h(x) = \ell \text{ alors } \lim f(x) = \ell.$

Définition 3.1 (Continuité)

Soit f une fonction de \mathbb{R} dans \mathbb{R} et $x_0 \in D_f$

① On dit que f est continue en x_0 lorsque f admet une limite en x_0 , et cette limite est alors nécessairement $f(x_0)$ (d'après proposition 2.14). Autrement dit :

$$f$$
 continue en $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$

$$\iff (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D_f, |x - x_0| < \alpha \implies |f(x) - f(x_0)| < \varepsilon).$$

② On dit que f est continue à gauche (resp. à droite) en x₀ lorsque

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = f(x_0) \quad (resp. \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = f(x_0)).$$

Proposition 3.2

f est continue en x_0 ssi f est continue à gauche et à droite en x_0 .

Exemple 3.3 (Fonction « partie entière »)

Soit $n \in \mathbb{Z}$. Au voisinage de n, on a

$$\mathsf{E}(x) = \begin{cases} n & \text{si } x \in [n, n+1[\\ n-1 & \text{si } x \in [n-1, n[\end{cases}$$

donc $\lim E(x) = n = E(n)$ et $\lim E(x) = n - 1 \neq E(n)$.

La fonction partie entière est continue à droite en n mais pas à gauche.

Continuité d'une fonction

Proposition 3.7 (Opérations)

Opérations

Si f et g sont deux fonctions de \mathbb{R} dans \mathbb{R} continues en x_0 et si λ est un réel. alors les fonctions f + g, λf et fg sont **continues** en x_0 .

Si de plus $g(x_0) \neq 0$ alors $\frac{f}{g}$ est **continue** en x_0 .

Composition

Si f est continue en x_0 et si g est continue en $f(x_0)$ alors $(g \circ f)$ est continue

Inégalités

Si f est **continue** en x_0 alors f est **bornée** au voisinage de x_0 .

Si f est continue en x_0 et si $f(x_0) > 0$ alors f(x) > 0 au voisinage de x_0 .

Remarque 3.8 (Extension aux fonctions à valeurs complexes (facultatif))

Soit f une fonction de \mathbb{R} dans \mathbb{C} , telle que $f(x) = f_1(x) + if_2(x)$ où f_1 et f_2 sont deux fonctions de $\mathbb R$ dans $\mathbb R$. Alors

la fonction f est continue en $x_0 \in \mathbb{R}$ *ssi les fonctions f*₁ *et f*₂ *sont continues en* x_0 .

Limites d'une fonction

Exemple 2.35 (Fonction « sinus cardinal »

Soit f la fonction définie sur \mathbb{R}^* par f(x) =

♠ Étude en 0

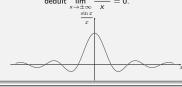
- $\frac{1}{\cos x}$, on tire Avec tan x =
- De l'encadrement géométrique
- $\forall x \in]0, \pi/2[, \sin x < x < \tan x]$

(l'angle x étant mesuré en radians), on

obtient $\forall x \in]0, \pi/2[, \cos x < f(x) < 1]$ duquel on déduit $\lim_{x \to 0} f(x) = 1$.

Par parité, on a $\lim_{x \to \infty} \frac{\sin x}{1 - \sin x} = 1.$

- $\lim_{x \to 0} \frac{\tan x}{x} = 1.$
- Avec $1 \cos x = 2 \sin^2 \frac{x}{2}$, on tire $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$
- @ Étude en $\pm \infty$
- De l'encadrement $\forall x \in \mathbb{R}$, $|\sin x| \le 1$ on tire $\forall x \in \mathbb{R}, |f(x)| \leq \frac{1}{|x|}$ duquel on



- ① Pour une fonction f, il existe deux types de discontinuité en $x_0 \in D_f$
 - discontinuité de première espèce : f admet une limite à droite et une limite à gauche en x_0 , mais l'une au moins de ces deux limites n'est pas
 - discontinuité de deuxième espèce : f n'admet pas de limite à droite et/ou à gauche en x_0 .
- ② Si $x_0 \notin D_f$ et si f admet pour limite le réel ℓ en x_0 , on peut prolonger f en posant :

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0 \end{cases}$$

La fonction \tilde{f} ainsi obtenue est continue en x_0 : on dit qu'on a **prolongé** f par continuité en xn.

Exemple 3.5 (Prolongement par continuité)

Soit f la fonction de la variable réelle définie par $f(x) = \frac{x^2 - x - 2}{x^2 - x^2}$.

- On a $\mathcal{D}_f = \mathbb{R} \setminus \{2\}$ et $\forall x \in \mathcal{D}_f$, f(x) = x + 1. Le prolongement par continuité
- Donc $\lim f(x) = 3$ et l'on peut prolonger
- la fonction f par continuité en 2 en posant $\tilde{f}(2) = 3$.
- ainsi construit s'écrit simplement $\tilde{f}:\mathbb{R}\longrightarrow\mathbb{R}$ $v \mapsto v + 1$

Continuité d'une fonction

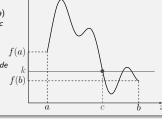
Définition 3.9 (Continuité sur un intervalle)

La fonction f est dite continue sur l'intervalle I lorsque f est continue en tout x₀ de l.

Théorème 3.10 (Théorème des valeurs intermédiaires

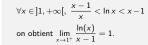
Soit f une fonction continue sur [a, b].

- Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c dans l'intervalle [a, b] tel que f(c) = k.
- En particulier, si f(a) et f(b) sont de signes opposés, alors il existe au moins un réel c dans [a, b] tel que f(c) = 0.



Exemple 2.36 (Fonctions logarithme/exponentielle

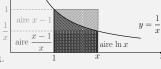
• De l'encadrement géométrique



Par symétrie, on tire

$$\lim_{x\to 1}\frac{\ln(x)}{x-1}=1.$$

Par changements de variables, on a



Exemple 2.37 (Fonctions hyperboliques)

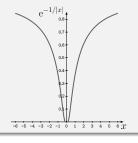
$$\bullet \lim_{x \to 0} \frac{\operatorname{sn} x}{x} =$$

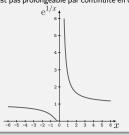
- $\bullet \lim_{x \to 0} \frac{\mathsf{ch} x 1}{x^2} = \frac{1}{2}$

Exemple 3.6 (Exponentielle-inverse)

La fonction f admet une limite finie en 0 qui vaut 0. Elle est donc prolongeable ② Soit $g: \mathbb{R}^* \longrightarrow \mathbb{R}$ $x \longmapsto e^{1/x}$

La fonction g admet une limite à gauche finie en 0 qui vaut 0 et une limite à droite infinie en 0. Elle présente donc une par continuité en 0 en posant f(0) = 0. discontinuité de deuxième espèce et n'est pas prolongeable par continuité en 0.

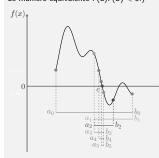




Continuité d'une fonction

Exemple 3.11 (Algorithme de dichotomie (facultatif))

Soit f est une fonction **continue** sur [a,b] telle On a $f(a_0)f(b_0) < 0$, que f(a) et f(b) soient de signes opposés (ou donc f admet un zéro dans $[a_0, b_0]$. de manière équivalente f(a)f(b) < 0.)



- Posons $a_0 = a$ et $b_0 = b$.
- Posons $a_1 = \frac{a_0 + b_0}{2}$ et $b_1 = b_0$ On a $f(a_1)f(b_1) < 0$, donc f admet un zéro dans $[a_1, b_1]$.
- Posons $a_2 = a_1$ et $b_2 = \frac{a_1 + b_1}{2}$. On a $f(a_2)f(b_2) < 0$, donc f admet un zéro dans $[a_2, b_2]$.
- Posons $a_3 = a_2$ et $b_3 = \frac{a_2 + b_2}{2}$. On a $f(a_3)f(b_3) < 0$, donc f admet un zéro dans $[a_3, b_3]$.
- Posons $a_4 = \frac{a_3 + b_3}{2}$ et $b_4 = b_3$ On a $f(a_4)f(b_4) < 0$, donc f admet un zéro dans $[a_4, b_4]$.
- Posons $a_5 = \frac{a_4 + b_4}{a_5}$ et $b_5 = b_4$ On a $f(a_5)f(b_5) < 0$, donc f admet un zéro dans $[a_5, b_5]$.

Exemple 3.11 (Algorithme de dichotomie (facultatif))

On construit ainsi de proche en proche deux suites de points a_0, a_1, a_2, \ldots et b_0, b_1, b_2, \ldots dans [a, b] telles que pour chaque $n \in \mathbb{N}$, l'intervalle $[a_{n+1}, b_{n+1}]$ est l'une des deux "moitiés" de $[a_n, b_n]$ et $f(a_n)f(b_n) \leq 0$.

On a donc une suite d'intervalles fermés emboîtés $[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$ de longueurs $\ell_0 = b_0 - a_0$, $\ell_1 = \ell_0/2$, $\ell_2 = \ell_0/2^2$...

En conséquence, les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifient :

- (a_n)_{n∈N} est croissante et (b_n)_{n∈N} est décroissante;
- $\lim (b_n a_n) = 0.$

On a donc affaire à deux suites adjacentes (cf. cours du 2nd semestre). Elles sont convergentes et admettent la même limite $c \in [a,b]$:

$$\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = c \quad \text{(ou encore } \bigcap_{n=0}^{+\infty} [a_n,b_n] = \{c\}\text{)}.$$

Par continuité, on en tire

$$\lim_{n\to+\infty} f(a_n) = \lim_{n\to+\infty} f(b_n) = f(c)$$

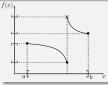
Enfin, la propriété $f(a_n)f(b_n) \leq 0$ entraı̂ne $f(c)^2 \leq 0$ soit f(c) = 0. L'algorithme de dichotomie conduit donc à un zéro de la fonction f.

Continuité d'une fonction

Corollaire 3.12 (Image d'un intervalle

L'image d'un intervalle par une fonction continue est un intervalle.

Remarque 3.13 (Discontinuité)



Si la fonction présente au moins une discontinuité, son image peut ne pas être un intervalle.

Exemple 3.14 (Fonction caractéristique de Q (facultatif))

Soit
$$f$$
 la fonction définie par $f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

La fonction f prend les deux seules valeurs 0 et 1. On a $f(\mathbb{R}) = \{0,1\}$ et plus généralement, pour tous réels a, b tels que a < b, il existe un rationnel et un **irrationnel** entre a et b (on dit que \mathbb{Q} et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans \mathbb{R}), donc $f([a,b])=\{0,1\}$ La fonction f n'est donc continue sur aucun intervalle (non réduit à un point) de \mathbb{R} .

Théorème 3.15 (Image d'un fermé borné : théorème des valeurs extrêmes)

Soit f une fonction continue sur un intervalle fermé borné [a, b].

Alors f est bornée sur [a, b] et atteint ses bornes inférieure et supérieure m et M: f(x)

$$m = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$

et
$$M = \sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x)$$

Autrement dit : il existe deux réels x1 et x2 dans [a, b] tels que $f(x_1) = m$ et $f(x_2) = M$. De plus.

$$f([a,b])=[m,M].$$

L'image d'un intervalle fermé borné par une fonction continue est encore un intervalle fermé borné.

La fonction sin réalise une bijection de

 $\begin{bmatrix} -\frac{\pi}{2},\frac{\pi}{2} \end{bmatrix} \textit{sur} \left[-1,1\right] \textit{ et l'on note } \textit{arcsin} \\ \textit{sa fonction réciproque. On a donc :}$

Proposition-définition 3.19 (Fonction arcsin)

fonction recipion. $\operatorname{arcsin}: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ $x \longmapsto \operatorname{arcsin}(x)$ $-\frac{\pi}{2} - 1$

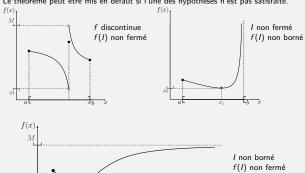


 $v = \arcsin x$

 $y = \sin x$

Remarque 3.16 (Contre-exemples)

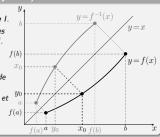
Le théorème peut être mis en défaut si l'une des hypothèses n'est pas satisfaite.



Soit f une fonction continue et strictement monotone sur un intervalle 1.

- f(I) est un intervalle dont les bornes sont les limites de f aux bornes de I.
- @ f réalise une **bijection** de I sur f(I). f(b)
- monotone sur f(I), de même sens de variation que f.

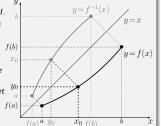
Rappel : les courbes représentatives de f et f⁻¹ dans un repère orthonormal du plan sont symétriques l'une de l'autre par rapport à la droite d'équation y = x.



Exemple 3.18 (Logarithme/exponentielle)

La fonction In : $]0, +\infty[\longrightarrow \mathbb{R}$ est continue, strictement **croissante** de limites $-\infty$ et $+\infty$ en 0^+ et $+\infty$ respectivement.

Elle est donc bijective. Sa réciproque est appelée fonction **exponentielle** et notée exp : $\mathbb{R} \longrightarrow]0, +\infty[$.



arcsin est continue, strictement

Continuité d'une fonction

croissante et impaire sur
$$[-1,1]$$
.

$$\int \forall x \in [-1,1], \quad \sin(\arcsin(x)) = x$$

 $et \begin{cases} y = \arcsin(x) \\ x \in [-1, 1] \end{cases} \Longleftrightarrow \begin{cases} x = \sin(y) \\ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{cases}$

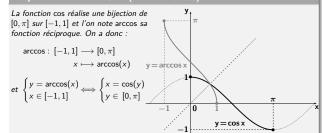
 $\forall x \in [-1, 1], \cos(\arcsin(x)) = \sqrt{1 - x^2}$ $\begin{cases} \forall x \in [-1,1], & \sin(\arcsin(x)) = x \\ \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], & \arcsin(\sin(x)) = x \end{cases} \begin{cases} \forall x \in [-1,1], & \cos(\arcsin(x)) = \frac{x}{\sqrt{1-x^2}} \end{cases}$

e) Fonctions trigonométriques récipro

3. Continuité d'une fonction

Proposition 3.22

Proposition-définition 3.21 (Fonction arccos

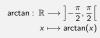


- \blacksquare arccos est **continue**, **strictement** $\forall x \in [-1,1], \sin(\arccos(x)) = \sqrt{1-x^2}$
- $\forall x \in [-1,1] \setminus \{0\}, \ \tan(\arccos(x)) = \frac{\sqrt{1-x^2}}{x}$ décroissante sur [-1,1]. $\int \forall x \in [-1, 1], \cos(\arccos(x)) = x$ $\forall x \in [0, \pi]$, $\operatorname{arccos}(\cos(x)) = x \oplus \forall x \in [-1, 1]$, $\operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$

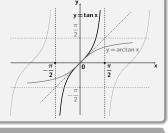
. Continuité d'une fonction

Proposition-définition 3.23 (Fonction arctan)

La fonction tan réalise une bijection de $-\frac{\pi}{2}, \frac{\pi}{2}$ sur $\mathbb R$ et l'on note arctan sa fonction réciproque. On a donc :

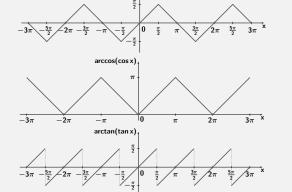


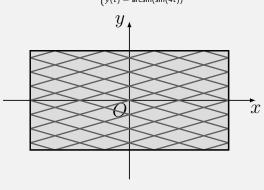
$$\operatorname{et} \ \begin{cases} y = \operatorname{arctan}(x) \\ x \in \mathbb{R} \end{cases} \Longleftrightarrow \begin{cases} x = \operatorname{tan}(y) \\ y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\end{cases}$$



- ① arctan est continue, strictement croissante et impaire sur \mathbb{R} . ② arctan(x) + arctan $\left(\frac{1}{x}\right)$ = $\begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$
- $\emptyset \begin{cases} \forall x \in \mathbb{R}, & \tan(\arctan(x)) = x \\ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, & \arctan(\tan(x)) = x \end{cases} \qquad \emptyset \begin{cases} \forall x \in \mathbb{R}, & \cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}} \\ \forall x \in \mathbb{R}, & \sin(\arctan(x)) = \frac{\pi}{\sqrt{1+x^2}} \end{cases}$

Exemple 3.25 (Courbes en « dents de scie »)





Comparaison d'« ordre de grandeur » de deux fonctions au voisinage d'un point.

- Exemple 1 : comparaison des fonctions identité et carré
 - x² est « beaucoup plus grand » que x lorsque x est \ll grand \gg :
 - x² est « beaucoup plus petit » que x lorsque x est « petit ».
- @ Exemple 2 : comparaison des fonctions cosinus et sinus

Dans le triangle ci-contre, lorsque l'angle x est « petit » :

- les trois côtés sont « petits ».
- le côté vertical $(\sin x)$ et l'hypoténuse $(2 \sin \frac{x}{2})$ sont du « même ordre de grandeur »,
- alors que le côté horizontal (1 cos x) est « beaucoup plus petit ».

Comparaison locale de deux fonctions b) Outil de comparaison

Un outil mathématique pour comparer les « ordres de grandeur » de deux fonctions f et g au voisinage d'un point $x_0 \in \mathbb{R}$ est la limite du rapport de f par g.

Trois cas de figure se présentent :

- ① soit la limite de $\frac{t}{-}$ en x_0 est finie non nulle, c'est donc un réel non nul ℓ .
- Dans ce cas, la limite de $\frac{f}{\ell \sigma}$ en x_0 vaut 1;
- ② soit la limite de $\frac{t}{a}$ en x_0 est infinie ou nulle Lorsqu'elle est **infinie**, la limite de $\frac{g}{c}$ en x_0 est alors **nulle**;
- \odot soit la limite de $\frac{f}{f}$ en x_0 **n'existe pas**. (Cette situation ne sera pas considérée ici.)

Les deux premiers cas conduisent à deux situations génériques : on va développer deux notions de comparaisons associées aux cas où la limite de $\frac{t}{-}$ en x_0 vaut 0 ou 1.

- lorsque $\lim_{t\to0}^{t}$, on introduira la notion de « **négligeabilité locale (ou asymptotique)** »;
- lorsque $\lim_{t \to 0}^{t} = 1$, on introduira la notion d'« équivalence locale (ou asymptotique) »

. Comparaison locale de deux fonctions c) Négligeabilite

Définition 4.1 (Négligeabilité)

Soit $x_0 \in \mathbb{R}$, f et g deux fonctions définies au voisinage de x_0 .

On dit que f est négligeable devant g au voisinage de x₀ lorsqu'il existe une fonction ε définie sur un voisinage V de x_0 telle que

$$\forall \, x \in \mathcal{V} \backslash \{x_0\}, \quad f(x) = \varepsilon(x)g(x) \quad \text{et} \quad \lim_{x \to x_0} \varepsilon(x) = 0.$$

On note alors f = o(g) ou encore f(x) = o(g(x)) (notation de **Landau**)

Remarque: il s'agit d'une notation abusive, on devrait noter $f \in o_{x_0}(g)$

Proposition 4.2 (Formulation simple)

Soit $x_0 \in \overline{\mathbb{R}}$, f et g deux fonctions définies au voisinage de x_0 , g ne s'annulant pas au voisinage de x_0 . Alors $f = o(g) \iff \lim_{x_0} \frac{f}{g} = 0$. En particulier : $f = o(1) \iff \lim_{x_0} f = 0$.

Exemple 4.3 (Croissances comparées (cf. proposition 2.31))

- ① Si $\alpha > \beta$, alors $x^{\alpha} = o(x^{\beta})$ et $x^{\beta} = o(x^{\alpha})$. ② Pour tous $\alpha > 0$ et $\beta > 0$: $x^{\alpha} = o(e^{\beta x})$ $e^{\beta x} = o(\frac{1}{|x|^{\alpha}})$
 - $\bullet (\ln x)^{\alpha} \underset{x \to +\infty}{=} o(x^{\beta}) \qquad \bullet |\ln x|^{\alpha} \underset{x \to n+}{=} o(\frac{1}{\sqrt{\beta}})$

Soit f, g et h trois fonctions définies au voisinage de x₀.

- **(a)** Transitivité: $\left[f \sim g \text{ et } g \sim h\right] \implies f \sim h$.

Soit f et g deux fonctions définies au voisinage de x₀.

Remarque 4.10

Lorsque f admet une limite **nulle** ou **infinie** en x_0 , la notion d'équivalence est non-triviale... Dans ce cas, un problème intéressant est de rechercher une fonction simple g tel que $f \sim g$.

Soit f, g, h et k quatre fonctions définies au voisinage de x₀.

- Opérations :
 - Multiplication par un réel : $\forall \alpha \in \mathbb{R}, \quad f = o(g) \implies \alpha f = o(g)$
 - Addition: $\begin{cases} f = o(h) \\ x_0 = o(h) \end{cases} \implies f + g = o(h).$
 - Multiplication: $\begin{cases} f = o(h) \\ g = o(k) \\ \end{cases} \implies f \times g = o(hk).$
 - Puissances: $f = o(h) \implies \begin{cases} \forall \alpha > 0, & |f|^{\alpha} = o(|h|^{\alpha}) \\ \forall \alpha < 0, & |h|^{\alpha} = o(|f|^{\alpha}) \end{cases}$

 $f \sim g \iff (f-g) = o(g)$ (et aussi o(f)). On écrit alors g = f + o(f).

4. Comparaison locale de deux fonctions d) Équivalence de fonctions

② $Si \left[f \sim g \text{ et } g = o(h) \right] \text{ ou } si \left[f = o(g) \text{ et } g \sim h \right], \text{ alors } f = o(h).$

Proposition 4.11 (Équivalence et négligeabilité)

Comparaison locale de deux fonctions d) Équivalence de fonctio

Définition 4.5 (Équivalence)

Soit $x_0 \in \overline{\mathbb{R}}$, f et g deux fonctions définies au voisinage de x_0 .

On dit que f est équivalente à g au voisinage de x_0 lorsqu'il existe une fonction φ définie sur un voisinage V de x_0 telle que

$$\forall\, x\in \mathcal{V}\backslash \{x_0\}, \quad f(x)=\varphi(x)g(x) \quad \text{et} \quad \lim_{x\to x_0}\varphi(x)=1.$$

On note alors $f \sim g$ ou encore $f(x) \sim g(x)$ (notation de **Landau**).

Proposition 4.6 (Formulation simple)

Soit $x_0 \in \mathbb{R}$, f et g deux fonctions définies au voisinage de x_0 .

Si g ne s'annule pas au voisinage de x₀, alors

$$f \underset{x_0}{\sim} g \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$$

a On a $f \sim 0 \iff f$ est **nulle** au voisinage de x_i

 $f \sim g$ n'implique pas nécessairement l'existence d'une limite en x_0 pour f et g.

Mais si ces limites existent, alors elles sont égales.

. Comparaison locale de deux fonctions d) Équivalence de fonctions

Proposition 4.8 (Relation d'équivalence)

- Réflexivité : $f \sim f$.
- **2** Symétrie: $f \sim g \iff g \sim f$.

Proposition 4.9 (Limites et équivalence) Remarque 4.12 (Notion relative/absolue)

On fera attention de ne pas confondre $f \sim g$ avec $\lim (f - g) = 0$. En effet

$$f \sim g \iff f = g + o(g)$$
 alors que $\lim_{x_0} (f - g) = 0 \iff f = g + o(1)$.

8 Si $f \sim g$ et si g est non nulle au voisinage de x_0 , alors f et g sont de même

Contre-exemple: • $x^2 + x \underset{x \to +\infty}{\sim} x^2$ alors que $(x^2 + x) - x^2 \underset{x \to +\infty}{\longrightarrow} 0$. • $(x^2 - x) \longrightarrow 0$ alors que $x^2 \not\sim x$.

Proposition 4.13 (Multiplication/division/puissances)

Soit f, g, h, k des fonctions définies au voisinage de x_0 et $\alpha \in \mathbb{R}$. So $f \sim h$ et $g \sim k$, alors: • $f \times g \sim h \times k$ • $\frac{f}{g} \sim \frac{h}{k}$ • $|f|^{\alpha} \sim |h|^{\alpha}$

signe au voisinage de xo.

Comparaison locale de deux fonctions d) Équivalence de fonctions

Définition 4.14 (Dérivabilité)

Soit f une application d'un intervalle I dans $\mathbb R$ et x_0 un point situé à l'intérieur de I.

- On dit que f est **dérivable en x₀** si l'application $x \mapsto \frac{f(x) f(x_0)}{x x_0}$ admet une
- On note alors cette limite $f'(x_0)$ et on l'appelle le nombre dérivé de f en x_0 :

$$f'(x_0) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Proposition 4.15 (Dérivabilité et comparaison)

Supposons la fonction f dérivable en x₀. Alors :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Cette relation fournit un développement limité d'ordre 1 en x₀ En conséquence :

- ① Si $f'(x_0) \neq \mathbf{0}$ alors: $f(x) f(x_0) \sim f'(x_0)(x x_0)$
- ② Si $f'(x_0) = 0$ alors: $f(x) f(x_0) = o(x x_0)$.

. Comparaison locale de deux fonctions d) Équivalence de fonction

Ce résultat permet d'établir la plupart des équivalents usuels à connaître :

Exemple 4.16 (Équivalents usuels)

Fonctions exponentielle/logarithme/puissance :

$$\bullet e^x - 1 \sim x$$

- $e^x 1 \underset{x \to 0}{\sim} x$ $\ln(1+x) \underset{x \to 0}{\sim} x$ $(1+x)^{\alpha} 1 \underset{x \to 0}{\sim} \alpha x$
- @ Fonctions trigonométriques :

 - $\sin x \underset{x \to 0}{\sim} x$ $\tan x \underset{x \to 0}{\sim} x$ $\cos x 1 \underset{x \to 0}{\sim} -\frac{x^2}{2}$
 - $\arcsin x \sim x$ $\arctan x \sim x$
- Sections hyperboliques :

 - sh $x \underset{x \to 0}{\sim} x$ th $x \underset{x \to 0}{\sim} x$ ch $x 1 \underset{x \to 0}{\sim} \frac{x^2}{2}$

 - ch $x \sim \frac{e^x}{2}$ sh $x \sim \frac{e^x}{2}$

En règle générale, on n'ajoute pas d'équivalents, c'est-à-dire :

 $(f_1 \sim g_1 \text{ et } f_2 \sim g_2)$ n'implique pas $f_1 + f_2 \sim g_1 + g_2$.

On a toutefois les résultats suivants :

Proposition 4.17 (Somme et équivalence)

- ② Si f = o(g) alors $f + g \sim g$.
- § Soit f_1 , f_2 et g trois fonctions définies au voisinage de x_0 et α_1 , α_2 deux réels

$$f_1 \underset{x_0}{\sim} \alpha_1 g$$
 et $f_2 \underset{x_0}{\sim} \alpha_2 g$.

Soit $a, b, c \in \mathbb{R}$. Analyse en $+\infty$ de la fonction f définie par $f(x) = \sqrt{x^2 + ax + b} - cx$

Dans ce cas, $f(x) = \sqrt{x^2 + ax + b} - x = \frac{ax + b}{\sqrt{x^2 + ax + b} + x}$.

Or $\sqrt{x^2 + ax + b} + x \underset{x \to +\infty}{\sim} 2x$.

On obtient alors $f(x) \underset{x \to \infty}{\sim} \begin{cases} \frac{a}{2} & \text{si } a \neq 0 \\ \frac{b}{2x} & \text{si } a = 0 \text{ et } b \neq 0 \end{cases}$

Il y a alors deux cas à distinguer pour la somme $f_1 + f_2$

- Si $\alpha_1 + \alpha_2 \neq 0$ alors $f_1 + f_2 \sim (\alpha_1 + \alpha_2)g$.
- Si $\alpha_1 + \alpha_2 = 0$ alors $f_1 + f_2 = o(g)$.

Exemple 4.20 (Un calcul de limite/asymptote)

On a $x^2 + ax + b \sim x^2$ puis $\sqrt{x^2 + ax + b} \sim x$.

• Si $c \neq 1$, alors $f(x) \sim (1-c)x$,

• Si c = 1, alors f(x) = o(x).

(on a f(x) = 0 lorsque a = b = 0 et c = 1)

par $P(x) = \sum a_k x^k$. Alors :

multiplicité μ . Alors :

Comparaison locale de deux fonctions d) Équivalence de fonction

pour tout réel x par $P(x) = \sum a_k x^k$ et $Q(x) = \sum b_k x^k$. Alors :

Exemple 4.18 (Fonctions polynômes/fractions rationnelles

① Soit m et n deux entiers naturels tels que $m \le n$, $a_m, a_{m+1}, a_{m+2}, \ldots, a_n$ des

réels tels que $a_m \neq 0$ et $a_n \neq 0$, et P la fonction polynôme définie pour tout réel x

 $P(x) \underset{x \to 0}{\sim} a_m x^m$ et $P(x) \underset{x \to +\infty}{\sim} a_n x^n$.

Exemple: pour $P(x) = 3x^4 - 7x^3 + 5x^2 - x$, on a $P(x) \sim -x$ et $P(x) \sim 3x^4 - x$

 $P(x) \sim \frac{P^{(\mu)}(\alpha)}{\mu} (x - \alpha)^{\mu}$

 $\ \ \,$ Soit p et q deux entiers naturels, $a_p, a_{p-1}, a_{p-2}, \ldots, a_0$ et $b_q, b_{q-1}, b_{q-2}, \ldots, b_0$ des réels tels que $a_p \neq 0$ et $b_q \neq 0$, et P et Q les fonctions polynômes définies

@ Soit P une fonction polynôme non nulle et α une racine de P d'ordre de

Exemple: pour $P(x) = 3x^4 - 7x^3 + 5x^2 - x$, on a $P(x) \sim 2(x-1)^2$

Exemple 4.20 (Un calcul de limite/asymptote)

Soit a, b, $c \in \mathbb{R}$. Analyse en $+\infty$ de la fonction f définie par $f(x) = \sqrt{x^2 + ax + b} - cx$

Application : considérons la fonction g définie par

$$g(x) = \sqrt{x^2 + ax + b}.$$

• En choisissant c = 1 dans f, on voit que $\lim_{x \to +\infty} \left[g(x) - \left(x + \frac{a}{2} \right) \right] = 0$ donc C_g admet une asymptote \mathcal{D} en $+\infty$ d'équation $y = x + \frac{a}{2}$.

• Puis $g(x) - \left(x + \frac{a}{2}\right) = \frac{b - \frac{a^2}{4}}{\sqrt{x^2 + ax + b} + \left(x + \frac{a}{2}\right)}$

$$(\text{on a } g(x) = x + \frac{a}{2} \text{ lorsque } b = \frac{a^2}{4}).$$

- $\underset{x \to +\infty}{\sim} \frac{b \frac{a^2}{4}}{2x} \text{ si } b \neq \frac{a^2}{4}$

On en déduit que $\mathcal{C}_{\mathbf{F}}$ est au-dessus (resp. au-dessous) de \mathcal{D} au voisinage de $+\infty$ lorsque $b > \frac{a^2}{4}$ (resp. $b < \frac{a^2}{4}$).

Comparaison locale de deux fonctions d) Équivalence de fonction

Exemple 4.19 (Une fonction hyperbolique)

Soit $\alpha \in \mathbb{R}$ et f la fonction définie pour tout réel x par $f(x) = \operatorname{sh} x + \alpha \operatorname{th} x$.

- - Si $\alpha \neq -1$, alors $f(x) \underset{x \to 0}{\sim} (\alpha + 1)x$. Si $\alpha = -1$, alors $f(x) \underset{x \to 0}{=} o(x)$.

- $f(x) = \operatorname{sh} x \operatorname{th} x = \operatorname{th} x \left(\operatorname{ch} x 1\right).$ Or $\operatorname{th} x \underset{x \to 0}{\sim} x$ et $\operatorname{ch} x 1 \underset{x \to 0}{\sim} \frac{x^2}{2}.$

On obtient alors $f(x) \sim \frac{x^3}{2}$

Proposition 4.21 (Composition « à droite »)

Remarque 4.22 (Composition « à gauche »

telle que $\psi \circ f$ et $\psi \circ g$ existent au voisinage de x_0 ,

fonction telle que $f \circ \varphi$ et $g \circ \varphi$ existent au voisinage de t_0

Il n'y a pas de règle générale pour la composition « à gauche » :

Soit f et g deux fonctions définies au voisinage de x₀.

a Analyse en + ∞ : on a shx $\underset{x \to +\infty}{\sim} \frac{e^x}{2}$ et thx $\underset{x \to +\infty}{\sim} 1$.

. Comparaison locale de deux fonctions d) Équivalence de fonctions

Soit x_0 et t_0 dans $\overline{\mathbb{R}}$, f et g deux fonctions définies au voisinage de x_0 et φ une

 $\text{Si} \quad f \sim g \quad \text{et} \quad \lim \varphi = x_0, \quad \text{alors} \quad f \circ \varphi \sim g \circ \varphi.$

En général, si f et g sont deux fonctions définies au voisinage de x_0 et ψ une fonction

Contre-exemple: • On a $x^2 + x \underset{x \to +\infty}{\sim} x^2$ mais $e^{x^2 + x} \underset{x \to +\infty}{\not\sim} e^{x^2}$. • On a $1 + x^2 \underset{x \to 0}{\sim} 1 + x$ mais $\ln(1 + x^2) \underset{x \to 0}{\not\sim} \ln(1 + x)$.

Proposition 4.23 (Cas de l'exponentielle et du logarithme (facultatif))

 $e^f \sim e^g \iff \lim (f - g) = 0.$

Or $1 = o\left(\frac{e^x}{2}\right)$. On en déduit que $f(x) \sim \frac{e^x}{2}$.



INSA DES SOBRIES APPLICIES

d'où $\lim_{x \to +\infty} f(x) = \frac{a}{2}$.

http://math.univ-lyon1.fr/_alachal/diaporamas, diaporama_continuite/continuite0.html

INSA DES SOBRIES APPLICIES

http://math.univ-lyon1.fr/_alachal/diaporamas/diaporama_Lhopital/Lhopital0.html

INSA RESTRUT NATION CES SORDICES APPLICACES

Suites récurrentes

http://math.univ-lyon1.fr/_alachal/diaporamas/ diaporama_suites_recurrentes/suites_recurrentes0.htm

Notions à retenir

- Maîtrise de la valeur absolue
- Borne supérieure/inférieure
 - * Identification et détermination

En résumé.

- * Maîtrise des techniques de calculs
- * Théorème de la limite monotone
- * Recherche d'asymptote
- * Limites usuelles à connaître..
- Continuité ponctuelle
 - * Prolongement par continuité
- * Opérations
- * Théorèmes fondamentaux
- (TVI/TVE/théorème de la bijection)
- · Fonctions trigonométriques réciproques
 - * Graphes et quelques propriétés à connaître
 - * Maîtrise de la réciprocité

@ Soit f et g sont définies et strictement positives au voisinage de x_0 . Si $f \sim g$ et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell \in [0, +\infty] \setminus \{1\}$, alors : $\ln(f) \sim \ln(g)$.

En résumé	
Notions à retenir	
Notions de négligeabilité et d'équivalence asymptotiques	
 Comparaison locale de fonctions, ordre de grandeur local Exemples usuels à connaître 	
★ Exemples usuels à connaître	
Détermination d'équivalents par opérations diverses Utilisation pour les calculs de limites	
* Utilisation pour les calculs de limites	
★ Etude de l'allure locale d'une courbe	
* Détermination de branches infinies, d'asymptotes	
n	