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1. Fonctions d’une variable – Rappels a) Continuité, dérivabilité

Soit f : I → R une fonction définie sur un intervalle ouvert I contenant un point x0.

Définition 1.1 (Continuité en x0x0x0)
On dit que la fonction f est continue en x0 lorsque

lim
x→x0

f (x) = f (x0)

Définition 1.2 (Dérivabilité en x0x0x0)
On dit que la fonction f est dérivable en x0 ∈ I lorsque le taux d’accroissement de f
en x0 : ∆f

∆x = f (x)− f (x0)
x − x0

admet une limite finie quand x → x0.

Cette limite est appelée nombre dérivé de f en x0 :

f ′(x0) = lim
x→x0

f (x)− f (x0)
x − x0

= lim
h→0

f (x0 + h)− f (x0)
h
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1. Fonctions d’une variable – Rappels a) Continuité, dérivabilité

Interprétation graphique (Tangente)
Si f est dérivable en x0 alors Cf admet une tangente T en M0 qui est la position
limite des cordes lorsque M se rapproche de M0.

•x0

•f (x0)

•x

•f (x)

M0

M

•
• • •

•

•

•

Cf

T

pente corde :
f (x)− f (x0)

x − x0

pente tangente :
f ′(x0)

Équation de la tangente T :

y = f ′(x0)(x − x0) + f (x0)
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1. Fonctions d’une variable – Rappels b) Dérivée et approximation

Propriété 1.3 (Approximation affine)

Supposons f dérivable en x0 et soit T (x) = f ′(x0)(x − x0) + f (x0) l’application
affine tangente de f en x0.
Alors T est la meilleure approximation affine de f au voisinage de x0.

En effet, en posant ε(h) = f (x0 + h)− f (x0)
h − f ′(x0), on a pour tout h 6= 0 :

f (x0 + h)− f (x0)
h = f ′(x0) + ε(h) et lim

h→0
ε(h) = 0

soit encore
f (x0 + h) = f (x0) + f ′(x0)h + h ε(h) avec lim

h→0
ε(h) = 0

On dit que h ε(h) est négligeable devant h en 0.

Avec x = x0 + h, cela se réécrit selon

f (x) = f (x0) + f ′(x0)(x − x0) + (x − x0) ε(x − x0) = T (x) + (x − x0) ε(x − x0)

Ces écritures suggèrent l’approximation du premier ordre suivante :

pour x proche de x0 :
f (x) ≈ f (x0) + f ′(x0)(x − x0) ou encore pour h petit :

f (x0 + h) ≈ f (x0) + f ′(x0)h
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1. Fonctions d’une variable – Rappels b) Dérivée et approximation

Interprétation graphique (Approximation affine)

•
x0

•
M0•f (x0)

•
x0+h

•M•f (x0+h)

f (x0)+f ′(x0)h

f ′(x0)h

ε(h)h

Cf

T
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1. Fonctions d’une variable – Rappels b) Dérivée et approximation
Exemples 1.4
1 Pour f (x) = x2, on a f ′(x) = 2x . On obtient alors l’approximation suivante :

pour h petit devant x0, (x0 + h)2 ≈ x2
0 + 2x0h

On en déduit à la main une valeur approchée de 3.052 :

(3 + 0.05)2 ≈ 32 + 2× 3× 0.05 ≈ 9.3

La valeur exacte est 3.052 = 9.3025.
• Erreur absolue : 9.3− 9.3025 = −0.0025 (< 0→ approximation par défaut)
• Erreur relative : 9.3−9.3025

9.3025 × 100% ≈ −0.03%

2 Pour f (x) =
√
x, on a f ′(x) = 1

2
√
x
. On obtient alors l’approximation suivante :

pour h petit devant x0,
√
x0 + h ≈

√
x0 + 1

2√x0
h

On en déduit à la main une valeur approchée de
√
101 :

√
103 ≈

√
100 + 1

2
√
100
× 3 = 10.15

La valeur exacte est
√
103 = 10.14889 . . .

• Erreur absolue : 10.15− 10.14889 · · · ≈ 0.00111 (> 0→ approximation par excès)
• Erreur relative : 10.15−10.14889...

10.14889... × 100% ≈ 1.1× 10−4 %
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1. Fonctions d’une variable – Rappels c) Différentielle

Définition 1.5 (Différentiabilité)
On dit que f est différentiable en x0 lorsqu’il existe une application linéaire notée dfx0

et une fonction ε telles que :

f (x0 + h) = f (x0) + dfx0 (h) + h ε(h) et lim
h→0

ε(h) = 0

On dit que dfx0 est la différentielle de f en x0.

En fait ε(h) = f (x0 + h)− f (x0)
h − dfx0 (h)

h et l’on obtient dès lors l’équivalence entre
différentiabilité et dérivabilité en x0 pour f ci-dessous :

Propriété 1.6 (Équivalence dérivabilité–différentiabilité)
Pour les fonctions de R dans R :

f différentiable en x0 ⇐⇒ f dérivable en x0.

Lorsque f dérivable en x0, la différentielle dfx0 est l’application linéaire h 7→ f ′(x0)h :

dfx0 (h) = f ′(x0)h
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1. Fonctions d’une variable – Rappels c) Différentielle

Remarque 1.7 (Notation différentielle de Leibniz)
• Si f est différentiable en x0x0x0, d’après la propriété 1.3 sa différentielle est la
meilleure approximation linéaire de l’accroissement de f en x0x0x0.
• En notant dxxx : h 7→ h l’application linéaire représentant l’accroissement de la
variable x , (donc dxxx(h) = h) on obtient en notation fonctionnelle :
dfx0x0x0 = f ′(x0x0x0) dxxx .
Cette écriture se généralise en dfxxx = f ′(xxx) dxxx ou encore df = f ′ dxxx qui est à

l’origine de la notation de Leibniz f ′ = df
dxxx (= lim

∆x→0

∆f
∆x ).

Attention : le xxx dans dxxx n’a rien à voir avec le xxx dans dfxxx et f ′(xxx).
Ce n’est qu’un symbole.

Propriété 1.8 (Formules dérivées / différentielle)
dérivées différentielles

(f + g)′ = f ′ + g ′ d(f + g) = df + dg
(fg)′ = f ′g + fg ′ d(fg) = g df + f dg(
f
g

)′
= f ′g − fg ′

g2 d
(
f
g

)
= g df − f dg

g2

(g ◦ f )′ = (g ′ ◦ f )f ′ d(g ◦ f ) = (g ′ ◦ f )df
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1. Fonctions d’une variable – Rappels d) Petits accroissements

En sciences physiques, on se sert de la différentielle pour approcher l’accroissement
(positif ou négatif) d’une fonction lorsque la variable varie légèrement.
La quantité df sera donc considérée comme un nombre et pas une fonction.
En d’autres termes, en posant :
• δx = petit accroissement de x sur x0,
• δfx0 = petit accroissement de f en x0 correspondant à δx :

"δfx0" = δfx0 (δx) = f (x0 + δx)− f (x0),

• dfx0= différentielle en x0 :

"dfx0" = dfx0 (δx) = f ′(x0)δx ,

on considère que
δfx0 ≈ dfx0

Ainsi, écrire δfx0 ≈ dfx0 c’est, pour un x proche de x0 :
• approcher au premier ordre la valeur de f (x) par la valeur T (x) de son
application tangente au point x0 ;
• commettre une erreur qui est un infiniment petit d’ordre supérieur à 111.
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1. Fonctions d’une variable – Rappels d) Petits accroissements
Interprétation graphique

•
x0

••
f (x0)

•
x0+δx

••
f (x0+δx)

δx

accroissement
δfx0(

=f (x0+δx)−f (x0)
) approximation

dfx0(
=f ′(x0)δx

)

erreur
ε(δx)δx

Cf

T

f (x0 + δx)− f (x0)︸ ︷︷ ︸
δfx0

= f ′(x0)δx︸ ︷︷ ︸
dfx0

+ ε(δx)δx ≈ dfx0
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1. Fonctions d’une variable – Rappels d) Petits accroissements

Exemple 1.9 (Pendule pesant)

La formule P = 2π
√
`

g donne la période d’un pendule de longueur `, g désignant

l’accélération de la pesanteur (g = 9.81m/s2).
Déterminons une approximation de la variation de période en fonction d’une variation
de longueur.

Posons P(`) = 2π
√
`

g .

P définit ainsi une fonction de dérivée P ′(`) = 2π
√g

1
2
√
`

= π√
g`

donc de différentielle "dP`" = dP`(δ`) = π√
g`
δ`.

Si ` augmente de δ`, une approximation de l’augmentation de P correspondante peut
s’obtenir selon

δP` ≈ dP` = π√
g`
δ`
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2. Fonctions vectorielles :R→ R2R→ R2R→ R2 ouR3R3R3

Définition 2.1 (Continuité/Dérivabilité)

Soit
−→
F : I ⊂ R −→ R3

t 7−→ f (t)~ex + g(t)~ey + h(t)~ez

une courbe paramétrée de l’espace.

On dit que
−→
F est continue (resp. dérivable) en t0 ∈ I lorsque ses trois fonctions

composantes f , g , h sont continues (resp. dérivables) en t0.
Lorsque

−→
F est dérivable, on a

−→
F ′(t0)= f ′(t0)~ex +g ′(t0)~ey +h′(t0)~ez (vecteur tangent).

Propriété 2.2 (Différentielle)

Si
−→
F : R −→ R3 est dérivable en t0, alors :

−→
F (t0 + h) =

−→
F (t0) + h

−→
F ′(t0) + h~ε(h)

où ~ε est une fonction vectorielle vérifiant lim
h→0

~ε(h) =~0.
On a donc

−→
F différentiable en t0 ⇐⇒

−→
F dérivable en t0

et la différentielle de
−→
F en t0 est l’application linéaire

d
−→
F t0 : R −→ R3

h 7−→ h
−→
F ′(t0) = f ′(t0)h~ex + g ′(t0)h~ey + h′(t0)h~ez 11

3. Fonctions de deux ou trois variables a) Introduction

De nombreuses quantités physiques dépendent de plusieurs paramètres :

• la pression d’un gaz parfait donnée par P = nRT
V dépend du volume V , de la

température T et du nombre de moles n de ce gaz (R étant une constante) ;
• la pression atmosphérique sur terre dépend des variables de position x , y , z ;
• l’intensité d’un champ électrique dans l’espace dépend des variables de position

x , y , z ;
• l’énergie cinétique d’une particule dans un gaz dépend des composantes de
vitesse vx , vy , vz ...

Objectif du chapitre : adapter le calcul différentiel pour les fonctions à une variable,
aux fonctions à plusieurs variables.

Notes :
• dans la suite, on énoncera les définitions et propriétés dans R3 (l’espace), mais
– sauf mention du contraire – elles sont aussi valables dans R2 (le plan), en
enlevant tout ce qui a trait à la variable z ;

• des triplets (x , y , z) de R3 peuvent être considérés comme les coordonnées d’un
point M dans un repère (O;~ex ,~ey ,~ez ), mais aussi comme les composantes(x
y
z

)
d’un vecteur

−−→
OM dans une base (~ex ,~ey ,~ez ).
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3. Fonctions de deux ou trois variables b) Visualisation
Visualisation
Dans ce chapitre, on considère des fonctions à 2 ou 3 variables réelles, à valeurs dans R.
• Une fonction de deux variables f : R2 −→ R

(x , y) 7−→ f (x , y)
peut se visualiser

graphiquement comme une surface d’équation cartésienne z = f (x , y).
Exemple : f (x , y) = x2 + y 2.

• Pour une fonction de 3 variables, penser qu’à chaque point de l’espace est
associé un nombre (température T (x , y , z), pression P(x , y , z), etc.). On peut
imaginer une représentation comme hypersurface d’équation cartésienne
u = f (x , y , z) dans un espace de dimension 4 (avec des coordonnées (x , y , z, u))...
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3. Fonctions de deux ou trois variables b) Visualisation
Visualisation
Dans ce chapitre, on considère des fonctions à 2 ou 3 variables réelles, à valeurs dans R.
• Une fonction de deux variables f : R2 −→ R

(x , y) 7−→ f (x , y)
peut aussi se visualiser

graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de constance de f .

Lignes de niveau équidistantes
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3. Fonctions de deux ou trois variables b) Visualisation
Visualisation
Dans ce chapitre, on considère des fonctions à 2 ou 3 variables réelles, à valeurs dans R.
• Une fonction de deux variables f : R2 −→ R

(x , y) 7−→ f (x , y)
peut aussi se visualiser

graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de constance de f .

Carte topographique : lignes d’altitude
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3. Fonctions de deux ou trois variables b) Visualisation
Visualisation
Dans ce chapitre, on considère des fonctions à 2 ou 3 variables réelles, à valeurs dans R.
• Une fonction de deux variables f : R2 −→ R

(x , y) 7−→ f (x , y)
peut aussi se visualiser

graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de constance de f .

Carte météorologique : lignes de pression atmosphérique
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3. Fonctions de deux ou trois variables c) Applications partielles

Il est pratique de définir les fonctions partielles d’une fonction à plusieurs variables, ce
qui correspond à fixer toutes les variables sauf une. On retrouve les fonctions à une
variable habituelles.

Définition 3.1 (Applications partielles)
Soit une fonction f : R3 → R. On appelle applications partielles au point
M0(x0, y0, z0) les applications de R→ R suivantes :

x 7→ f (x , y0, z0), y 7→ f (x0, y , z0), z 7→ f (x0, y0, z)

Exemple 3.2
Soit f la fonction définie sur R3 par f (x , y , z) = cos(xy) exp(2z − 3) + y 2z.
Les trois applications partielles de f en (1, 0, 1) sont données par

x 7−→ f (x , 0, 1) = cos(x × 0)e2×1−3 + 02 × 1 = 1
e

y 7−→ f (1, y , 1) = cos(1× y)e2×1−3 + y 2 × 1 = 1
e cos(y) + y 2

z 7−→ f (1, 0, z) = cos(1× 0)e2z−3 + 02 × z = e2z−3
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3. Fonctions de deux ou trois variables c) Applications partielles

Exemple 3.3 (La selle de cheval )
Soit f la fonction définie sur R2 par f (x , y) = x2 − y 2.

Les applications partielles de f en
(0, 0) et en (1,−1) sont données par
• en (0, 0) :

x 7→ x2 et y 7→ −y 2

• en (1,−1) :
x 7→ x2 − 1 et y 7→ 1− y 2

x

z

z =x2

y

z

z =−y2
16

3. Fonctions de deux ou trois variables d) Continuité

La notion de continuité en un réel x0 pour les fonctions de R→ R à l’aide de la
notion de limite (rappel : lim

x→x0
f (x) = f (x0)) s’étend aux fonctions de Rn → R.

Définition 3.4 (Continuité)
La fonction f : R3 → R est continue en (x0, y0, z0) lorsque

lim
(x,y,z)→(x0,y0,z0)

f (x , y , z) = f (x0, y0, z0)

Mais que signifie lim
(x,y,z)→(x0,y0,z0)

?

Différence entre R et R2 ou R3 : il existe une infinité de directions suivant lesquelles
s’approcher d’un point (x0, y0) du plan ou (x0, y0, z0) de l’espace, alors que dans R
il n’y a que deux possibilités (par la gauche ou par la droite).
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3. Fonctions de deux ou trois variables d) Continuité

Définition 3.5 (Limite dans le plan et l’espace)
• On dit que le point variable M tend vers le point fixé M0 si la distance M0M
tend vers 0.

• On dit que le vecteur variable ~u tend vers le vecteur fixé ~u0 si la norme
‖~u − ~u0‖ tend vers 0.

En termes de coordonnées ou composantes dans R3, cela se transcrit selon :

(x , y , z) tend vers (x0, y0, z0)
ssi
∥∥(x , y , z)− (x0, y0, z0)

∥∥ =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 tend vers 0.

Définition 3.6 (Boule ouverte)
Dans Rn avec n = 1, 2, 3, la boule ouverte centrée en un point M0 et de rayon R est
l’ensemble BM0,R = {M ∈ Rn : M0M < R}.

• Dans R, on a BM0,R = {x ∈ R : |x − x0| < R} = ]x0 − R, x0 + R[.
C’est un intervalle ouvert.

• Dans R2, on a BM0,R =
{

(x , y) ∈ R2 : (x − x0)2 + (y − y0)2 < R2}.
C’est un disque ouvert.
• Dans R3, on a BM0,R =

{
(x , y , z) ∈ R3 : (x − x0)2 + (y − y0)2 + (z − z0)2 < R2}.
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3. Fonctions de deux ou trois variables d) Continuité

Définition 3.7 (Ouvert de l’espace)

On dit qu’un sous-ensemble U de Rn (n = 1, 2, 3)
est ouvert lorsque pour tout x de U, U contient
une boule ouverte de centre x.

Pseudo-définition : dans Rn, un ouvert U est un
ensemble qui ne contient aucun point de sa frontière.

Exemples 3.8 (Exemples élémentaires)
• Dans R, un intervalle ouvert ]x0 − R, x0 + R[ est ouvert.
• Dans R2, l’intérieur d’un disque de centre M0 et de rayon R est ouvert.
• Dans R3, l’intérieur d’une boule de centre M0 et de rayon R est ouvert.
• Dans R3, un plan n’est pas ouvert ; R3 \ {(0, 0, 0)} (espace pointé) est ouvert ;

le demi-espace {(x , y , z) ∈ R3 : z > 0} est ouvert ; etc.

On définit souvent les applications à plusieurs variables sur des ensembles ouverts de
Rn pour éviter les problèmes de bord lors du calcul d’une limite en un point.
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3. Fonctions de deux ou trois variables d) Continuité

Propriété 3.9 (Continuité et opérations)
Toute fonction de U ⊂ R3 → R définie à partir de fonctions continues des variables
x , y , z par des opérations de somme, de produit, de quotient à dénominateur non nul
et de composition, est elle-même continue.

Exemples 3.10 (Continuité)
• Soit f (x , y , z) = cos(xy) exp(2z − 3) + y 2z . f est continue sur R3 par opérations.

• Soit g(x , y) = x2

x2 + y 2 . g est continue sur R2 \ {(0, 0)}.
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3. Fonctions de deux ou trois variables d) Continuité

Exemple 3.11 (Discontinuité)

Soit f (x , y) =


xy

x2 + y 2 si (x , y) 6= (0, 0)

0 si (x , y) = (0, 0)
.

• Les applications partielles de f en (0, 0)
sont x 7→ f (x , 0) = 0 et y 7→ f (0, y) = 0.
Elles sont donc continues en (0, 0).

• Par ailleurs, pour x 6= 0 :

f (x , x) = x2

2x2 = 1
2 .

• Si f était continue, on devrait avoir
lim

(x,y)→(0,0)
f (x , y) = 0.

Or lim
x→0

f (x , x) = 1
2 .

Ainsi, selon le chemin choisi pour se
rapprocher de (0, 0) (ici les axes x = 0,
y = 0 et x = y) on ne trouve pas la
même limite.
Donc f n’admet pas de limite en (0, 0),
elle n’est pas continue en (0, 0). 21

4. Dérivées partielles a) Dérivées partielles premières

Quand il y a deux ou trois variables, la dérivée n’a pas de sens !
Mais on peut dériver par rapport à l’une des variables, avec les autres fixées.
On obtient ainsi des dérivées partielles, les dérivées des fonctions partielles (si elles
sont dérivables).

Définition 4.1 (Dérivée partielle)

Soit f : U ⊂ R3 → R et M0(x0, y0, z0) ∈ R3.
On appelle dérivée partielle de f par rapport à x au point M0(x0, y0, z0), la dérivée
en x0 de l’application partielle x 7→ f (x , y0, z0).

On la note ∂f
∂x (x0, y0, z0) ou ∂f

∂x (M0).
On rencontre parfois d’autres notations : f ′x (x0, y0, z0) ou ∂x f (x0, y0, z0).
∂ se lit d rond ou d ronde .
On a donc

∂f
∂x (x0, y0, z0) = lim

x→x0

f (x , y0, z0)− f (x0, y0, z0)
x − x0

C’est la limite du taux d’accroissement de f par rapport à x seulement.
On définit de même les dérivées partielles par rapport à y et z, respectivement notées
∂f
∂y (x0, y0, z0) et ∂f

∂z (x0, y0, z0).
22

4. Dérivées partielles a) Dérivées partielles premières

En pratique, on calcule la fonction dérivée partielle ∂f
∂x : U ⊂ R3 → R en un point

quelconque (x , y , z) en dérivant f par rapport à x , et en considérant y et z comme
des constantes.

Exemple 4.2
Soit f (x , y) = 2x2 + 3xy − x + 1.
Calculons les dérivées partielles de f en (x , y) ∈ R2 puis en (1, 2).

1 En (x , y) : ∂f
∂x (x , y) = 4x + 3y − 1 et ∂f

∂y (x , y) = 3x .

2 En (1, 2) :

• 1re méthode : on prend (x , y) = (1, 2) dans ∂f
∂x (x , y) et dans ∂f

∂y (x , y),

ce qui fournit immédiatement ∂f
∂x (1, 2) = 9 et ∂f

∂y (1, 2) = 3.
• 2e méthode : on calcule les applications partielles en (1, 2), puis on les

dérive :
* f (x , 2) = 2x2 + 5x + 1 donc ∂f

∂x (x , 2) = 4x + 5, puis ∂f
∂x (1, 2) = 9.

* f (1, y) = 2 + 3y donc ∂f
∂y (1, y) = 3, puis ∂f

∂y (1, 2) = 3.
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4. Dérivées partielles a) Dérivées partielles premières

Exemple 4.3 (Dérivées partielles et continuité (cf. exemple 3.11))
Considérons la fonction définie par

f (x , y) =


xy

x2 + y 2 si (x , y) 6= (0, 0)

0 si (x , y) = (0, 0)

• Dérivées partielles en un point (x , y) 6= (0, 0) :
∂f
∂x (x , y) = y(y 2 − x2)

(x2 + y 2)2
∂f
∂y (x , y) = x(x2 − y 2)

(x2 + y 2)2

• Dérivées partielles en (0, 0) :
∂f
∂x (0, 0) = lim

x→0

f (x , 0)− f (0, 0)
x = lim

x→0

0
x2 + 02 = 0

∂f
∂y (0, 0) = lim

y→0

f (0, y)− f (0, 0)
y = lim

y→0

0
02 + y 2 = 0

Remarque 4.4 (Dérivées partielles et continuité)
Cette fonction de 2 variables n’est pas continue en (0, 0), mais admet des

dérivées partielles en (0, 0). Donc attention :
existence des dérivées partielles en un point ;;; continuité en ce point
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4. Dérivées partielles a) Dérivées partielles premières

Définition 4.5 (Fonction de classe C1C1C1)
Une fonction f : U ⊂ R3 → R pour laquelle les dérivées partielles existent et sont
continues sur U est dite de classe C1C1C1 sur U.

Exemple 4.6
Soit g(x , y , z) = y sin(x) + xy 2z3.
Calculons les trois dérivées partielles de g .
La fonction g est dérivable selon x , y ou z et ses dérivées partielles sont obtenues par
opérations sur fonctions usuelles :

∂g
∂x (x , y , z) = y cos(x)+y 2z3,

∂g
∂y (x , y , z) = sin(x)+2xyz3,

∂g
∂z (x , y , z) = 3xy 2z2

On voit clairement que les dérivées partielles de g sont continues sur R3, et donc g
est de classe C1C1C1 sur R3.
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4. Dérivées partielles b) Interprétation géométrique

Propriété 4.7 (Dérivées partielles et plan tangent)
Soit f : U ⊂ R2 → R une fonction de 2 variables, Σ la surface représentant son
graphe dans R3, (x0, y0) un point de U, et M0(x0, y0, z0) le point image sur Σ
correspondant avec z0 = f (x0, y0).
• En M0, les deux vecteurs tangents aux courbes coordonnées (graphes des fonctions

partielles) donnés, lorsqu’ils existent, par ~u0

 1
0

∂f
∂x (x0, y0)

 et ~v0

 0
1

∂f
∂y (x0, y0)

,

sont tangents à la surface Σ.

• Ils engendrent un plan, le plan tangent à la surface en M0. Ce plan a pour
équation

z = ∂f
∂x (x0, y0)(x − x0) + ∂f

∂y (x0, y0)(y − y0) + f (x0, y0)

• Dans ce cas, ~n0 = ~u0 ∧ ~v0


−∂f
∂x (x0, y0)

−∂f
∂y (x0, y0)

1

 est un vecteur normal au plan tangent

en M0. On dit plus simplement qu’il est normal à la surface Σ en M0.
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4. Dérivées partielles b) Interprétation géométrique

Propriété 4.7 (Dérivées partielles et plan tangent)
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5. Différentielle a) Problématique

Problèmatique
Soit f : R2 → R. Quelle est la variation δf de f (x , y) pour de petites variations δx et δy ?

• Pour une fonction f : RRR −→ R :
on remplace localement la courbe par sa droite tangente :
↪→↪→↪→ approximation affine de f au voisinage de x0 pour h = δx = x − x0 petit :

f (x) ≈ f (x0) + f ′(x0)(x − x0)
f (x0 + h) ≈ f (x0) + f ′(x0)h

δf ≈ f ′(x0)δx

• Pour une fonction f : R2R2R2 −→ R : on remplace localement la surface par son plan
tangent :
↪→↪→↪→ approximation affine de f au voisinage de (x0, y0) pour hx = δx = x − x0

et hy = δy = y − y0 petits :

f (x , y) ≈ f (x0, y0) + α(x − x0) + β(y − y0)
f (x0 + hx , y0 + hy ) ≈ f (x0, y0) + αhx + βhy

δf ≈ αδx + βδy

28

5. Différentielle a) Problématique

Questions/réponses

f (x0 + hx , y0 + hy ) ≈ f (x0, y0) + αhx + βhy

δf ≈ αδx + βδy

Questions :
1 Que valent les coefficients α, β pour obtenir la meilleure approximation affine
(pour f (x0 + hx , y0 + hy )) ou linéaire δf ?

2 Quelle erreur commet-on ?

Réponses :

1 On peut montrer que α = ∂f
∂x (x0, y0) et β = ∂f

∂y (x0, y0).
On aura donc

f (x0 + hx , y0 + hy ) ≈ f (x0, y0) + ∂f
∂x (x0, y0)hx + ∂f

∂y (x0, y0)hy︸ ︷︷ ︸
différentielle de f en (x0, y0)

2 L’erreur commise sera de l’ordre de
∥∥(hx , hy )

∥∥2 = h2
x + h2

y , soit du second ordre,
donc négligeable devant hx et hy .
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5. Différentielle a) Problématique

Questions/réponses
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5. Différentielle b) Différentiabilité
On peut même prolonger cette notion pour toute fonction f : Rn → R avec n > 3.
Par exemple en dimension 3 :

f (x0 + hx , y0 + hy , z0 + hz ) ≈ f (x0, y0, z0) + αhx + βhy + γhz

Définition 5.1 (Différentiabilité)
Soit une fonction f : U ⊂ R3 → R et un point m0(x0, y0, z0) ∈ R3.
On dit que f est différentiable au point m0 si il existe une forme linéaire ` : R3 → R

et une fonction ε : R3 → R telle que pour tout vecteur ~h
(hx
hy
hz

)
:

f
(
m0 + ~h

)
= f (m0) + `

(
~h
)

+
∥∥~h∥∥ε(~h ) avec lim

~h→~0
ε
(
~h
)

= 0

Théorème 5.2 (Différentielle)
La forme linéaire `, lorsqu’elle existe, est unique : c’est la différentielle de f en m0.
Elle est notée dfm0 et l’on a la relation avec les dérivées partielles de f suivante :

∀~h
(hx
hy
hz

)
, dfm0

(
~h
)

= ∂f
∂x (m0)hx + ∂f

∂y (m0)hy + ∂f
∂z (m0)hz

Sous forme fonctionnelle :

dfm0 = ∂f
∂x (m0)dx + ∂f

∂y (m0)dy + ∂f
∂z (m0)dz

31

5. Différentielle b) Différentiabilité

Théorème 5.3 (Continuité, classe C1C1C1 et différentiabilité)
1 Si f est différentiable en m0, alors elle est continue en m0.
2 Si f est de classe C1C1C1 en m0 ∈ R3 (i.e. admet des dérivées partielles continues
en m0), alors f est différentiable en m0.

Exemple 5.4
Soit f la fonction définie par f (x , y , z) = xy 2z3 et m = (x , y , z) un point générique
de l’espace. Les dérivées partielles de f en m sont données par

∂f
∂x (m) = y 2z3 ∂f

∂y (m) = 2xyz3 ∂f
∂z (m) = 3xy 2z2

Elles sont continues en tout m donc f est différentiable en m et sa différentielle en m
s’exprime selon

dfm = ∂f
∂x (m)dx + ∂f

∂y (m)dy + ∂f
∂z (m)dz = y 2z3 dx + 2xyz3 dy + 3xy 2z2 dz

Plus explicitement, dfm est l’application linéaire définie par :

∀~h
(hx
hy
hz

)
, dfm

(
~h
)

= y 2z3 hx + 2xyz3 hy + 3xy 2z2 hz
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5. Différentielle c) Gradient

Définition 5.5 (Gradient)
Supposons f différentiable en m0.
Les dérivées partielles de f en m0 définissent un vecteur appelé gradient de f en m0,
noté
−−→
grad f (m0) ou −→∇f (m0) (opérateur nabla ) :

−−→
grad f (m0)



∂f
∂x (m0)

∂f
∂y (m0)

∂f
∂z (m0)


La différentielle de f en m0 s’exprime alors selon

∀~h, dfm0

(
~h
)

=
−−→
grad f (m0) ··· ~h

Parfois il est judicieux d’écrire les composantes du vecteur
−−→
grad f (m0) en ligne :

−−→
grad f (m0)

(
∂f
∂x (m0), ∂f

∂y (m0), ∂f
∂z (m0)

)
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5. Différentielle c) Gradient

Exemple 5.6 (Gradient)

Un gradient de la fonction f : (x , y) 7−→ sin x sin y + 2
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5. Différentielle c) Gradient
Champ de gradients
Lorsque f est différentiable sur U ⊂ R3, on peut définir un champ vectoriel sur U :

−−→
grad : U −→ R3

m0 7−→
−−→
grad f (m0)

Exemple 5.7 (Champ de gradients)

Champ de gradients de la fonction f : (x , y) 7−→ 0.2(x2 + y 2) + 1.1
35

5. Différentielle d) Opérations

Définition 5.8 (Différentielle logarithmique)
On appelle différentielle logarithmique de f différentiable et non nulle, la quantité

d
(

ln |f |
)

= df
f

Propriété 5.9 (Différentiabilité et opérations)
Soit f , g : R3 → R des fonctions différentiables et α des réels.
• d(αf ) = αdf

• d(f + g) = df + dg

• d(f g) = f dg + g df

• d
(
f
g

)
= g df − f dg

g2

• d(f g)
f g = df

f + dg
g

•
d
( f
g
)

f
g

= df
f −

dg
g

• d(|f |α)
|f |α = α

df
f

Par exemple, pour ϕ = α
|f |p|g |q

|h|r où f , g , h sont différentiables non nulles et
α, p, q, r ∈ R : dϕ

ϕ
= p dff + q dgg − r dhh

Soit f : R3 → R et g : R→ R deux fonctions différentiables.
• d(g ◦ f ) = (g ′ ◦ f )× df
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5. Différentielle d) Opérations

Exemple 5.10 (Différentielle et composition)
Soit f : R3 −→ R la fonction définie par f (x , y , z) = x2 + y 2 + z2 et g =

√
.

Posons h = g ◦ f : R3 −→ R. On a donc h(x , y , z) =
√

x2 + y 2 + z2.
Déterminons la différentielle de h en un point générique m = (x , y , z) de l’espace.
• 1re méthode : calcul direct

Les dérivées partielles de h en m sont données par
∂h
∂x (m)= x√

x2 +y 2 +z2

∂h
∂y (m)= y√

x2 +y 2 +z2

∂h
∂z (m)= z√

x2 +y 2 +z2

La différentielle de h en m s’exprime alors selon

dhm = ∂h
∂x (m)dx + ∂h

∂y (m)dy + ∂h
∂z (m)dz = 1√

x2 + y 2 + z2
(x dx + y dy + z dz)

• 2e méthode : composition
La différentielle de f en m s’exprime selon dfm = x dx + y dy + z dz
et la dérivée de g est donnée par g ′(u) = 1

2
√
u
.

On en déduit la différentielle de h en m selon
dhm = (g ′ ◦ f )(m)× dfm = 1√

f (m)
(x dx + y dy + z dz)

De manière plus concise, on a illustré par cet exemple la formule d
(√

f
)

= df√
f
.
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6. Applications a) Calcul approché : petite variation δfδfδf

Variation
Principe : On utilise la différentielle comme approximation linéaire de la variation :

δf ≈ df

Définition 6.1 (Variation)

• δf est la variation absolue de f ; • δf
f est la variation relative de f .

Soit f : U ⊂ R3 → R une fonction différentiable en un point m0(x0, y0, z0).
Si les quantités x0, y0 et z0 sont modifiées respectivement de δx , δy et δz, alors la
variation δf de f au premier ordre est :

δf ≈ dfm0 (δx , δy , δz) = ∂f
∂x (m0)× δx + ∂f

∂y (m0)× δy + ∂f
∂z (m0)× δz

On retiendra en abrégé δf ≈ ∂f
∂x δx + ∂f

∂y δy + ∂f
∂z δz .
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6. Applications a) Calcul approché : petite variation δfδfδf

Exercices 6.2 (Variation, variation relative)
1 Soit f la fonction définie par f (x , y) = xy 2.
Calculer la variation de f quand x varie de 3 à 2.98 et y varie de 2 à 2.01.
Réponse :
• Différentielle : dfm = y2 dx + 2xy dy pour m = (x , y).
• Variation : δf ≈ y2 δx + 2xy δy .
• Application numérique : les données sont m0 = (3, 2), δx = −0.02 et δy = 0.01.

D’où la variation : δfm0 ≈ 22 × (−0.02) + 2× 3× 2× 0.01 = 0.04
puis l’approximation : f (2.98, 2.01) ≈ f (2, 3) + 0.04 = 12.04.
Valeur exacte : f (2.98, 2.01) ≈ 12, 0395 à 10−4 près.

2 Donner une approximation de la variation relative du volume V d’un
parallélépipède rectangle de côtés x = 20 cm, y = 40 cm, z = 25 cm, quand x et y
augmentent de 0.2 et z diminue de 1. La fonction d’intérêt est V (x , y , z) = xyz.
Réponse :
• Différentielle logarithmique :

dVm

V
=

dx
x

+
dy
y

+
dz
z

pour m = (x , y , z).

• Variation relative :
δV
V
≈
δx
x

+
δy
y

+
δz
z

.

• Application numérique : les données sont δx = δy = 0.2 cm et δz = −1 cm.
D’où la variation relative (ici diminution) :

δV
V
≈ −0.025 = −2.5 %.
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6. Applications b) Calcul approché : incertitude ∆f∆f∆f

Incertitude
Idée : le calcul d’incertitude, permet d’évaluer les erreurs qui se produisent lors de
mesures de grandeurs physiques, les instruments de mesure n’étant pas d’une
précision absolue. Il faut évaluer ces incertitudes pour répondre à la question :

la relation n’est pas vérifiée exactement
parce qu’elle est fausse

ou parce que les mesures sont imprécises ?

On en déduit des marges d’erreurs, en dehors desquelles la relation sera invalidée.

Définition 6.3 (Incertitude)

Pour une grandeur physique f :
• l’incertitude de mesure absolue sur f se note ∆f > 0 ;

• l’incertitude de mesure relative sur f est alors ∆f
f .

Multipliée par 100, l’incertitude relative donne la précision de la mesure en pourcentage.

La valeur exacte de f se situe dans un intervalle de confiance [f −∆f , f + ∆f ].
On note alors le résultat de la mesure sous la forme : f ±∆f .
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6. Applications b) Calcul approché : incertitude ∆f∆f∆f
Incertitude
Pour éviter les compensations, on ajoute en valeur absolue toutes les erreurs pour
obtenir la variation maximale de f .

On a δf ≈ df = ∂f
∂x dx + ∂f

∂y dy + · · · .

Or, par inégalité triangulaire : |df | 6
∣∣∣∣∂f∂x

∣∣∣∣ |dx |+ ∣∣∣∣∂f∂y
∣∣∣∣ |dy |+ · · · .

Pour déterminer l’incertitude sur f , on envisage la pire erreur :

∆f =
∣∣∣∣∂f∂x

∣∣∣∣∆x +
∣∣∣∣∂f∂y

∣∣∣∣∆y + · · ·

Exemple 6.4 (Aire d’un rectangle)
Considérons un rectangle de longueur L et de largeur `.
L’aire de ce rectangle est donnée par S = L× `.
• Incertitude absolue sur S : à partir de la différentielle dS = L d`+ ` dL, on tire

∆S = `∆L + L∆`.
• Incertitude relative sur S : ∆S

S = `∆L + L∆`
L` = ∆L

L + ∆`
`
.

Vérification : en effectuant le calcul exact, la variation de surface peut s’écrire
δS = (`+ δ`)(L + δL)− S = ` δL + L δ`+ δ`× δL

Le terme δ`× δL étant négligeable (d’ordre 2) par rapport aux termes ` δL et L δ`
(d’ordre 1), on obtient bien δS ≈ L δ`+ ` δL. 41



6. Applications b) Calcul approché : incertitude ∆f∆f∆f

Exemples 6.5 (Variations, incertitudes relatives)

1 Volume d’un gaz parfait : V (P,T ) = nRT
P , n et R constantes.

À l’aide de la différentielle logarithmique, on trouve dV
V = dT

T − dP
P .

• Variation relative :
δV
V
≈
δT
T
−
δP
P

• Incertitude relative :
∆V
V
≈

∆T
T

+
∆P
P

2 Énergie cinétique : E = 1
2mv 2.

À l’aide de la différentielle logarithmique, on trouve dE
E = dm

m + 2dvv .

• Variation relative :
δE
E
≈
δm
m

+ 2
δv
v

• Incertitude relative :
∆E
E
≈

∆m
m

+ 2
∆v
v

Remarque : l’utilisation de la différentielle logarithmique est particulièrement
intéressante dans le cas de grandeurs produit, quotient ou puissance de plusieurs
variables. Elle permet d’approximer l’erreur relative et l’incertitude relative.
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6. Applications b) Calcul approché : incertitude ∆f∆f∆f

Remarque 6.6 (Différentes notations)

On veillera à bien distinguer toutes les notations rencontrées (d , ∂, δ,∆) :

• df est la différentielle de f (définition mathématique, variation infinitésimale
sans sens physique, cf. théorème 5.2) ;

• ∂f indique une dérivation partielle de f (cf. définition 4.1) ;

• δf est une petite variation de f (cf. définition 6.1) ;

• ∆f est une incertitude sur f (cf. définition 6.3).
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En résumé...

Notions à retenir
• Concept de fonction de plusieurs variables
• Visualisation des fonctions de deux variables
• Calcul des dérivées partielles premières
• Notion de différentielle et lien avec les dérivées partielles
• Application des différentielles :

? à la détermination du plan tangent à la surface représentative d’une
fonction de deux variables

? au calcul de petites variations et d’incertitudes
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Annexes
• Compléments, divers exemples
• Dérivées partielles secondes
• Formes différentielles

A. Dérivées partielles Notations symboliques
Exemple A.1 (Loi de gaz parfaits)
La loi des gaz parfaits PV = kT est une équation reliant trois variables P,V ,T ,
avec P : pression du gaz (en Pa), V : volume du gaz (en m3), T : température du
gaz (en ˚K), et k > 0 une constante.
Elle définit ainsi pour chacune de ces trois variables une fonction des deux autres :

T (P,V ) = PV
k P(V ,T ) = kT

V V (P,T ) = kT
P

On a
∂T
∂P = V

k ,
∂T
∂V = P

k ,
∂P
∂V = −kT

V 2 ,
∂P
∂T = k

V ,
∂V
∂P = −kT

P2 ,
∂V
∂T = k

P .

On observe les relations

∂T
∂P ×

∂P
∂T = kV

kV = 1 ∂T
∂V ×

∂V
∂T = kP

kP = 1 ∂P
∂V ×

∂V
∂P = k2T 2

P2V 2 = 1

∂V
∂T ×

∂T
∂P ×

∂P
∂V = ∂V

∂P ×
∂P
∂T ×

∂T
∂V = − kT

PV = −1

Contrairement aux premières relations, les deuxièmes relations montrent que la

notation ∂f
∂x ne peut pas être interprétée comme un quotient. Il s’agit d’une notation

purement symbolique.
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B. Différentielle Une composition
Exemple B.1 (Différentielle et composition (facultatif))
Soit f : R2 −→ R la fonction définie par f (u, v) = uv et g : R −→ R2 la fonction
définie par g(t) =

(
x(t), y(t)

)
=
(
t cos(ωt), t sin(ωt)

)
où ω > 0 est fixé.

Posons h = f ◦ g : R −→ R. On a donc h(t) = t2 cos(ωt) sin(ωt).
Déterminons la dérivée de h en t.
• 1re méthode : calcul direct

La dérivée de h en t est donnée par
h′(t) = 2t cos(ωt) sin(ωt) + t2( cos2(ωt)− sin2(ωt)

)
= t sin(2ωt) + t2 cos(2ωt)

• 2e méthode : composition
La différentielle de f en (u, v) est donnée par df(u,v) = v du + u dv
et le vecteur dérivé de g s’exprime dans la base canonique (~ex ,~ey ) de R2 selon
~g ′(t) = x ′(t)~ex + y ′(t)~ey =

(
cos(ωt)− t sin(ωt)

)
~ex +

(
sin(ωt) + t cos(ωt)

)
~ey

On en déduit la dérivée de h en t selon
h′(t) = d

dt f
(
x(t), y(t)

)
= ∂f
∂u
(
x(t), y(t)

)
x ′(t) + ∂f

∂v
(
x(t), y(t)

)
y ′(t)

= t sin(ωt)
(

cos(ωt)− t sin(ωt)
)

+ t cos(ωt)
(

sin(ωt) + t cos(ωt)
)

= 2t cos(ωt) sin(ωt) + t2( cos2(ωt)− sin2(ωt)
)

= t sin(2ωt) + t2 cos(2ωt)

De manière plus concise, on a vérifié sur cet exemple la formule (f ◦ g)′ = dfg (~g ′). 46

C. Approximation Un calcul d’incertitude
Exercice C.1
On souhaite déterminer la masse m d’un manchon cylindrique
en acier de masse volumique ρ = (7.80± 0.01) g.cm−3.
On mesure les différentes cotes du manchon à l’aide d’un pied
à coulisse dont l’incertitude est de l’ordre de ε = 0.2mm.
On obtient les résultats suivants pour les rayons extérieur et intérieur ainsi que la
longueur du manchon : Re = 40, 0mm, Ri = 25, 0mm et h = 21, 2mm.
1 Donner l’expression littérale du volume V du manchon.
Déterminer l’incertitude sur la mesure du volume.
Réponse :
• Volume : V = π(R2

e − R2
i )h. Numériquement : V = 64936.7 mm3.

• Différentielle : dV =
∂V
∂Re

dRe +
∂V
∂Ri

dRi +
∂V
∂h

dh

=π
[
2hRe dRe − 2hRi dRi + (R2

e − R2
i )dh

]
.

• Incertitude : ∆V = π
[
2hRe ∆Re + 2hRi ∆Ri + (R2

e − R2
i ) ∆h

]
.

Ici ∆Re =∆Ri =∆h=ε, donc ∆V =π
[
2hRe + 2hRi + (R2

e − R2
i )
]
ε ≈ 2344.3 mm3,

d’où V = (64.9± 2.4) cm3.

2 Déterminer l’incertitude sur la masse du manchon.
Réponse :
• Masse : m = ρV .
• Différentielle : dm = ρ dV + V dρ.
• Incertitude : ∆m = ρ∆V + V ∆ρ.

Numériquement : ρ = 7, 80 g.cm−3,
∆ρ = 0, 01 g.cm−3, m = 506.2 g,
donc ∆m ≈ 19.4 g, d’où m = (506± 20)g.
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D. Dérivées partielles secondes a) Définition
Si f :U ⊂ R3 → R est dérivable suivant x ou y ou z, la dérivée partielle correspondante
est également une fonction de U ⊂ R3 → R.
Elle peut donc elle aussi admettre des dérivées partielles.

Définition D.1 (Dérivées partielles secondes)
Soit f : U ⊂ R3 → R admettant des dérivées partielles telles que celles-ci également
admettent des dérivées partielles.
On peut alors définir 9 dérivées partielles secondes :

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y 2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

Remarque D.2 (Ordre de dérivation)

L’ordre de dérivation est important ! Par exemple ∂2f
∂y∂x signifie que l’on dérive

d’abord par rapport à x puis y : ∂2f
∂y∂x = ∂

∂y

(
∂f
∂x

)
.

Le tableau des dérivées partielles secondes constituent la matrice hessienne de f
(cf. cours de Mathématiques de 2e année). 48

D. Dérivées partielles secondes b) Dérivées croisées

Théorème D.3 (Théorème de Schwarz)
Soit f :U ⊂ R3 → R dont toutes les dérivées partielles secondes existent. Si, de plus,
ces dérivées secondes sont continues (on dit que f est de classe C2C2C2), alors l’ordre de
dérivation n’a pas d’importance ; on dit que les dérivées partielles de f commutent :

∂2f
∂x∂y = ∂2f

∂y∂x
∂2f
∂x∂z = ∂2f

∂z∂x
∂2f
∂y∂z = ∂2f

∂z∂y

Exemple D.4
Soit f définie par f (x , y , z) = y cos(2x) + y 2e3z .
Vérifions que les dérivées partielles secondes croisées coïncident.
Posons m = (x , y , z) pour simplifier les écritures.

∂2f
∂x∂y (m)= ∂

∂x
(
cos(2x) + 2y e3z)=−2 sin(2x)

∂2f
∂y∂x (m)= ∂

∂y
(
− 2y sin(2x)

)
=−2 sin(2x)

∂2f
∂x∂z (m)= ∂

∂x
(
3y 2e3z)=0

∂2f
∂z∂x (m)= ∂

∂z
(
− 2y sin(2x)

)
=0


∂2f
∂y∂z (m)= ∂

∂y
(
3y 2e3z)=6y e3z

∂2f
∂z∂y (m)= ∂

∂z
(
cos(2x) + 2y e3z)=6y e3z
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D. Dérivées partielles secondes b) Dérivées croisées

Exemple D.5 (Contre-exemple)
Soit f définie par

f (x , y) =

xy x2 − y 2

x2 + y 2 si (x , y) 6= (0, 0)

0 si (x , y) = (0, 0)

Calculons les dérivées partielles secondes
croisées en (0, 0) :

∂2f
∂x∂y (0, 0) = lim

x→0

∂f
∂y (x , 0)− ∂f

∂y (0, 0)

x

∂2f
∂y∂x (0, 0) = lim

y→0

∂f
∂x (0, y)− ∂f

∂x (0, 0)

y

• Dérivées partielles premières intermédiaires :
∂f
∂x (0, y) = lim

x→0

f (x , y)− f (0, y)
x = −y

∂f
∂y (x , 0) = lim

y→0

f (x , y)− f (x , 0)
y = x

• Dérivées partielles secondes :
∂2f
∂x∂y (0, 0) = 1

∂2f
∂y∂x (0, 0) = −1

↪→↪→↪→ On observe ainsi que ∂2f
∂x∂y (0, 0) 6= ∂2f

∂y∂x (0, 0).
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E. Formes différentielles a) Définition

Définition E.1 (Forme différentielle)
Soit U un ouvert de R3. Une forme différentielle sur U est une application de la
forme (x , y , z) ∈ U 7−→ ω(x , y , z) = P(x , y , z)dx + Q(x , y , z)dy + R(x , y , z)dz où
P,Q,R sont trois fonctions de U → R.

Notation abrégée : ω = P dx + Q dy + R dz

Si P,Q,R sont de classe C1 sur U, ω est dite de classe C1.

Exemples E.2
• Si f : U → R est différentiable sur U, sa différentielle

df = ∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz

est une forme différentielle. C’est plus précisément l’application

(x , y , z) 7−→ df(x,y,z) = ∂f
∂x (x , y , z)dx + ∂f

∂y (x , y , z)dy + ∂f
∂z (x , y , z)dz

• ω = yz dx + xz dy + xy dz
• l’évolution élémentaire d’un système thermodynamique (chaleur δQ, énergie dU,
entropie dS...)
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E. Formes différentielles b) Formes différentielles exactes, fermées

Définition E.3 (Forme exacte)
Soit ω : U → R une forme différentielle sur un ouvert U de R3.
Une forme différentielle ω est exacte lorsqu’elle est la différentielle d’une fonction
différentiable.
Il existe donc une fonction différentiable f : U → R telle que ω = df .
On dit que f est une primitive de ω.

Exemples E.4
• Soit ω1 = 2x dx + 2y dy + 2z dz.

En remarquant que 2x dx = d
(
x2) et de même avec y et z,

puis en posant f1(x , y , z) = x2 + y 2 + z2, on voit que ω1 = df1.
Donc ω1 est exacte sur R3 et f1 est une primitive de ω1.

• Soit ω2 = dx
x + dy

y + dz
z .

En remarquant que dx
x = d

(
ln |x |

)
et de même avec y et z,

puis en posant f2(x , y , z) = ln |xyz|, on voit que ω2 = df2 sur (R∗)3.
Donc ω2 est exacte sur R3 et f2 est une primitive de ω2.

• Soit ω3 = yz dx + xz dy + xy dz.
En posant f3(x , y , z) = xyz, on voit que ω3 = df3.
Donc ω3 est exacte sur R3 et f3 est une primitive de ω3. 52

E. Formes différentielles b) Formes différentielles exactes, fermées

Définition E.5 (Forme fermée)
Une forme différentielle ω de classe C1 sur U ⊂ R3 est fermée sur U lorsqu’en tout
point de U (conditions de fermeture) :

∂P
∂y = ∂Q

∂x
∂P
∂z = ∂R

∂x
∂Q
∂z = ∂R

∂y

Remarque E.6
• Moyen mnémotechnique : la condition de fermeture se retrouve en écrivant le

produit vectoriel symbolique


∂

∂x
∂

∂y
∂

∂z

 ∧
P
Q
R

 =

0
0
0

.

• Pour une forme différentielle à deux variables ω = Pdx + Qdy , il n’y a qu’une
condition de fermeture : ∂P

∂y = ∂Q
∂x .

Exemple E.7
Soit ω = 2y dx + (2x + z) dy + y dz.

On a ∂P
∂y =2= ∂Q

∂x ,
∂P
∂z =0= ∂R

∂x ,
∂Q
∂z =1= ∂R

∂y . Donc ω est fermée sur R3.
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E. Formes différentielles c) Théorèmes

Théorème E.8 (Théorème de Schwarz (conséquence))
Soit ω une forme différentielle de classe C1 sur un ouvert U.

ω est exacte sur U =⇒ ω est fermée sur U.

Remarque E.9
Contraposée très utile : sur tout ouvert U,

ω de classe C1 n’est pas fermée sur U =⇒ ω n’est pas exacte sur U.

Sur certains ouverts, la réciproque est vraie.

Théorème E.10 (Théorème de Poincaré)
Soit ω une forme différentielle de classe C1 sur un produit d’intervalles U.

ω est fermée sur U =⇒ ω est exacte sur U.

Donc, avec le théorème précédent, sur un produit d’intervalles,
ω fermée ⇐⇒ ω exacte.

Remarque E.11 (Extension (facultatif))
En fait, le théorème de Poincaré est valable sur une classe d’ouverts bien plus vaste
que les simples produits d’intervalles : les ouverts connexes simplement connexes
(i.e. sans trou ni poignée )...
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E. Formes différentielles c) Théorèmes

Exemple E.12 (Équation de van der Waals)

L’équation d’état de van der Waals
(
P+ α

V 2

)
(V−β)=kT relie trois variables P,V ,T ,

avecP : pression du gaz,V : volume du gaz,T : température du gaz,α, β, k>0 : constantes.
Considérons les formes différentielles variations d’énergie et de chaleur

w = γ dT + α

V 2 dV et q = w + P dV (avec γ > 0 constante)

1 Étude de la forme w
Posons w = w1 dT + w2 dV avec w1 = γ et w2 = α

V 2 .

• On a ∂w1

∂V = ∂w2

∂T = 0, et alors la forme différentielle w est fermée.
• Les fonctionsw1,w2 sont de classe C1 sur le produit d’intervalles ]0,+∞[×]β,+∞[.

Le théorème de Poincaré assure que la forme différentielle w est exacte.
• Remarquant que dV

V 2 = d
(
− 1

V

)
, on obtient directement w = d

(
γT − α

V

)
.

2 Étude de la forme q
On a q=γ dT +

( α

V 2 +P
)
dV . Posons q=w1 dT +w3 dV avec w3 = kT

V−β .

On a ∂w1

∂V = 0 et ∂w3

∂T = k
V − β , donc

∂w1

∂V 6=
∂w3

∂T .
Ainsi, la forme différentielle q n’est pas fermée, donc pas exacte.
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E. Formes différentielles d) Intégration des formes exactes

Exemple E.7 (Suite)
On reprend ω = 2y dx + (2x + z) dy + y dz.
C’est une forme différentielle de classe C1 sur R3 qui est un produit d’intervalles et
elle est fermée. Donc d’après le théorème de Poincaré, elle est exacte.
On cherche f tel que ω = df .

Or df = ∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz.

On identifie les dérivées partielles de f à P,Q,R et on intègre successivement.

On a donc : ∂f
∂x (x , y , z) = 2y , ∂f

∂y (x , y , z) = 2x + z, ∂f
∂z (x , y , z) = y .

On obtient ainsi le système ci-dessous

∂f
∂x (x , y , z) = 2y

∂f
∂y (x , y , z) = 2x + z

∂f
∂z (x , y , z) = y

que l’on va résoudre progressivement par intégrations successives.
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E. Formes différentielles d) Intégration des formes exactes

Exemple E.7 (Suite) 

∂f
∂x = 2y (1)

∂f
∂y = 2x + z (2)

∂f
∂z = y (3)

1 On intègre (1) par rapport à x : f (x , y , z) = 2yx + g(y , z).

2 On dérive f par rapport à y et on identifie avec (2) :
∂f
∂y = 2x + ∂g

∂y et (2) : ∂f
∂y = 2x + z, ainsi ∂g

∂y = z.
En intégrant par rapport à y , g(y , z) = zy + h(z).
Pour le moment f (x , y , z) = 2yx + zy + h(z).

3 On dérive f par rapport à z et on identifie avec (3) :
∂f
∂z = y + dh

dz et (3) : ∂f
∂z = y , ainsi dhdz = 0 et donc h est constante.

Finalement, il existe λ ∈ R tel que f (x , y , z) = 2yx + zy + λ.

Avec une condition ponctuelle éventuelle : par exemple si l’on sait que f (0, 0, 0) = 4,
alors λ = 4 et f est entièrement déterminée. 57
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