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1. Fonctions d’une variable — Rappels

Interprétation graphique (Tangente)

Si f est dérivable en xg alors Cr admet une tangente 7 en My qui est la position
limite des cordes lorsque M se rapproche de Mp.

f(x) M
— pente corde :
f(x) — f(x)
X — X

— pente tangente :

f(XO) '(x0)
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Equation de la tangente 7 :

[y = F0)(x = x0) + (o) |

o Fonctions d'une variable — Rappels o Dérivées partielles

o Continuité, dérivabilité o Dérivées partielles premiéres

o Dérivée et approximation o Interprétation géométrique

o Différentielle O Différentielle

o Petits accroissements , .
o Problématique

@ Fonctions vectorielles : R — R? ou R® o Différentiabilité

@ Fonctions de deux ou trois variables o Gradient

o Introduction o Opérations

o Visualisation @ Applications

© Applications partielles o Calcul approché : petite variation §f

o Continuité o Calcul approché : incertitude Af

1. Fonctions d’une variable — Rappels

Soit f : | — IR une fonction définie sur un intervalle ouvert / contenant un point xo. J

Définition 1.1 (Continuité en xg)

On dit que la fonction f est continue en xg lorsque

Définition 1.2 (Dérivabilité en xg)

On dit que la fonction f est dérivable en x; € | lorsque le taux d’accroissement de f
Af _ f(x) = f(x0) o

en xg : — = ——————2 admet une limite finie quand x — xo.
Ax X — X0

Cette limite est appelée nombre dérivé de f en xp :

|f'(xo) _ i =)
X—xg X — Xo h—0

f(xo + h) — f(x)
h

ns d’une variable — Rappels

Propriété 1.3 (Approximation affine)

Supposons f dérivable en xo et soit T(x) = f'(x0)(x — x0) + f(x0) /'application
affine tangente de f en xo.
Alors T est la meilleure approximation affine de f au voisinage de xo.

En effet, en posant £(h) = w

f(xo + h) — f(x0)
h

— f'(x0), on a pour tout h # 0 :

— £ H —
=f'(x0) +e(h) et ,I,'_%s(h) =0
soit encore
f(xo + h) = f(x0) + f'(x0)h + he(h) avec Limoe(h) =0
—
On dit que he(h) est négligeable devant h en 0.
Avec x = xp + h, cela se réécrit selon

f(x) = f(x0) + ' (x0)(x — x0) + (x — x0) e(x — x0) = T(x) + (x — x0) £(x — x0)

Ces écritures suggérent |'approximation du premier ordre suivante :

pour x « proche de » xp :
f(x) & f(x0) + f'(x0)(x — x0)

pour h « petit » :

ou encore Flxo + h) ~ F(x0) + £ (x0)h

1. Fonctions d’une variable — Rappels

Exemples 1.4

@ Pour f(x) = x?, on a f’(x) = 2x. On obtient alors |'approximation suivante :
pour h petit devant xo, (xo + h)2 ~x¢ + 2x0h
On en déduit « 3 la main » une valeur approchée de 3.052 :
(340.05)> ~ 3% +2x3x0.05~93

La valeur exacte est 3.052 = 9.3025.
© Erreur absolue : 9.3 — 9.3025 = —0.0025 (< 0 — approximation par défaut)
© Erreur relative : 2323925 x 100 % ~ —0.03 %

1
Pour f(x) = v/x,ona f'(x) = ~—=.
@ Pour f(x) = /x,onaf'(x) NG

pour h petit devant xo,

On obtient alors |'approximation suivante :

1
Vxo + ~\/%+27\/X70h

On en déduit « a la main » une valeur approchée de v/101 :

1
V103 = V100 +
21/100
La valeur exacte est v/103 = 10.14889. ..
© Erreur absolue : 10.15 — 10.14889 - - - &~ 0.00111 (> 0 — approximation par excés)

° Erreur relative : 105-1014889... 5 100 9% ~ 1.1 x 10* %

x 3 =10.15

1. ns d’une variable — Rappels
Interprétation graphique (Approximation affine)
f(Xo -+ h) ------------------------
IE( h)h
f(xo)+F'(xo)hf-----=--=----------- ]
: f’(Xo ) h

f(xo) [-------------- Ao~ 4

Cr : '

T i i

X0 Xo+ h

1. Fonctions d’une variable — Rappels

Définition 1.5 (Différentiabilité)

On dit que f est différentiable en xo lorsqu'il existe une application linéaire notée df,,
et une fonction ¢ telles que :

|f(xo+h):f(xo)+dfxo(h)+he(h) et 'I'iﬂ':]a(h):ol

On dit que df,, est la différentielle de f en xo.

En fait e(h) = flro+h) = Flxo) _ df(h)

différentiabilité et dérivabilité en xo pour f ci-dessous :

et I'on obtient dés lors I'équivalence entre

1. Fonctions d’une variable — Rappels
Remarque 1.7 (Notation différentielle de Leibniz)

® Si f est différentiable en xo, d'aprés la propriété 1.3 sa différentielle est la
meilleure approximation linéaire de I'accroissement de f en xg.

En notant dx : h+— h I'application linéaire représentant |'accroissement de la

variable x, (donc dx(h) = h) on obtient en notation fonctionnelle :

df, = f'(x0) dx.

Cette écriture se généralise en [df. = f'(x) dx| ou encore qui est a
df )

= x| Ao AL

Attention: le x dans dx n’a rien 2 voir avec le x dans df, et f'(x).

Ce n'est qu'un symbole.

I'origine de la notation de Leibniz |f’

Propriété 1.6 (Equivalence dérivabilité—différentiabilité)

Pour les fonctions de R dans R :
f différentiable en xo <= f dérivable en xo.

Lorsque f dérivable en xo, la différentielle df,, est I'application linéaire h — f ’(xo)h :

df,(h) = F (xo)h

dérivées
(fF+g) =f+g
() =fg+fg
F\ _fe—fg
(E) s

(gof) =(g'of)f

différentielles
d(f +g)=df +dg
d(fg) =gdf +fdg
(f) gdf — fdg
d{ ~ | ="—5—
g &
d(gof)=(g of)df




1. Fonctions d’une variable — Rappels

En sciences physiques, on se sert de la différentielle pour approcher I'accroissement
(positif ou négatif) d'une fonction lorsque la variable varie légérement.
La quantité df sera donc considérée comme un nombre et pas une fonction.

En d'autres termes, en posant :
® 0x = petit accroissement de x sur xo,

® 6f, = petit accroissement de f en xo correspondant a dx :
"0f" = 0fy(6x) = f(xo0 + 0x) — f(x0),
* df,= différentielle en xo :
"dfi," = dfy,(6x) = f'(x0)0x,

on considére que
0f, = df,
Ainsi, écrire 6f, = dfy, c'est, pour un x proche de xp :

© approcher au premier ordre la valeur de f(x) par la valeur T(x) de son
application tangente au point xo ;

© commettre une erreur qui est un infiniment petit d'ordre supérieur a 1.

2. Fonctions vectorielles : R — R? ou R3
D "

éfinition 2.1 (Con

Soit F: ICR — R
t— f(t) & +g(t) € + h(t)&,

une courbe paramétrée de I'espace.

On dit que ? est continue (resp. dérivable) en ty € | lorsque ses trois fonctions
composantes f, g, h sont continues (resp. dérivables) en to.

Lorsque? est dérivable, on al F'(to)=f'(to) & +&'(to) € +H (to) €

(vecteur tangent),

Propriété 2.2 (Différentielle)

Si ? : R — R® est dérivable en to, alors :

[ o+ h) = Fro) + hF (1) + hZ(h)]

ou g est une fonction vectorielle vérifiant 'I'in':] 2(h) =0.
—
On a donc
? différentiable en t, <— ? dérivable en t,
et la différentielle de ? en ty est I'application linéaire
T 3
dF,: R —R
h— hF/(to) = F(to)h&, + g'(t)h&, + K (to)hE,

3. Fonctions de deux ou trois variables

1. Fonctions d’une variable — Rappels

Interprétation graphique

f(XO+6X) erreur

EI e(0x)0x
approximation
df,,

(:f’(xo)éx)

Fro) |

X0 Xo+0x

= f'(x0)dx + £(6x)dx = dfs,
N
df,

De nombreuses quantités physiques dépendent de plusieurs paramétres :

® la pression d'un gaz parfait donnée par P = ? dépend du volume V, de la
température T et du nombre de moles n de ce gaz (R étant une constante) ;

® la pression atmosphérique sur terre dépend des variables de position x,y,z;

® l'intensité d'un champ électrique dans |'espace dépend des variables de position
X, ¥,Z;

© |'énergie cinétique d'une particule dans un gaz dépend des composantes de
vitesse Vi, Vy, V...

Objectif du chapitre : adapter le calcul différentiel pour les fonctions a une variable,
aux fonctions a plusieurs variables.
Notes :
* dans la suite, on énoncera les définitions et propriétés dans R® (I'espace), mais
— sauf mention du contraire — elles sont aussi valables dans R? (le plan), en
enlevant tout ce qui a trait a la variable « z » ;
© des triplets (x, y, z) de R peuvent étre considérés comme les coordonnées d'un
point M dans un repere (O; &, &, €,), mais aussi comme les composantes

2 =
(y) d’'un vecteur OM dans une base (&, &, &,).
z

1. Fonctions d’une variable — Rappels
Exemple 1.9 (Pendule pesant)

La formule P = 27 4 donne la période d'un pendule de longueur ¢, g désignant

I'accélération de la pesanteur (g = 9.81 m/s?).

Déterminons une approximation de la variation de période en fonction d’une variation
de longueur.

Posons P(¢) = 27r\/§4

- 2w 1 T
P définit ainsi une fonction de dérivée P'({) = ——— = —
¢ Zr VB2Vl Vgl
donc de différentielle "dP;" = dP;(6¢) = — é¢.
0= Tz

Si £ augmente de 6/, une approximation de |'augmentation de P correspondante peut
s'obtenir selon x

0Py~ dP; = Nz

ol

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

R? — R
() — f(x.y)
graphiquement comme une surface d'équation cartésienne z = f(x, y).
Exemple : f(x,y) = x* + y2.

® Une fonction de deux variables f : peut se visualiser

® Pour une fonction de 3 variables, penser qu'a chaque point de I'espace est
associé un nombre (température T(x, y,z), pression P(x,y,z), etc.). On peut
imaginer une représentation comme « hypersurface » d'équation cartésienne
u = f(x,y,z) dans un espace de dimension 4 (avec des coordonnées (x, y, z, u))...

3. Fonctions de deux ou trois variables

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

R? — R
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

® Une fonction de deux variables f : peut aussi se visualiser

Lignes de niveau équidistantes

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

R? — R
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

® Une fonction de deux variables f : peut aussi se visualiser

NN\ ;
Carte topographique : lignes d'altitude

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, 3 valeurs dans R.

R? — R
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

® Une fonction de deux variables f : peut aussi se visualiser

Carte météorologique : lignes de pression atmosphérique




3. Fonctions de deux ou trois variables

3. Fonctions de deux ou trois variables 3. Fonctions de deux ou trois variables

3. Fonctions de deux ou trois variables

3. Fonctions de deux ou trois variables

Il est pratique de définir les fonctions partielles d'une fonction a plusieurs variables, ce
qui correspond a fixer toutes les variables sauf une. On retrouve les fonctions a une
variable habituelles.

Définition 3.1 (Applications partielles)

Soit une fonction f : R®* — R. On appelle applications partielles au point
Mo(xo, yo, 20) les applications de R — R suivantes :

x = f(x,y0,20), ¥+ f(x0,,20), z > f(x0, y0, 2)

Soit f la fonction définie sur R® par f(x, y, z) = cos(xy) exp(2z — 3) + y*z.
Les trois applications partielles de f en (1,0, 1) sont données par

2x1-3

x — f(x,0,1) = cos(x x 0)e +02><1=%

y— f(Ly,1) = cos(1l x y)e? ' P +y* x 1= %cos(y) +y’
z+— £(1,0,2) = cos(1 x 0)e”* + 0% x z = ¥ °

Définition 3.5 (Limite dans le plan et I'espace)

® On dit que le point variable M tend vers le point fixé My si la distance MoM
tend vers 0.

® On dit que le vecteur variable i tend vers le vecteur fixé Uy si la norme
|G — do|| tend vers 0.

En termes de coordonnées ou composantes dans R3, cela se transcrit selon :
(x,y,z) tend vers (xo, yo, 20)
ssi H(x,y,z) - (xo,yo,zo)” =/(x =x)2+ (y — y0)> + (z — 20)? tend vers 0.

Exemple 3.3 (La « selle de cheval »)

Soit f la fonction définie sur R? par f(x,y) = x* — y.

La notion de continuité en un réel xo pour les fonctions de R — R a |'aide de la
notion de limite (rappel : lim f(x) = f(x)) s'étend aux fonctions de R” — R.
x—x0

Définition 3.4 (Continuité)

La fonction f : R® — R est continue en (xo, yo, 20) lorsque

)f(X,y,Z) = f(x0, Y0, 20)

@
%,¥:2)—(X0,¥0,20)

Différence entre R et R? ou R® :

lim
(x,y,2)=(x0.y0,20
Mais que signifie g lim

il existe une infinité de directions suivant lesquelles

On dit qu’un sous-ensemble U de R" (n =1,2,3)
est ouvert lorsque pour tout x de U, U contient
une boule ouverte de centre x.

Pseudo-définition : dans R", un ouvert U est un N
ensemble qui ne contient aucun point de sa frontiére. \

z z s'approcher d'un point (xo, yo) du plan ou (xo, o, Z0) de I'espace, alors que dans R
Les applications partielles de f en il n'y a que deux possibilités (par la gauche ou par la droite).
(0,0) et en (1, —1) sont données par y
® en (0,0) :
x> xPety s —y?
®en(1,-1):
X xP—letyrs1—)>2
Z:X2 X z= _y2 " Suivant une droite Suivant une spirale Suivant un chemin continu
3. Fonctions de deux ou trois variables 3. Fonctions de deux ou trois variables
Définition 3.7 (Ouvert de I'espace) Propriété 3.9 (Continuité et opérations)
y Toute fonction de U C R® — R définie a partir de fonctions continues des variables

Définition 3.6 (Boule ouverte)

Dans R" avec n =1,2,3, la boule ouverte centrée en un point My et de rayon R est
I'ensemble Buy,r = {M € R" : MoM < R}.
® DansR, onaBur={x€R: [x —x| <R} =]x— R,x0 + R[.
C'est un intervalle ouvert.
° Dans R?, on a Buyr = {(x,y) € R?: (x —x0)* + (y — y0)> < R?}.
C'est un disque ouvert.
° DansR? onaBuyr = {(x,y,2) €R®: (x —x0)* +(y — y0)* + (z— 20)* < R?*}.

si (x,y) # (0,0)
si (x,y) = (0,0)

® Les applications partielles de f en (0, 0)
sont x — f(x,0) =0et y — f(0,y) =0.
Elles sont donc continues en (0, 0).

X
Soit f(x,y) = { x> +?
0

Par ailleurs, pour x # 0 :

x? 1
f(x,x) = 22 = 3
® Si f était continue, on devrait avoir
f(x,y)=0.

lim
(x,5)—(0,0) 0
Or lino f(x,x) = 5
Ainsi, selon le chemin choisi pour se
rapprocher de (0,0) (ici les axes x =0,
y =0et x = y) on ne trouve pas la
méme limite.

Donc f n'admet pas de limite en (0,0),
elle n'est pas continue en (0,0).

21

4. Dérivées partielles

Exemples 3.8 (Exemples élémentaires)
® Dans R, un intervalle ouvert ]xo — R, xo + R[ est ouvert.
* Dans R?, I'intérieur d'un disque de centre My et de rayon R est ouvert.
* Dans R?, I'intérieur d'une boule de centre My et de rayon R est ouvert.

° Dans R?, un plan n’est pas ouvert; R*\ {(0,0,0)} (espace pointé) est ouvert;
le demi-espace {(x,y,z) € R®: z > 0} est ouvert; etc.

On définit souvent les applications a plusieurs variables sur des ensembles ouverts de
R" pour éviter les problémes de bord lors du calcul d’une limite en un point.

),

Quand il y a deux ou trois variables, la dérivée n’a pas de sens!
Mais on peut dériver par rapport a I'une des variables, avec les autres fixées.

On obtient ainsi des dérivées partielles, les dérivées des fonctions partielles (si elles
sont dérivables).

Soit f: U C R* — R et Mo(x0, y0,20) € R®.

On appelle dérivée partielle de f par rapport a x au point Mo(xo, yo,z0), la dérivée
en xo de I'application partielle x — f(x, yo, 20).

of of
On la note a(Xa,yo,Zo) ou a(MO)'

On rencontre parfois d'autres notations : f(xo, o, 20) ou Oxf(xo, Yo, Z0)-
0 se lit « d rond » ou « d ronde » .

On a donc

f(x, 0, 20) — F(x0, 0, 20)

g(x 2) = lim
Ix 0, Y0, 20 =0am R =%

C'est la limite du taux d'accroissement de f par rapport a x seulement.
On définit de méme les dérivées partielles par rapport a y et z, respectivement notées

g(x 20) et g(x 2)
% 0, Y0, 20 oz 0, Y0,20)-

X,Y,z par des opérations de somme, de produit, de quotient & dénominateur non nul
et de c ition, est elle-méme continue.

Exemples

0 (Continuité)

® Soit f(x,y,z) = cos(xy) exp(2z — 3) + y*z. f est continue sur R® par opérations.
2

* Soit g(x,y) = g est continue sur R?\ {(0,0)}.

X
x2 4 y?’

. . B . of .
En pratique, on calcule la fonction dérivée partielle % :UCR®— R en un point

quelconque (x, y, z) en dérivant f par rapport a x, et en considérant y et z comme
des constantes.

Exemple 4.2

Soit f(x,y) =2x* +3xy — x + L.
Calculons les dérivées partielles de f en (x,y) € R? puis en (1,2).

of of
® En (x,y): a(x,y) =4x+3y —1let a—y(x,y) = 3x.
® En (1,2) :
. ) of of
1 méthode : on prend (x,y) = (1,2) dans a—x(x,y) et dans a—y(x,y),
ce qui fournit immédiatement %(1,2) =0et ?(1,2) =8

© 2¢ méthode : on calcule les applications partielles en (1,2), puis on les
dérive :
* f(x,2) = 2x> + 5x + 1 donc g(x 2) = 4x +5, puis ga 2)=09.
’ ax ' ox’

* f(1,y) =2+ 3y donc g—;(l,y) = 3, puis g—;(l,Z) =3




4. Dérivées partielles

Exemple 4.3 (Dérivées partielles et continuité (cf. exemple

Considérons la fonction définie par

xy .
f(x,y)={8‘2+y2 S e 700

si (x,y) = (0,0)

© Dérivées partielles en un point (x,y) # (0,0) :

of 2252 of x(x? —y?

O ey =2 =) O,y X =y)

dx (x2 + y?) dy (X2 +y?)
© Dérivées partielles en (0,0) :

OF v F(x0)—F(0,0) _ . 0

8x(0’0)_>|<l—% x _>|<I—»ox2+02 =U

Remarque 4.4 (Dérivées partielles et continuité)

Cette fonction de 2 variables n'est pas continue en (0,0), mais admet des
dérivées partielles en (0,0). Donc attention :
existence des dérivées partielles en un point # continuité en ce point

2

4. Dérivées partielles

4. Dérivées partielles

Définition 4.5 (Fonction de classe C')

Une fonction f : U C R® — R pour laquelle les dérivées partielles existent et sont
continues sur U est dite de classe C* sur U.

Exemple 4.6
Soit g(x,y,z) = ysin(x) + xy?z°.
Calculons les trois dérivées partielles de g.

La fonction g est dérivable selon x,y ou z et ses dérivées partielles sont obtenues par
opérations sur fonctions usuelles :

iz = yeosty's, PEyiz) =sin() 1292, TE(xy.z) = 37

On voit clairement que les dérivées partielles de g sont continues sur R®, et donc g
est de classe C* sur R®.

5. Différentielle
Problématique

Soit f : R? — R. Quelle est la variation df de f(x, y) pour de petites variations dx et dy ?

® Pour une fonction f : R — R :
on remplace localement la courbe par sa droite tangente :

< approximation affine de f au voisinage de xp pour h = dx = x — xp petit :

f(x) = f(x0) + f'(x0)(x — x0)
f(xo + h) = f(x0) + f'(x0)h
Of & f'(x0)bx

* Pour une fonction f : R> — R : on remplace localement la surface par son plan
tangent :
< approximation affine de f au voisinage de (xo, yo) pour hy = dx = x — xo
et hy =0y =y — yo petits :

f(x,y) & f(x0,y0) + c(x — x0) + By — y0)
f(x0 + he, yo + hy) & f(x0, y0) + cths + Bhy
Of = adx + Boy

4. Dérivées partielles
Propriété 4.7 (Dérivées partielles et plan tangent)

Soit f : U C R? — R une fonction de 2 variables, ¥ la surface représentant son
graphe dans R?, (x0, ¥0) un point de U, et Mo(xo, yo,20) le point image sur &
correspondant avec zp = f(xo, yo)-

® En Mo, les deux vecteurs tangents aux courbes coordonnées (graphes des fonctions

1 0
3 ) R q = = 1
partielles) donnés, lorsqu'ils existent, par i, et v, s
I 0 30) a*y(XmYO)

sont tangents a la surface X.

Ils engendrent un plan, le plan tangent a la surface en Mp. Ce plan a pour
équation

of of
z= a(xo,yo)(x — x0) + a*y(xo,yo)(y = y0) + f(x0. y0)

of
*E(XOJ’O)

Dans ce cas, fi, = iy AV, est un vecteur normal au plan tangent

of
—Fy(xoyyc)
1
en M. On dit plus simplement qu'il est normal a la surface ¥ en M.

5. Différentielle
Questions/réponses

f(x0 + he, Yo + hy) & f(x0, y0) + athe + Bhy
Of = adx + oy

Questions : @

® Que valent les coefficients «, 3 pour obtenir la meilleure approximation affine
(pour f(xo + hx, yo + hy)) ou linéaire 6f ?
® Quelle erreur commet-on ?

N

Réponses : _@_

@ On peut montrer que o =

of of
= (x0, y0) et B = a*(XO,}’o)-
On aura donc 4

Ix

of of
f(x0 + he, yo + hy) = £(x0, y0) + 7= (%0, yo)he + 5(Xo,)’o)hy

différentielle de f en (xo, yo)

© L'erreur commise sera de I'ordre de [|(hx, hy)H2 = h} + h, soit du second ordre,
donc négligeable devant hy et h,.

5. Différentielle

Questions/réponses

, Plan tangent en (x,,y;, f(X;.y5))

Approximation affine

(Xothy.ysthy)

30

5. Différentielle

On peut méme prolonger cette notion pour toute fonction f : R” — R avec n > 3.
Par exemple en dimension 3 :
f(xo + hx, Yo + hy, 20 + h;) = f(x0, o, 20) + ahx + Bhy + vh,

Définition 5.1 (Différentiabilité)
Soit une fonction f : U C R* — R et un point mo(xo, yo, 20) € R®.
On dit que f est différentiable au point mo si il existe une forme linéaire ( : R> — R

~(h,
et une fonction ¢ : R® — R telle que pour tout vecteur h(Z;> :

)z

| f(mo + ) = F(mo) + £(F) + [Al}=(R) avec lim =(R) = 0|

Théoréme 5.2 (Différentielle)

La forme linéaire ¢, lorsqu’elle existe, est unique : c'est la différentielle de f en my.
Elle est notée dfy, et I'on a la relation avec les dérivées partielles de f suivante :

(I o Of of of
W’(?)’ dfmy (h) = a—x(mo)hx + a—y(mo)hy = E(mo)hz

z

Sous forme fonctionnelle :

of of of
dfing = E(mg)dx + a(mo)dy + E(mo)dz

5. Différentielle

Théoréme 5.3 (Continuité, classe C! et différentiabilité)

© Si f est différentiable en my, alors elle est continue en my.

@ Si f est de classe C* en mo € R® (i.e. admet des dérivées partielles continues
en my), alors f est différentiable en mq.

Exemple 5.4

Soit f la fonction définie par f(x,y,z) = xy?z* et m = (x, y, z) un point générique
de I'espace. Les dérivées partielles de f en m sont données par

of _ 2.3 of _ 3 of au2.2
g(m) =yz 6y(m) = 2xyz az(m) =3xy°z

Elles sont continues en tout m donc f est différentiable en m et sa différentielle en m
s'exprime selon
dfyn = %(m)dx + g—;(m)dy + %(m)dz = y?2* dx + 2xyz* dy + 3xy*2’ dz

Plus explicitement, dfy, est |'application linéaire définie par :

_/hx =
Vh(hy) . dfw(h) = y?2° he + 2xy2° by, + 3xy°2" h,
h;




5. Différentielle
Définition 5.5 (Gradient)

Supposons f différentiable en mq.
Les dérivées partielles de f en mo définissent un vecteur appelé « gradient » de f en mo,
noté grad f(mg) ou ?f(mu) (opérateur « nabla ») :

of
&("’0)
grad (o) | 7 (m)
of
E("’O)

La différentielle de f en mo s'exprime alors selon

|vﬁ, dfg () = gr_aér’(mo)-ﬁ|

—
Parfois il est judicieux d'écrire les composantes du vecteur grad f(mo) en ligne :

grad () 5Fm), S o). 5 o))
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5. Différentielle

Définition 5.8 (Différentielle logarithmique)

On appelle différentielle logarithmique de f différentiable et non nulle, la quantité

d(In|f]) &

Propriété 5.9 (Différentiabilité et opérations)

Soit f,g : R* — R des fonctions différentiables et o des réels.

¢ d(af) = adf * d(fg) =fdg+gdf
° d(f +g)=df +dg 'd(£>=w
D) i .

. d(fe) _ df  dg . \g) _df_dg o Al _ &

fg f e f f g [fl> f

g
_  fPlel” -
Par exemple, pour ¢ = « G ou f, g, h sont différentiables non nulles et

a,p,q,reR: dp _ df E—rﬂ
e PF Ty T
Soit f : R* — R et g : R — R deux fonctions différentiables.

® d(gof)=(g'of)xdf

36

5. Différentielle

Exemple (Gradient)

grad () |

Un gradient de la fonction f : (x,y) — sinxsiny + 2

5. Différentielle

Exemple 5.10 (Différentielle et composition)

Soit f : R> — R la fonction définie par f(x,y,z) = x? +y2 + 22 et g= v .
Posons h =g o f : R®* — R. On a donc h(x,y,z) = \/x% + y? + 22.
Déterminons la différentielle de h en un point générique m = (x, y, z) de I'espace.
© I méthode : calcul direct
Les dérivées partielles de h en m sont données par
oh X Oh
&(m)= '

y
m)=
VXityi+22 By( )

_y @(m)_ g
/X2+y2+22 0z /X2+y2+22
La différentielle de h en m s’exprime alors selon

dh oh oh 1
dhm = a(m)der ny(m)der E(m)dz = 7/m(x dx+ydy+2zdz)

2¢ méthode : composition
La différentielle de f en m s'exprime selon dfy,, = xdx + y dy + zdz

2\/u’
On en déduit la différentielle de h en m selon

dhm = (g' o f)(m) x df, = ;(xdx+ydy+zdz)

VF(m)

De maniére plus concise, on a illustré par cet exemple la formule d(ﬁ)

et la dérivée de g est donnée par g'(u) =

df

i

6. Applications

Exercices 6.2 (Variation, val

@ Soit f la fonction définie par f(x,y) = xy>.
Calculer la variation de f quand x varie de 3 a 2.98 et y varie de 2 a 2.01.
Réponse :
* Différentielle : dfy, = y? dx + 2xy dy pour m = (x, ).
© Variation : 6f ~ y2 §x + 2xy Jy.
© Application numérique : les données sont mg = (3,2), 6x = —0.02 et y = 0.01.
D’obl la variation : §fm, & 22 x (—0.02) +2 x 3 x 2 x 0.01 = 0.04
puis I'approximation : (2.98,2.01) ~ f(2,3) + 0.04 = 12.04.
Valeur exacte : £(2.98,2.01) &~ 12,0395 a 10~* pres.

® Donner une approximation de la variation relative du volume V d’un
parallélépipede rectangle de cotés x = 20cm, y = 40cm, z = 25cm, quand x et y
augmentent de 0.2 et z diminue de 1. La fonction d'intérét est V(x,y,z) = xyz.

Réponse :

dVm

d
© Différentielle logarithmique : v -

4 dl+g pour m = (x,y, z).

X y z

© Variation relative : M ~ & + y + (LZ
v X y z

© Application numérique : les données sont 6x = dy = 0.2cm et 6z = —1lcm.

D’ou la variation relative (ici diminution) : & —0.025 = —2.5 %.
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6. Applications
Incertitude

Idée : le calcul d'incertitude, permet d'évaluer les erreurs qui se produisent lors de
mesures de grandeurs physiques, les instruments de mesure n'étant pas d'une
précision absolue. Il faut évaluer ces incertitudes pour répondre a la question :

« la relation n'est pas vérifiée exactement
parce qu'’elle est fausse
ou parce que les mesures sont imprécises ? »

On en déduit des marges d’erreurs, en dehors desquelles la relation sera invalidée.

Définition 6.3 (Incertitude)

Pour une grandeur physique f :

* ['incertitude de mesure absolue sur f se note Af >0;

. . . Af
® l'incertitude de mesure relative sur f est alors 5

Multipliée par 100, I'incertitude relative donne la précision de la mesure en pourcentage.

La valeur exacte de f se situe dans un « intervalle de confiance » [f — Af, f + Af].
On note alors le résultat de la mesure sous la forme : f + Af.

5. Différentielle

Champ de gradients
Lorsque f est différentiable sur U C R?, on peut définir un champ vectoriel sur U :
grad: U — R3
-
— grad f(mo)

Nk

IS

Mo

Exemple 5.7 (Champ de gradients)

— X! =
4 3 2 4 0 1 2 3 4 >
e A N AR Nl et
S NN

Champ de gradients de la fonction f : (x,y) — 0.2(x* + y?) + 1.1

6. Applications

Variation

Principe : On utilise la différentielle comme approximation linéaire de la variation :

Définition 6.1 (Variation)

of . .
® — est la variation relative de f.

® O0f est la variation absolue de f ; 3

Soit f : U C R® — R une fonction différentiable en un point mo(xo, yo, Z0)-

Si les quantités xo, yo et zp sont modifiées respectivement de dx, dy et §z, alors la
variation Jf de f au premier ordre est :

of of of
Of & dfny(6x,0y,02) = a—x(mo) X dx + @(mo) X 0y + E(mg) X 6z

of of of
of ~ aéx+ a—y&y-{— Eéz

On retiendra en abrégé

6. Applications

Pour éviter les compensations, on ajoute en valeur absolue toutes les erreurs pour
obtenir la variation maximale de f.
of of

Onadf =df = —dx+ —
o O e or
s inégalité tri laire : |df| < | | |d; —| |d!
r, par inégalité triangulaire : |df| < ‘[*)x |dx| + [‘)y‘l ly| +
Pour déterminer I'incertitude sur f, on envisage la « pire erreur » :

f f
& Ax + of

Ix dy

Exemple 6.4 (Aire d'un rectangle)

Considérons un rectangle de longueur L et de largeur £.
L'aire de ce rectangle est donnée par S =L x £.
* Incertitude absolue sur S : a partir de la différentielle dS = L d¢ + ¢ dL, on tire
AS =(AL+ LAL.
* Incertitude relative sur S : a5 = GA LAY = &t H
S Le L L
Vérification : en effectuant le calcul exact, la variation de surface peut s'écrire
6S=(l+00)(L+6L)—S=100L+ L5+ 60 % 5L
Le terme 0 x §L étant négligeable (d'ordre 2) par rapport aux termes £ 6L et L ¢
(d'ordre 1), on obtient bien S ~ L0+ £5L.

Af = Ay +---




EX
Exemples 6.5 (Variations, incertitudes relatives) Notions a retenir

RT
® Volume d'un gaz parfait : V(P, T) = nP , n et R constantes. i ) X
W dT ap ® Concept de fonction de plusieurs variables
A I'aide de la différentielle logarithmique, on trouve V-7 B Remarque 6.6 (Différentes notations) © Visualisation des fonctions de deux variables
‘ati we: OV 0T 6P © Calcul des dérivées partielles premiéres
© VEHERED [EEHIe 8 v .oT P & On veillera a bien distinguer toutes les notations rencontrées (d, 9,4, A) : K o 'p . P L, .
. . . AV AT AP * Notion de différentielle et lien avec les dérivées partielles
Incertitude relative : VvV T + -y ® df est la différentielle de f (définition mathématique, variation infinitésimale o Application des différentielles :
sans sens physique, cf. théoréme 5.2); N . A N z . 9
© Energie cindtique - E — 1 my? [P ) + a la détermination du plan tangent a la surface représentative d'une
g que : & =3mv-. E d u ® Of indique une dérivation partielle de f (cf. définition 4.1); fonction de deux variables
A I'aide de la différentielle logarithmique, on trouve = Fm + 27‘/. o 6f est une petite variation de f (cf. définition 6.1); + au calcul de petites variations et d'incertitudes
 Variation relative : % ~ m 2& ® Af est une incertitude sur f (cf. définition 6.3).
m v
. . AE  Am Av
© Incertitude relative : — ~ — +2—
E m v
Remarque : |'utilisation de la différentielle logarithmique est particuliérement
intéressante dans le cas de grandeurs produit, quotient ou puissance de plusieurs
variables. Elle permet d’approximer I'erreur relative et |'incertitude relative.

a2 a3

A. Dérivées partielles
Exemple A.1 (Loi de gaz parfaits) Exemple B.1 (Différentielle et composition (facultatif))

La loi des gaz parfaits PV = kT est une équation reliant trois variables P, V/, T, Soit f : R> — R la fonction définie par f(u,v) = uv et g : R — R? la fonction
avec P : pression du gaz (en Pa), V : volume du gaz (en m®), T : température du définie par g(t) = (x(t),y(t)) = (tcos(wt), tsin(wt)) ol w > 0 est fixé.
gaz (en K), et k > 0 une constante. Posons h = fog : R — R. On a donc h(t) = t* cos(wt) sin(wt).

Elle définit ainsi pour chacune de ces trois variables une fonction des deux autres : A . .
Déterminons la dérivée de h en t.

T(P,V)= % P(V,T)= KT © 1" méthode : calcul direct
k v La dérivée de h en t est donnée par

Annexes

On a , . 2 2 ! q 2
h'(t) = 2t cos(wt) sin(wt) + t*(cos’(wt) —sin’(wt)) = tsin(2wt) + t* cos(2wt)
z g 8T V. T P 0P kT 0P k
([ ] Complements, dlveI’S exemples 9P k> 9oV k> oV vz 9T Vv’ © 2¢ méthode : composition
s e 7 . O cbee s idkifes La différentielle de f en (u, v) est donnée par df(, ) = vdu+ udv
[ ] Del’lvees partleueS Secondes : oo et le vecteur dérivé de g s’exprime dans la base canonique (&, é'y) de R? selon
oT _ 0P kv oT kP IP kT —r TR TR q = q =
err s . Zox="L=1 = x =L =il Zx N — g'(t) = X'(t)&, +y/(t)é, = (cos(wt) — tsin(wt))&, + (sin(wt) + tcos(wt))§,
e Formes différentielles 9P " 9T = W av WP oV Pv2 ’ ’
T oP 9P  oT kT On en déduit la dérivée de h en t selon
X X —— = Ko R = = = =1l 0 d of ’ of /
oP ~ oV T = 8V PV H(t) = Ef(x(t),y(t)) = a(x(t),y(t))x (t)+ m(x(t),y(t))y (t)
é Contrairement aux premiéres relations, les deuxiémes relations montrent que la = tsin(wt)(cos(wt) — tsin(wt)) + t cos(wt) (sin(wt) + t cos(wt))
notation % ne peut pas étre interprétée comme un quotient. Il s’agit d'une notation = 2t cos(wt) sin(wt) + t* (cos®(wt) — sin’(wt)) = tsin(2wt) + t* cos(2wt)

RUSIEI ey mboligue) De maniere plus concise, on a vérifié sur cet exemple la formule (f o g)’ = dfy(g').

C. Approximation D. Dérivées partielles secondes D. Dérivées partielles secondes
Exercice C.1 Si f:U C R® — R est dérivable suivant x ou y ou z, la dérivée partielle correspondante Théoréme D.3 (Théoréeme de Schwarz)

ite détermi . indri t également une fonction de U C R® — R.
On so.uha|te déterminer |_3 masse m d'un manchon cy_||3ndr|que leEslleeE:uirzeonncuerlllee ::scsilo;jm:ttrecdes e el Soit f: U C R®> — R dont toutes les dérivées partielles secondes existent. Si, de plus,
en acier de masse volumique p = (7.80 4 0.01) g.cm™". . ces dérivées secondes sont continues (on dit que f est de classe C?), alors I'ordre de
On mesure les différentes cotes du manchon a I'aide d'un pied Définition D.1 (Dérivées partielles secondes) dérivation n'a pas d’importance; on dit que les dérivées partielles de f commutent :
a coulisse dont I'incertitude est de |'ordre de ¢ = 0.2 mm. P 52F 52F 2F 9°F 9°F 92F
On obtient les résultats suivants pour les rayons extérieur et intérieur ainsi que la Soit f : U C R® — R admettant des dérivées partielles telles que celles-ci également X3y — 9vo X0z — 920 9y0z — 920
longueur du manchon : R. = 40,0mm, R; = 25,0mm et h = 21,2mm. admettent des dérivées partielles. X0y oyox KO E Yoz 9z0y
© Donner I'expression littérale du volume V du manchon. On peut alors définir 9 dérivées 1275’1'5”95259‘50"11? :
Déterminer I'incertitude sur la mesure du volume. ﬂ o°f o°f Exemple D.4
a X 2
Réponse : s o ) s 8;( axzﬁy 6)(281 Soit f définie par f(x,y,z) = y cos(2x) + y*e*.
° Volume : V = m(RZ _Bf) )h. N“"éecqueme"g;/‘/ = 64936.7 mm*>. ofr  of Of Vérifions que les dérivées partielles secondes « croisées » coincident.
* Différentielle : dV = N dRe + — dR; + — dh Jyox % Jyoz Posons m = (x, y, z) pour simplifier les écritures.
9 : o’f fF Of 2
=7 [2hRe dRe — 2hR; dR; + (R? — R?)dh]. e of _9 2 2y %) = —2 sin(2
° Incertitude : AV = 7 [2hRe AR. + 2hR; AR; + (R2 — R2) Ah]. 0z0x 020y 02 By ()= g (€05(2X) + 2y €¥) =2 in(2x)
Ici ARe=AR;=Ah=¢, donc AV =n[2hRe + 2hR; + (R? — R?)]e ~ 2344.3 mm?, — 82f )
dlol V — (649 + 2.4) cm®. Remarque D.2 (Ordre de dérivation) . W(,,,): 87y(7 2y sin(2x)) =—2 sin(2x)
@ Déterminer I'incertitude sur la masse du manchon. é L'ordre de dérivation est important! Par exemple f signifie que I'on dérive > 92 9
Réponse : d’abord sxpuisy: OF _ 0 (of) O T (m)= 2 (3y7e7) =0 " (m=2 (3ye") =6y e*
® Masse: m=pV. Numériquement : p = 7,80 g.cm ™3, E2EGE| [PER (EfFPEli & 5¢ (FUIS 7 & dydx oy \ox ) Ox0z Ix ayzi?z Ay
© Différentielle : dm = pdV + V dp. Ap=0,0lg.cm ™, m=5062g, Le tableau des dérivées partielles secondes constituent la matrice hessienne de f >f 9 ; of 9 3z 3z
€ < (i s N =—(= = m)=——(cos(2x) + 2y e**) =6y e
0 lizedlinds  Amw = pAY - Vin donc Am ~19.4g, d'ott m = (506 + 20)g, - (cf. cours de Mathématiques de 2¢ année). " 323X(m) 32( Py i) =0 323}’( ) [‘)Z( (2x) +2y €¥) =y




D. Dérivées partielles secondes
Exemple D.5 (Contre-exemple)

Soit f définie par

3 si(xy)#(0,0)
si (x,y) = (0,0)

Calculons les dérivées partielles secondes
croisées en (0,0) :

N X2 yZ
fxy) =4 @5y
0

&f .
By O0) =

X
2f 0,0) = lim % o= %(0’0)
dydx y—=0 y
© Dérivées partielles premiéres intermédiaires : ~ © Dérivééépéftiélles secondes :
oz (e
gf;(x,o)ﬂlmif(x*”;f(x*o) =x 6[;%(0’0):_1
< On observe ainsi que %(0,0) # %(0,0)4

E. Formes différentielles

on E.1 (Forme différentielle)

Soit U un ouvert de R®. Une forme différentielle sur U est une application de la
forme (x,y,z) € U— w(x,y,z) = P(x,y,z)dx + Q(x,y, z)dy + R(x,y, z)dz ou
P, Q, R sont trois fonctions de U — R.

w=Pdx+ Qdy+ Rdz

Si P, @, R sont de classe C* sur U, w est dite de classe C*.

® Sif: U — R est différentiable sur U, sa différentielle

of of of
= adx+ @dy+ gdz

est une forme différentielle. C'est plus précisément |'application

Notation abrégée :

df

of of of
(6,,2) = iy = 5 (. )bt oy, 2)dy 4 (v, 2)dz

¢ w=yzdx +xzdy + xy dz

® I'évolution élémentaire d'un systéme thermodynamique (chaleur §Q, énergie dU,
entropie dS...)

E. Formes différentielles

Définition E.3 (Forme exacte)

Soit w: U — R une forme différentielle sur un ouvert U de R®.

Une forme différentielle w est exacte lorsqu’elle est la différentielle d’une fonction
différentiable.

Il existe donc une fonction différentiable f : U — R telle que w = df.

On dit que f est une primitive de w.

Exemples E.4

® Soit w; = 2xdx + 2y dy + 2z dz.
En remarquant que 2x dx = d(x?) et de méme avec y et z,
puis en posant fi(x, y,z) = x> 4+ y* + 2%, on voit que w; = df.
Donc w; est exacte sur R® et f; est une primitive de ws.

© soitUJz=g+ﬂ+£.

X Y 4

En remarquant que <= d(In|x|) et de méme avec y et z,

puis en posant f(x, y, z) = In|xyz|, on voit que wa = df; sur (R*)>.

Donc ws est exacte sur R® et £ est une primitive de w,.

Soit w3 = yz dx + xz dy + xy dz.
En posant f3(x, y, z) = xyz, on voit que w3 = dfs.
Donc ws est exacte sur R® et f; est une primitive de ws.

E. Formes différentielles

Définition E.5 (Forme fermée)

Une forme différentielle w de classe C* sur U C R® est fermée sur U lorsqu’en tout
point de U (conditions de fermeture) :
P 0Q P _OR

dy  Ox

9Q 0R

ox 0z 0z 9y

0z Ox

Remarque E.6
® Moyen mnémotechnique : la condition de fermeture se retrouve en écrivant le
Y
2}

o0

ax
® Pour une forme différentielle a deux variables w = Pdx + Qdy, il n'y a qu'une
aQ

produit vectoriel symbolique

condition de fermeture : — = —.

Ay Ix
Exemple E.7
Soit w =2y dx + (2x + z) dy + y dz.
P _,_09Q o9P_, OR 9Q_, OR 6 s
Ona ay —2—9)(, 22" o2 —l—ayA Donc w est fermée sur R>.

E. Formes différentielles

Théoréme E.8 (Théoréme de Schwarz (conséquence))

Soit w une forme différentielle de classe C* sur un ouvert U.
w est exacte sur U = w est fermée sur U.

Remarque E.9

Contraposée trés utile : sur tout ouvert U,
w de classe C! n’est pas fermée sur U — w n’est pas exacte sur U.

Sur certains ouverts, la réciproque est vraie.

Théoréme E.10 (Théoréme de Poincaré)

Soit w une forme différentielle de classe C* sur un produit d’intervalles U.
w est fermée sur U —> w est exacte sur U.

—

Donc, avec le théoréme précédent, sur un produit d’intervalles,
w fermée < w exacte.

Remarque E.11 (Extension (facultatif))

En fait, le théoréme de Poincaré est valable sur une classe d'ouverts bien plus vaste
que les simples produits d'intervalles : les ouverts impl
(i-e. « sans trou ni poignée » )...

E. Formes différentielles

Exemple E.7 (Suite)
On reprend w = 2y dx + (2x + z) dy + y dz.

C'est une forme différentielle de classe C' sur R® qui est un produit d'intervalles et
elle est fermée. Donc d'aprés le théoréme de Poincaré, elle est exacte.
On cherche f tel que w = df.

of of of

Or df = adx+ @dy#— Edz.

On identifie les dérivées partielles de f a P, Q, R et on intégre successivement.

On a donc : %(x,y,z) =2y, g—;(x,y,z) =2x+z, %(x,y,z) =y.
On obtient ainsi le systéme ci-dessous

T xyia) =2y

g—;(x,y,z) =2x+z

g(xyyy )=y

que |'on va résoudre progressivement par intégrations successives.

@
£

E. Formes différentielles
Exemple E.12 (Equation de van der Waals)

L' équation d’état de van der Waals (P+ %) (V—B)=KT relie trois variables P,V T,
avec P: pression du gaz, V : volume du gaz, T : température du gaz, a, 3, k> 0: constantes.
Considérons les formes différentielles variations d'énergie et de chaleur

w:'ydT+%dV et g=w+ PdV (avecy > 0 constante)

© Etude de la forme w
Posons w = wq dT + wo dV avec wy =y et wp =

owmy  Ows
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® Les fonctions wi,w: sont de classe C! sur le produit d’intervalles ]0,+o00[x]3,+00[

Le théoréme de Poincaré assure que la forme différentielle w est exacte.
1

A H a
V)' on obtient directement w = d('yT = V)'
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=0, et alors la forme différentielle w est fermée.

¢ Remarquant que % = d(—

® Etude de la forme q

] kT
On a q-vdT+(W+P)dV. Posons g=wy dT +ws3 dV avec m_m.
owr Ows w1, Ows
OnaW—Oet—— ,donc—av BT

Ainsi, la forme différentielle g n'est pas fermée, donc pas exacte.

E. Formes différentielles
Exemple E.7 (Suite)

of
Ox

=2y (1)
of
= 2x+2z (2)
)

® On intégre (1) par rapport a x : f(x,y,z) = 2yx + g(y, 2).
@ On dérive f par rapport a y et on identifie avec (2) :

f og

S =2x+ et (2): - =
Oy dy @ dy y
En intégrant par rapport a y, g(y, z) = zy + h(z).
Pour le moment f(x,y,z) = 2yx + zy + h(z).

2x + z, ainsi a—g =,

© On dérive f par rapport a z et on identifie avec (3) :
of
=y+oet 3):

z

=y, ainsi éb_ 0 et donc h est constante.
oz 9z ¥ dz ’
Finalement, il existe A € R tel que f(x,y,z) = 2yx + zy + \.

Avec une condition ponctuelle éventuelle : par exemple si I'on sait que £(0,0,0) = 4,
alors A\ = 4 et f est entiérement déterminée.
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