INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

LYON

INSA

Calcul différentiel

Aimé Lachal

Cours d’OMNI
1er cycle, 1™ année



@ Fonctions d'une variable — Rappels @ Dérivées partielles

o Continuité, dérivabilité @ Dérivées partielles premiéres
@ Dérivée et approximation o Interprétation géométrique
o Différentielle ees .

© Différentielle

@ Petits accroissements . .
@ Problématique

Fonctions vectorielles : R — R? ou R3 o Différentiabilité

@ Gradient

Fonctions de deux ou trois variables

@ Introduction o Opérations

@ Visualisation © Applications
@ Applications partielles @ Calcul approché : petite variation §f

o Continuité o Calcul approché : incertitude Af



@ Fonctions d’une variable — Rappels
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1. Fonctions d’une variable — Rappels [a) Continuite, deérivabilite

Soit f : | — R une fonction définie sur un intervalle ouvert | contenant un point xo. )

Définition 1.1 (Continuité en xp)

On dit que la fonction f est continue en xo lorsque

lim f(x) = f(x)

X—+Xp

Définition 1.2 (Dérivabilité en xp)

On dit que la fonction f est dérivable en xo € | lorsque le taux d’accroissement de f
Af _ f(x) = f(x)
Ax X — Xo

Cette limite est appelée nombre dérivé de f en xp :

f'(x) = lim Fx) = () = lim

X—X0 X — X0 h—0

en xo : admet une limite finie quand x — xo.

f(Xo + h) — f(Xo)
h




1. Fonctions d’une variable — Rappels [a) Continuite, deérivabilite

Interprétation graphique (Tangente)

Si f est dérivable en xo alors Cr admet une tangente 7 en My qui
limite des cordes lorsque M se rapproche de M.

|

est la position

pente corde :

f(x) = f(x0)
X — Xo

pente tangente :

f'(x0)

D

Equation de la tangente T :

Ly = (o) (x = x0) + f(x0) |




1. Fonctions d’une variable — Rappels |b) Deérivee et approximation

Propriété 1.3 (Approximation affine)

Supposons f dérivable en xo et soit T(x) = f'(x0)(x — x0) + f(x0) /'application
affine tangente de f en xg.
Alors T est la meilleure approximation affine de f au voisinage de xo.

f'(x0), on a pour tout h# 0 :

En effet, en posant £(h) = w =

f(Xo—l—h) — f(Xo)

h = f'(x0) +e(h) et ,li_%g(h) —0

soit encore
f(xo + h) = f(xo0) + f'(x0)h + he(h) avec ’|7im05(h) =0
—

On dit que he(h) est négligeable devant h en 0.

Avec x = xg + h, cela se réécrit selon

f(x) = f(x) + f’(xo)(x —X0) + (x — x0) e(x — x0) = T(x) + (x — x0) e(x — x0)

Ces écritures suggérent |'approximation du premier ordre suivante :

pour x « proche de » X : ou encore | POUr h « petit » :
f(x) =~ f(x0) + f'(x0)(x — x0) f(x0 + h) =~ f(x0) + f'(x0)h




1. Fonctions d’une variable — Rappels |b) Deérivee et approximation

Interprétation graphique (Approximation affine)

A

f(X0+h)

f(xo0)+f'(x0)h




1. Fonctions d’une variable — Rappels |b) Deérivee et approximation
Exemples 1.4

@ Pour f(x) = x?, on a f/(x) = 2x. On obtient alors |'approximation suivante :
pour h petit devant xo, (x0 4+ h)> = x5 + 2x0h
On en déduit « a la main » une valeur approchée de 3.05 :
(3+0.05)° ~ 3 +2 x 3 x 0.05 ~ 9.3

La valeur exacte est 3.05% = 9.3025.
® Erreur absolue : 9.3 —9.3025 = —0.0025 (< 0 — approximation par défaut)

® Erreur relative : % x 100% =~ —0.03%

1
® Pour f(x) = v/x,onaf’(x) = —~=. On obtient alors I'approximation suivante :

24/x
. 1
pour h petit devant xo, Vxo + h = /x0 + 2—\/)70h

On en déduit « a la main » une valeur approchée de /101 :

1
V103 ~ v100 + x 3 =10.15
24/100

La valeur exacte est +/103 = 10.14889. ..

® Erreur absolue : 10.15 — 10.14889 - - - =~ 0.00111 (> 0 — approximation par exceés)

® Erreur relative : 1015=1014889.. 5 100% ~ 1.1 x 10™* %

v




1. Fonctions d’une variable — Rappels [€) Differentielle

Définition 1.5 (Différentiabilité)

On dit que f est différentiable en xo lorsqu'il existe une application linéaire notée df,,
et une fonction ¢ telles que :

| f(xo + h) = f(x0) + df,(h) + he(h) et lim e(h) = 0|

On dit que dfy, est la différentielle de f en xo.

f h)—f feo (B
(0 +h) (x0) — d ‘;_’( ) et I'on obtient dés lors |'équivalence entre

En fait e(h) = A

différentiabilité et dérivabilité en xo pour f ci-dessous :

Propriété 1.6 (Equivalence dérivabilité—différentiabilité)

Pour les fonctions de R dans R :
f différentiable en xo <= f dérivable en xp.

Lorsque f dérivable en xo, la différentielle df,, est I'application linéaire h — f'(xo)h :

[ dfi,(h) = f'(x0)h]




1. Fonctions d’une variable — Rappels [€) Differentielle

Si f est différentiable en xp, d'aprés la propriété 1.3 sa différentielle est la
meilleure approximation linéaire de I'accroissement de f en xp.

En notant dx : h — h I'application linéaire représentant |'accroissement de la
variable x, (donc dx(h) = h) on obtient en notation fonctionnelle :

dfy, = f'(x0) dx.

Cette écriture se généralise en |dfx = f'(x) dxl ou encore | df = f' dx | qui est a
df Af

o . wo e dff o Af

I'origine de la notation de Leibniz | = ax ( AI)l(m0 Ax)'

Attention : le x dans dx n'a rien 3 voir avec le x dans df; et f/(x).
Ce n’est qu'un symbole.

Propriété 1.8 (Formules dérivées / différentielle)

dérivées différentielles
(f+g)=f+g | d(f+g)=df +dg
(fe) =f'g+fg’ | dfg)=gdf +fdg

f\"_ fg—fg f\ _gdf —fdg
) -2 |Ng) T
g g g g

(gof) =(g'of)f" | dlgof)=(gof)df




1. Fonctions d’une variable — Rappels |d) Petits accroissements

En sciences physiques, on se sert de la différentielle pour approcher |'accroissement
(positif ou négatif) d’une fonction lorsque la variable varie légérement.
La quantité df sera donc considérée comme un nombre et pas une fonction.

En d'autres termes, en posant :
® §x = petit accroissement de x sur xo,

® §f, = petit accroissement de f en xp correspondant a dx :
"0f" = 0fy(0x) = f(x0 + 0x) — f(x0),
® df,,= différentielle en x :
"dfy," = dfy,(6x) = f'(x0)dx,

on considere que
0fy, = dfy,
Ainsi, écrire 0f,, ~ dfy, c'est, pour un x proche de xp :

® approcher au premier ordre la valeur de f(x) par la valeur T(x) de son
application tangente au point xg ;

® commettre une erreur qui est un infiniment petit d'ordre supérieur a 1.




1. Fonctions d’une variable — Rappels |d) Petits accroissements
Interprétation graphique
A

f(><o+5><)‘F ____________________ erreur

I e(dx)ox
approximation
dfy,

(=F"(x0)5x)

accroissement
i
(=f(x0+6x)~F(x0))

f(xo) cr

Noooooooodoooood

SEao o oo o os

Xo € = xp+9Ix

Ox

f(x0 + 0x) — f(x0) = ' (x0)dx + (6x)dx = dfy,
—_ U~
0t dfy,




1. Fonctions d’une variable — Rappels |d) Petits accroissements

Exemple 1.9 (Pendule pesant)

|

La formule P = 274/ E donne la période d'un pendule de longueur ¢, g désignant

I'accélération de la pesanteur (g = 9.81 m/s?).

Déterminons une approximation de la variation de période en fonction d'une variation
de longueur.

Posons P(¢) = 277\/§.

27 1 T
P définit ainsi une fonction de dérivée P'({) = — — = ——
¥ VeVl el
donc de différentielle "dP," = dP,(5() = —— 5¢.

_

Si £ augmente de ¢, une approximation de |'augmentation de P correspondante peut
s'obtenir selon

5Py~ dP, = % 50




© Fonctions vectorielles : R — R? ou R?



2. Fonctions vectorielles :R > R?ouR*)

Définition 2.1 (Continuité/Dérivabilité)

ﬁ
Soit F: ICR—R3 une courbe paramétrée de |'espace.
t— f(t) € +g(t) €, + h(t) €,

On dit que ? est continue (resp. dérivable) en ty € | lorsque ses trois fonctions
composantes f, g, h sont continues (resp. dérivables) en to.

H
Lorsque?est dérivable, on al F'(to)=f"(t0) & +8&'(t0) & +Hh'(t) &,

(vecteur tangent).

Propriété 2.2 (Différentielle)

_)
Si F : R —» R? est dérivable en ty, alors :

[ F(to + n) = F (1) + hF (1) + hZ() |

oll € est une fonction vectorielle vérifiant flliinoé’(h) =0.
On a donc
? différentiable en ty <—- ? dérivable en t,
et la différentielle de T-_) en ty est I'application linéaire
d?to ' R—R?
h—s hE'(to) = f'(to)h &, + &' (to)hE, + H ()&,




© Fonctions de deux ou trois variables
@ Introduction

@ Visualisation
o Applications partielles
o Continuité



3. Fonctions de deux ou trois variables |a) Introduction

De nombreuses quantités physiques dépendent de plusieurs paramétres :

. . . . nRT
® |a pression d'un gaz parfait donnée par P = Vv dépend du volume V/, de la
température T et du nombre de moles n de ce gaz (R étant une constante) ;
® |a pression atmosphérique sur terre dépend des variables de position x, y, z;

® |'intensité d’'un champ électrique dans I'espace dépend des variables de position
X, Y,Z,5

® |'énergie cinétique d'une particule dans un gaz dépend des composantes de
vitesse vy, vy, Vz...

Objectif du chapitre : adapter le calcul différentiel pour les fonctions a une variable
aux fonctions a plusieurs variables.

1

Notes :

e dans la suite, on énoncera les définitions et propriétés dans R* (I'espace), mais
— sauf mention du contraire — elles sont aussi valables dans R? (le plan), en
enlevant tout ce qui a trait a la variable « z » ;

® des triplets (x,y, z) de R3 peuvent é&tre considérés comme les coordonnées d'un
point M dans un repere (O; €, €, €,), mais aussi comme les composantes

X =
(y) d’un vecteur OM dans une base (&, &, ¢&,).

x 1 Gy €z
z




3. Fonctions de deux ou trois variables

b) Visualisation

Visualisation
Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

® Une fonction de deux variables f : R> — R peut se visualiser
(x,y) — f(x,y)
graphiquement comme une surface d'équation cartésienne z = f(x, y).
Exemple : f(x,y) = x> + y°.

® Pour une fonction de 3 variables, penser qu'a chaque point de I'espace est
associé un nombre (température T(x,y, z), pression P(x,y,z), etc.). On peut
imaginer une représentation comme « hypersurface » d’'équation cartésienne

u = f(x,y,z) dans un espace de dimension 4 (avec des coordonnées (x,y, z, u))...
« 13




3. Fonctions de deux ou trois variables |b) Visualisation

Visualisation

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

® Une fonction de deux variables f : R? — R peut aussi se visualiser
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

Lignes de niveau équidistantes




3. Fonctions de deux ou trois variables |b) Visualisation

Visualisation

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

® Une fonction de deux variables f : R> — R peut aussi se visualiser
(x,y) — F(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

N \
& \ \\ \

Carte topographique : lignes d'altitude




3. Fonctions de deux ou trois variables |b) Visualisation

Visualisation

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

® Une fonction de deux variables f : R? — R peut aussi se visualiser
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

Mont Lachat
- 2115 m

®)

Carte topographique : lignes d’altitude (zoom)




3. Fonctions de deux ou trois variables |b) Visualisation

Visualisation

Dans ce chapitre, on considére des fonctions a 2 ou 3 variables réelles, a valeurs dans R.

® Une fonction de deux variables f : R> — R peut aussi se visualiser
(x,y) — f(x,y)
graphiquement comme une surface plane avec des lignes de niveaux.
Ce sont des courbes de « constance » de f.

Carte météorologique : lignes de pression atmosphérique




3. Fonctions de deux ou trois variables |€) Applications partielles

Il est pratique de définir les fonctions partielles d'une fonction a plusieurs variables, ce
qui correspond a fixer toutes les variables sauf une. On retrouve les fonctions a une
variable habituelles.

Définition 3.1 (Applications partielles)

Soit une fonction f : R® — R. On appelle applications partielles au point
Mo(x0, Y0, 20) les applications de R — R suivantes :

X = f(Xa.yOaZO)a y = f(XOa.ya Zo), Z = f(Xo,yo,Z)

Exemple 3.2

| A\

Soit f la fonction définie sur R® par f(x,y,z) = cos(xy) exp(2z — 3) + y2z.
Les trois applications partielles de f en (1,0,1) sont données par

2x1-3

x — f(x,0,1) = cos(x x 0)e +0°x1=

2x1-3

y— f(1,y,1) = cos(1 x y)e +yPx1=

M |—= 0|

cos(y) +y*

z '+ £(1,0,2) = cos(1 x 0)e** > 4 0° x z = 3




3. Fonctions de deux ou trois variables |€) Applications partielles
Exemple 3.3 (La « selle de cheval »)

Soit f la fonction définie sur R? par f(x,y) = x> — y°.

ZA Z“
Les applications partielles de f en >
(0,0) et en (1,—1) sont données par y
® en (0,0) :
x — x° et y = fyz
®en(l,-1):
x> x2—letyr1—y? >
2 X 2




3. Fonctions de deux ou trois variables |d) Continuite

La notion de continuité en un réel xo pour les fonctions de R — R a I'aide de la
notion de limite (rappel : lim f(x) = f(xo)) s'étend aux fonctions de R" — R. l
X—rXp

Définition 3.4 (Continuité)

La fonction f : R* — R est continue en (xo, Yo, 20) lorsque

lim f(X,y,Z) = f(X07y0720)
(x,y,2)=(x0,¥0,20)

Doy

Mais que signifie lim ?
(x:y,2)=(x0:¥0,20)

Différence entre R et R? ou R® : il existe une infinité de directions suivant lesquelles
s’approcher d'un point (xo, yo) du plan ou (xo, yo,20) de I'espace, alors que dans R
il n'y a que deux possibilités (par la gauche ou par la droite).

Suivant une droite Suivant une spirale Suivant un chemin continu




3. Fonctions de deux ou trois variables
Définition 3.5 (Limite dans le plan et I'espace)

® On dit que le point variable M tend vers le point fixé My si la distance My M
tend vers 0.

® On dit que le vecteur variable U tend vers le vecteur fixé ty si la norme
|| — do|| tend vers O.

En termes de coordonnées ou composantes dans R®, cela se transcrit selon :
(x,y, z) tend vers (xo, Yo, 20)

ssi H(x,y, z) — (xo, yo, zo)H = \/(x —x0)% + (y — y0)?> + (z — z0)? tend vers 0.

Définition 3.6 (Boule ouverte)

Dans R" avec n = 1,2,3, la boule ouverte centrée en un point My et de rayon R est
I’ensemble Byy,r = {M € R" : MoM < R}.

® DansR, onaBuyr ={x €R: |x —x| < R} =]x0o — R, x0 + R|.
C'est un intervalle ouvert.

® DansR? on a Buyr = {(x,y) ER*: (x — x0)* + (¥ — y)* < R°}.
C'est un disque ouvert.

® DansR® onaBuyr={(x,y,2) ER’: (x —x0)*+(y —y0)* + (z— 20)* < R*}.



3. Fonctions de deux ou trois variables |d) Continuite

Définition 3.7 (Ouvert de I'espace)

On dit qu'un sous-ensemble U de R" (n=1,2,3)
est ouvert lorsque pour tout x de U, U contient Py
une boule ouverte de centre x.

Pseudo-définition : dans R", un ouvert U est un p
. . . 3 I
ensemble qui ne contient aucun point de sa frontiére. U ‘

Exemples 3.8 (Exemples élémentaires)

® Dans R, un intervalle ouvert |xo — R, xo + R[ est ouvert.
® Dans R?, I'intérieur d'un disque de centre My et de rayon R est ouvert.

e Dans R3, I'intérieur d’une boule de centre My et de rayon R est ouvert.

® Dans R?, un plan n’est pas ouvert; R*\ {(0,0,0)} (espace pointé) est ouvert ;
le demi-espace {(x,y,z) € R®: z > 0} est ouvert; etc.

On définit souvent les applications a plusieurs variables sur des ensembles ouverts de
R" pour éviter les probléemes de bord lors du calcul d'une limite en un point.

« 19




3. Fonctions de deux ou trois variables |d) Continuite

Propriété 3.9 (Continuité et opérations)

Toute fonction de U C R®> — R définie a partir de fonctions continues des variables
X, Y,z par des opérations de somme, de produit, de quotient a dénominateur non nul
et de composition, est elle-méme continue.

Exemples 3.10 (Continuité)

® Soit f(x,y,z) = cos(xy) exp(2z — 3) + y?z. f est continue sur R® par opérations.

2
® Soit g(x,y) = iy g est continue sur R? \ {(0,0)}.

20



3. Fonctions de deux ou trois variables
Exemple 3.11 (Discontinuité)

Xy
Soit f(x,y) = x>+ y?

® Les applications partielles de f en (0, 0)
sont x — f(x,0) =0et y — £(0,y) = 0.
Elles sont donc continues en (0, 0).

® Par ailleurs, pour x # 0 :

X 1
f(X7X):§ = E

® Sj f était continue, on devrait avoir
lim  f(x =0.
(x,)—(0,0) ()
. 1

Or le) f(x,x) = 5
Ainsi, selon le chemin choisi pour se
rapprocher de (0, 0) (ici les axes x = 0,
y =0 et x = y) on ne trouve pas la
méme limite.

Donc f n’admet pas de limite en (0, 0),
elle n’est pas continue en (0,0).




© Dérivées partielles
@ Dérivées partielles premiéres

@ Interprétation géométrique



4. Dérivées partielles

Quand il y a deux ou trois variables, la dérivée n'a pas de sens!
Mais on peut dériver par rapport a I'une des variables, avec les autres fixées.

On obtient ainsi des dérivées partielles, les dérivées des fonctions partielles (si elles
sont dérivables).

Définition 4.1 (Dérivée partielle)

Soit f: U CR® = R et My(xo, Y0, 20) € R®.

On appelle dérivée partielle de f par rapport a x au point Mo(xo, Yo, 20), la dérivée
en xo de I'application partielle x — f(x, yo, Zo).
On la note g(xo Yo,20) ou g(Mo)
ox Ox ’
On rencontre parfois d'autres notations : f,(xo, Yo, 20) ou Oxf(xo, Yo, 20).
0 se lit « d rond » ou « d ronde » .

On a donc

of — f(x,y0,20) — f(x0, Yo, Z
ai(XOJ/o,Zo) = lim (x: y0, 20) (x0, Y0, 20)
X X—>X0 X — Xo

C'est la limite du taux d’accroissement de f par rapport a x seulement.

On définit de méme les dérivées partielles par rapport a y et z, respectivement notées

g(x 2) et g(x 2)
ay 0, Y0, 20 82 0, ¥0,20)-

22



4. Dérivées partielles a) Dérivées partielles premiéres

: : i oo Of :
En pratique, on calcule la fonction dérivée partielle B :UCR® > Renun point
X

quelconque (x, y, z) en dérivant f par rapport a x, et en considérant y et z comme
des constantes

| A

Exemple 4.2

Soit f(x,y) = 2x*> 4+ 3xy — x + 1.
Calculons les dérivées partielles de f en (x, y) € R? puis en (1,2).

® En (x,y): af(x y)=4x+3y —1let —(x y) = 3x.
® En (1,2):
p of of
® 1 méthode : on prend (x, y) = (1,2) dans a(x,y) et dans @(x,y),

ce qui fournit immédiatement 8—)’2(1,2) =0et 2—5(1,2) =3

® 2¢ méthode : on calcule les applications partielles en (1,2), puis on les
dérive :
* f(x,2) = 2x*> + 5x + 1 donc g(x 2) = 4x + 5, puis g(l 2)=0.
’ ox "’ ' ox’

% £(1,y) = 2+ 3y donc gf(l ) — 8 s gf(l 2)=3.

23



4. Dérivées partielles a) Dérivées partielles premiéres

Exemple 4.3 (Dérivées partielles et continuité (cf. exemple ))

Considérons la fonction définie par
Xy

Flx,y) =3 X +y? si (x,y) # (0,0)

0 si (x,y) = (0,0)
® Dérivées partielles en un point (x,y) # (0,0) :
of _y =x)  of _x(—y?)
8X(X:.y)_ (X2 +y2)2 ay(Xy}/)— (x2+y2)2

® Dérivées partielles en (0,0) :

of . f(x,0)—£(0,0)
55 (0:0) = lim =222 = im

X x~>0X2+02 -
of .. f(0,y)—f(0,0) . _
By ) S I e = i 2 =0

Cette fonction de 2 variables n'est pas continue en (0,0), mais admet des
dérivées partielles en (0,0). Donc attention :
existence des dérivées partielles en un point # continuité en ce point

24



4. Dérivées partielles a) Dérivées partielles premiéres

Définition 4.5 (Fonction de classe C?)

Une fonction f : U C R® — R pour laquelle les dérivées partielles existent et sont
continues sur U est dite de classe C* sur U.

Exemple 4.6

| \,

Soit g(x,y,z) = ysin(x) + xy?z°.
Calculons les trois dérivées partielles de g.

La fonction g est dérivable selon x,y ou z et ses dérivées partielles sont obtenues par
opérations sur fonctions usuelles :

Jg Jg , dg

aix(xayaz) :yCOS(X)+y2237 aiy(xay7z) :Sln(X)+2XyZ37 $(X7y7z) :3Xy222
On voit clairement que les dérivées partielles de g sont continues sur R*, et donc g
est de classe C* sur R

25



4. Dérivées partielles b) Interprétation géométrique

Propriété 4.7 (Dérivées partielles et plan tangent)

Soit f : U C R?> — R une fonction de 2 variables, ¥ la surface représentant son
graphe dans R, (xo, yo) un point de U, et Mo(xo, Yo, 20) le point image sur X
correspondant avec zp = f(xo, 0)-

® En My, les deux vecteurs tangents aux courbes coordonnées (graphes des fonctions

1 0
. , . . — 0 = 1
partielles) donnés, lorsqu'ils existent, par i of et v, of ,
I 0 Y0) @(Xo,yo)

sont tangents a la surface X.

® |Is engendrent un plan, le plan tangent a la surface en My. Ce plan a pour
équation

of of
z= a(Xoyyo)(X —x0) + 5(X07y0)(y — y0) + f(x0, y0)

of
—67(X07YO)

® Dans ce cas, ni, = iy AV est un vecteur normal au plan tangent

of
-~ (xo,
8y( 0, ¥0)
1
en Mp. On dit plus simplement qu'il est normal a la surface ¥ en M.
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4. Dérivées partielles b) Interprétation géométrique

Propriété 4.7 (Dérivées partielles et plan tangent)
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e Différentielle
@ Problématique
o Différentiabilité
o Gradient
@ Opérations



5. Différentielle a) Problématique

Problematique
Soit f : R?> — R. Quelle est la variation §f de f(x, y) pour de petites variations dx et 5y ?

® Pour une fonction f : R — R :
on remplace localement la courbe par sa droite tangente :

<> approximation affine de f au voisinage de xp pour h = dx = x — xp petit :

f(x) = f(xo) + f'(x0)(x — x0)
f(Xo + h) =~ f(Xo) + f/(Xo)h
Of & f'(x0)dx

® Pour une fonction f : R? — R : on remplace localement |a surface par son plan
tangent :
<> approximation affine de f au voisinage de (xo, yo) pour hy = dx = x — xo
et hy =0y =y — yo petits :

f(x,y) = f(x0, y0) + a(x — x0) + B(y — y0)
f(x0 + he, yo + hy) = f(x0, y0) + ahe + Bhy
Of =~ adx + Bdy
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5. Différentielle a) Problématique

Questions/réponses

f(XO + hX7y0 + hy) & f(Xo,yo) + ahy + 5/7)’
Of = adx + Bdy

- L
Questions : [ 2

® Que valent les coefficients «, 8 pour obtenir la meilleure approximation affine
(pour f(xo + hx, yo + hy)) ou linéaire 6f ?

® Quelle erreur commet-on ?

N

Réponses : _@_

f f
® On peut montrer que o = a—(xo,yg) et B = i(xo,yo).
Ox dy
On aura donc

of of
f(x0 + hx, yo + hy) =~ f(x0, yo) + a(Xo,YO)hx +* a(XO,YO)hy

différentielle de f en (xo, y0)

® L'erreur commise sera de I'ordre de H(hx, hy)||2 = h% + h?, soit du second ordre,
donc négligeable devant hy et h,.

29



5. Différentielle a) Problématique

Questions/réponses

\Plan tangent en (x,,y,, f(Xo.¥5))

i

Approximation affine
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5. Différentielle b) Différentiabilité

On peut méme prolonger cette notion pour toute fonction f : R” — R avec n > 3.

Par exemple en dimension 3 :
f(xo + hx, Yo + hy, 20 + h;) = f(x0, Y0, 20) + ahx + Bhy + vh,

Définition 5.1 (Différentiabilité)

Soit une fonction f : U C R®* — R et un point mo(xo, yo, 20) € R>.
On dit que f est différentiable au point my si il existe une forme linéaire ¢ : R® — R

~/h
et une fonction € : R® — R telle que pour tout vecteur h(Z;) :

Z

f(mo + h) = f(mo) + £(h) + ||h||e(h) avec I|m a(ﬁ)

Théoreme 5.2 (Différentielle)

La forme linéaire ¢, lorsqu'elle existe, est unique : c'est la différentielle de f en my.
Elle est notée dfy,, et I'on a la relation avec les dérivées partielles de f suivante :

o [ hy = of of of
V(1) dn(5) = 5L (modhc+ 5L (mo)h, + 5L (o)

Sous forme fonctionnelle :

or of el
dfm, = a(mo)dx + @(mO)dy + g(mo)dz
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5. Différentielle b) Différentiabilité

Théoréme 5.3 (Continuité, classe C! et différentiabilité)

® Si f est différentiable en my, alors elle est continue en mg.

® Sif est de classe C! en mo € R® (i.e. admet des dérivées partielles continues
en my), alors f est différentiable en m.

Exemple 5.4

| A,

Soit f la fonction définie par f(x,y, z) = xy?z> et m = (x, y, z) un point générique
de I'espace. Les dérivées partielles de f en m sont données par
—(m)=yz
oM =Y
Elles sont continues en tout m donc f est différentiable en m et sa différentielle en m
s'exprime selon

of _ 3 of _ a5
8y(m) = 2xyz 3z(m) =3xy“z

_ of of of _ .23 3 2.2
df, = aX(m)dx—i— ay(m)dy—&— 8z(m)dz—y z” dx + 2xyz” dy + 3xy“z° dz

Plus explicitement, df,, est |'application linéaire définie par :

L hx .
Vh(hy>, dfm(h) = y*2> he + 2xyz* hy + 3xy°2° h,
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5. Différentielle

Définition 5.5 (Gradient)

Supposons f différentiable en my.

|
g

Les dérivées partielles de f en mq définissent un vecteur appelé « gradient » de f en mg,
noté grad f(myg) ou V f(myg) (opérateur « nabla ») :

of
a("w)
grad £(mo) %;(mo)
of
&(mO)

La différentielle de f en mg s’exprime alors selon

=

VB, dfn, (R) = grad f(mo) -

—
Parfois il est judicieux d’écrire les composantes du vecteur grad f(mo) en ligne :

grad f(mo) (af(mo)y %;(mo)v g(moo
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5. Différentielle
Exemple 5.6 (Gradient)

ma;/L P
s v 2

l ’,’ =

.

grad f(m,) |

Un gradient de la fonction f : (x,y) — sinxsiny + 2
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5. Différentielle c) Gradient

Champ de gradients

Lorsque f est différentiable sur U C R3, on peut définir un champ vectoriel sur U :
grad: U — R3
—
mo +—— gradf(mg)

N

Exemple 5.7 (Champ de gradients)

2

AN

o, S

]
\

N
1\ \\\

1

X

—4 43 -2 -1 0 1 2 3 4

- a & F A DA Tl

///’/—2 ii\s
/AN RANNN

Champ de gradients de la fonction f : (x,y) — 0.2(x® + y?) + 1.1




5. Différentielle d) Opérations

Définition 5.8 (Différentielle logarithmique)

On appelle différentielle logarithmique de f différentiable et non nulle, la quantité

d(In|f]) = df

Propriété 5.9 (Différentiabilité et opérations)

Soit f, g : R* — R des fonctions différentiables et « des réels.

d(af) = adf ® d(fg)=fdg+gdf
d(f +g) = df +dg -d(f>:7gdf_2fdg
d(i) g 4
d(fg) _ df  dg SR YCV /NN < RN
fg f g f f g |f]> f
g
|f1°1g]
Par exemple, pour p = « 1Al ot f, g, h sont différentiables non nulles et
@ 2 SIS d df . dg dh
o _ G5B G
o PFT9% T

Soit f : R®* » R et g : R — R deux fonctions différentiables.
® digof)=(g'of) xdf
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5. Différentielle d) Opérations

Exemple 5.10 (Différentielle et composition)

|
.
.

Soit f : R® — R la fonction définie par f(x,y,z) = x>+ y*+ 22 et g =+ .
Posons h =g o f : R® — R. On a donc h(x,y,z) = /x2 + y? + 22.
Déterminons la différentielle de h en un point générique m = (x,y, z) de I'espace.
® 1 méthode : calcul direct
Les dérivées partielles de h en m sont données par
Oh z

oh X oh y
a—(m):i a—(m):i g(m):i
X /X2+y2+22 y /X2+y2+22 V4 /X2+y2+22
La différentielle de h en m s'exprime alors selon
Bh 1

dh,, = dx—i—— m)d! —|—— m)dz= ——(xdx+ydy+zdz

® 2¢ méthode : composition
La différentielle de f en m s'exprime selon df,, = xdx + ydy + zdz

2Vu’

On en déduit la différentielle de h en m selon

, 1
dhy = (g o f)(m) X dfy = ——
(&' o F)(m) N

De manieére plus concise, on a illustré par cet exemple la formule d(\/?) =

et la dérivée de g est donnée par g’(u) =

(xdx + ydy + zdz)

s
A
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© Applications
o Calcul approché : petite variation 6f
o Calcul approché : incertitude Af



6. Applications a) Calcul approché : petite variation df

Variation

Principe : On utilise la différentielle comme approximation linéaire de la variation :

Définition 6.1 (Variation)

® 5f est la variation absolue de f ; ° 6—: est la variation relative de f.

Soit f : U c R® — R une fonction différentiable en un point mo(xo, Yo, 20)-

Si les quantités xo, yo et zp sont modifiées respectivement de dx,dy et dz, alors la
variation 01 de f au premier ordre est :
Of = dfmy(0x,dy,0z) = g(mo) X 0X + g(
R Ox Oy

On retiendra en abrégé | 6f ~ g(;x + gc;y + gdz .
X y z

of
mo) X (Sy + E(mo) X 0z

0 0 0

38



6. Applications a) Calcul approché : petite variation df

Exercices 6.2 (Variation, variation relative)

@ Soit f la fonction définie par f(x,y) = xy°.
Calculer la variation de f quand x varie de 3 2 2.98 et y varie de 2 a 2.01.
Réponse :
* Différentielle : df, = y? dx + 2xy dy pour m = (x, y).
® Variation : 0f ~ y? dx + 2xy dy.
® Application numérique : les données sont mg = (3,2), dx = —0.02 et oy = 0.01.
D’ols la variation : §fm, ~ 22 x (—0.02) +2 x 3 x 2 x 0.01 = 0.04
puis I'approximation : £(2.98,2.01) ~ f(2,3) + 0.04 = 12.04.
Valeur exacte : £(2.98,2.01) ~ 12,0395 a 10—* pres.

® Donner une approximation de la variation relative du volume V d'un
parallélépipede rectangle de cotés x = 20cm, y = 40 cm, z = 25 cm, quand x et y
augmentent de 0.2 et z diminue de 1. La fonction d'intérét est V(x,y, z) = xyz.

Réponse :
dV, d. d d.
* Différentielle logarithmique : ——~ = kil + &7 + i pour m = (x,y, z).
v X y z
oV 4 [ 1)
® Variation relative : — = X + e + —z.
X y z
® Application numérique : les données sont 6x = dy = 0.2cm et 6z = —1cm.

(2%
D’ou la variation relative (ici diminution) : 7 —0.025 = —2.5 %.




6. Applications b) Calcul approché : incertitude Af

Incertitude

Idée : le calcul d’incertitude, permet d'évaluer les erreurs qui se produisent lors de
mesures de grandeurs physiques, les instruments de mesure n'étant pas d'une
précision absolue. Il faut évaluer ces incertitudes pour répondre a la question :

« la relation n'est pas vérifiée exactement
parce qu'elle est fausse
ou parce que les mesures sont imprécises 7 »

On en déduit des marges d'erreurs, en dehors desquelles la relation sera invalidée.

Définition 6.3 (Incertitude)
Pour une grandeur physique f :
® l'incertitude de mesure absolue sur f se note Af > 0;

. . 5 Af
® [/'incertitude de mesure relative sur f est alors -

Multipliée par 100, I'incertitude relative donne la précision de la mesure en pourcentage.

La valeur exacte de f se situe dans un « intervalle de confiance » [f — Af, f + Af].
On note alors le résultat de la mesure sous la forme : f + Af.
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6. Applications b) Calcul approché : incertitude Af

Incertitude
Pour éviter les compensations, on ajoute en valeur absolue toutes les erreurs pour
obtenir la variation maximale de f.

Ona5f~df—gd +gd+
Or, par inégalité triangulaire : |df| < |dX| + 7‘ |dy| + -

Pour déterminer I'incertitude sur f, on enwsage la « pire erreur » :

of of
Af =g | Bx+| 5| Ay + -

| \

Exemple 6.4 (Aire d’un rectangle)

Considérons un rectangle de longueur L et de largeur /.
L'aire de ce rectangle est donnée par S = L x /.

® |ncertitude absolue sur S : a partir de la différentielle dS = Ld¢ + £ dL, on tire

AS=/VAL+ LAY
. . AS J(AL+LAL AL AL
® Incertitude relative sur S : T T e + 7

Veérification : en effectuant le calcul exact, la variation de surface peut s'écrire
0S=(+00)(L+6L)—S=4LL+ L5l + 00 %L

Le terme 0¢ X §L étant négligeable (d’ordre 2) par rapport aux termes £J0L et Lo/
(d'ordre 1), on obtient bien 6S ~ L ¢+ ¢45L.




6. Applications b) Calcul approché : incertitude Af
Exemples 6.5 (Variations, incertitudes relatives)

RT
® Volume d’un gaz parfait : V(P, T) = % n et R constantes.

N . s . . . dv dT dP
A I'aide de la différentielle logarithmique, on trouve vV T P
L. ) 14 oT oP
® Variation relative : — ~ — — —
1% T P
. i A AT AP
® Incertitude relative : — ~ — + —
v T P
@ Energie cinétique : E = 1 mv’.
S . eer . . . dE d d
A I'aide de la différentielle logarithmique, on trouve = —m +2—
v
® Variation relative : ﬁ = 67m + 26—‘/
E m %

5 3 AE Am Av
® Incertitude relative : — ~ — +2—
E m v
Remarque : |'utilisation de la différentielle logarithmique est particulierement
intéressante dans le cas de grandeurs produit, quotient ou puissance de plusieurs
variables. Elle permet d'approximer |'erreur relative et I'incertitude relative.
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6. Applications b) Calcul approché : incertitude Af

& On veillera a bien distinguer toutes les notations rencontrées (d, 9,9, A) :

df est la différentielle de f (définition mathématique, variation infinitésimale
sans sens physique, cf. théoréme 5.2);

Of indique une dérivation partielle de f (cf. définition 4.1) ;

Of est une petite variation de f (cf. définition 6.1) ;

Af est une incertitude sur f (cf. définition 6.3).
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Enrésumeé..  pa
Notions a retenir

Concept de fonction de plusieurs variables

Visualisation des fonctions de deux variables

Calcul des dérivées partielles premiéres

Notion de différentielle et lien avec les dérivées partielles
Application des différentielles :

* a la détermination du plan tangent a la surface représentative d'une
fonction de deux variables
* au calcul de petites variations et d'incertitudes
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Annexes

e Compléments, divers exemples

e Dérivées partielles secondes
e Formes différentielles




@ Annexe A — Dérivées partielles
@ Notations symboliques



A. Dérivées partielles Notations symboliques

Exemple A.1 (Loi de gaz parfaits)
La loi des gaz parfaits PV = kT est une équation reliant trois variables P, V/, T,
avec P : pression du gaz (en Pa), V : volume du gaz (en m*), T : température du

gaz (en ° K), et k > 0 une constante.
Elle définit ainsi pour chacune de ces trois variables une fonction des deux autres :

PV kT kT
T(P,V)= ra P(V,T)= i V(P, T) = b

On a
OT _ v OT _P 0P _ kT 0P _k OV _ kT OV _k
oP k7> 9V k' oV v2' 9T V' 9P P2’ 9T P’
On observe les relations
CIRNY G e oT oV _kP _ 0P OV _ KT _
OP ~ 0T — kv — oV © OT — kP ov = oP ~ pP2y2

ﬂxalxai—ﬂxaixal—_ﬂ—_l
oT ~ 9P ~ 9V~ oP = 0T ~ oV PV

é Contrairement aux premiéres relations, les deuxiémes relations montrent que la

. of s s . e .
notation Ix ne peut pas étre interprétée comme un quotient. |l s’agit d'une notation
X

purement symbolique.




© Annexe B - Différentielle
@ Une composition



B. Différentielle

Exemple B.1 (Différentielle et composition (facultatif))

Soit f : R? — R la fonction définie par f(u,v) = uv et g : R — R? la fonction
définie par g(t) = (x(t), y(t)) = (tcos(wt), tsin(wt)) oll w > 0 est fixé.
Posons h = fog: R — R. On a donc h(t) = t* cos(wt) sin(wt).
Déterminons la dérivée de h en t.
® 1" méthode : calcul direct
La dérivée de h en t est donnée par
h'(t) = 2t cos(wt) sin(wt) + t° ( cos®(wt) — sin®(wt)) = tsin(2wt) + t* cos(2wt)

® 2¢ méthode : composition

La différentielle de f en (u, v) est donnée par df, ) = vdu+ udv
et le vecteur dérivé de g s'exprime dans la base canonique (€, €,) de R? selon

g'(t) =x'(t)& +y'(t)8, = (cos(wt) — tsin(wt))&, + (sin(wt) + t cos(wt))&,
On en déduit la dérivée de h en t selon
H(E) = (), 9(0) = 2 (x(e),9(8)) X' () + OF (x(8), ¥() ¥'(2)

= tsin(wt)(cos(wt) — tsin(wt)) + t cos(wt) (sin(wt) + t cos(wt))

= 2t cos(wt) sin(wt) + t*( cos’(wt) — sin’(wt)) = tsin(2wt) + t* cos(2wt)

o . T4 I =)
De maniére plus concise, on a vérifié sur cet exemple la formule (f o g)’ = df,(g). e




© Annexe C — Approximation
@ Un calcul d'incertitude



C. Approximation Un calcul d’incertitude

Exercice C.1

On souhaite déterminer la masse m d'un manchon cylindrique

en acier de masse volumique p = (7.80 + 0.01) g.cm .

On mesure les différentes cotes du manchon a I'aide d'un pied
a coulisse dont I'incertitude est de I'ordre de £ = 0.2 mm.
On obtient les résultats suivants pour les rayons extérieur et intérieur ainsi que la
longueur du manchon : Re = 40,0mm, R; =25,0mm et h = 21,2 mm.
@ Donner |'expression littérale du volume V du manchon.
Déterminer I'incertitude sur la mesure du volume.
Réponse :
® Volume : V = 7(R? — R?)h. Numériquement : V = 64936.7 mm?.
® Différentielle : dV = 8Rve dRe + % dR; + Z—\; dh
=7 [2hRe dRe — 2hR; dR; + (R? — R?)dh].
® Incertitude : AV = 7 [2hR. ARe + 2hR; AR; + (RZ — R?) Ah].
Ici ARe=AR;=Ah=¢, donc AV =7[2hR. + 2hR; + (R? — R?)|e ~ 2344.3 mm?,
d'oll V = (64.9 4 2.4) cm5.

® Déterminer l'incertitude sur la masse du manchon.
Réponse :
® Masse : m = pV. Numériquement : p = 7,80 g.con 2,
® Différentielle : dm = pdV + V dp. Ap=0,0lg.cm3 m=5062g,
® Incertitude : Am=pAV +VAp.  donc Am~ 19.4g, d'oti m = (506 & 20)g,
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@ Annexe D — Dérivées partielles secondes
o Définition

@ Dérivées croisées



D. Dérivées partielles secondes a) Définition

Si f:U C R® — R est dérivable suivant x ou y ou z, la dérivée partielle correspondante
est également une fonction de U C R® — R.
Elle peut donc elle aussi admettre des dérivées partielles.

Définition D.1 (Dérivées partielles secondes)

Soit f : U C R® — R admettant des dérivées partielles telles que celles-ci également
admettent des dérivées partielles.
On peut alors définir 9 dérivées partielles secondes :
Pf Pf O
Ox2  OxOy Ox0z
o0*f 0°f 0*f
dydx Oy  Oydz
o’f  f  Of
0z0x 0z0y 022

2

é L'ordre de dérivation est important! Par exemple

d’abord par rapport a x puis y : f = ) (g) g
dydx Oy \ Ox

Le tableau des dérivées partielles secondes constituent la matrice hessienne de

(cf. cours de Mathématiques de 2¢ année).

f . a5
signifie que I'on dérive
X
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D. Dérivées partielles secondes b) Dérivées croisées

Théoréeme D.3 (Théoreme de Schwarz)

Soit f: U c R® — R dont toutes les dérivées partielles secondes existent. Si, de plus,
ces dérivées secondes sont continues (on dit que f est de classe C?), alors I'ordre de
dérivation n'a pas d’'importance; on dit que les dérivées partielles de f commutent :
o*f o*f o*f o*f o*f o*f

Ox0y - JyOx Ox0z ~ 0z0x O0ydz ~ 0z0y

| A,

Exemple D.4

Soit f définie par f(x,y,z) = y cos(2x) + y?e*.
Vérifions que les dérivées partielles secondes « croisées » coincident.
Posons m = (x, y, z) pour simplifier les écritures.

O (m)= 2 (cos(2x) + 2y ) = —2 sin(2x)
Ox0y T Ox y =
2

ai),;x(m): %(— 2y sin(2x)) =—2 sin(2x)
o°f _ 90 2 32\ _ O*f _2 2 3o .
B0z )= ax e =0 5yoz(™= gy, (') =6y e
82f 8 . 82)( B 8 o .
828x(m):$(_ 2y sm(2x)) =0 azay(m)_a(“s(?X) +2ye )—6ye
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D. Dérivées partielles secondes b) Dérivées croisées

Exemple D.5 (Contre-exemple)

Soit f définie par
2—y?
f(x,y) = X}’m si (x,y) # (0,0)
0 si (x,y) =(0,0)

Calculons les dérivées partielles secondes
croisées en (0,0) :

seesen 00 9f 0y~ 2 (0,0)

I (0,0) = lim i
Oxdy T x— X
of
O°F o 3 (0Y) (0,0

8y8x( ’ )_y|—>0 y

® Dérivées partielles premiéres intermédiaires : ~ © Dérivées partielles secondes :
o o (oY) =f(0y) _ o°f _
; L (0,y) = lim TN ZTOY) 3y 0.0 =1
_ 2
(x 0) = lim flxy) = f(x,0) f(X’O):X o (0,0) = -1
y—=0 y OyOx
0°f *f
<> On observe ainsi que E ay(O ,0) # Byox ——(0,0). ]




@ Annexe E — Formes différentielles
@ Définition

@ Formes différentielles exactes, fermées
@ Théorémes
@ Intégration des formes exactes



E. Formes différentielles a) Déf

Définition E.1 (Forme différentielle)

Soit U un ouvert de R®. Une forme différentielle sur U est une application de la
forme (x,y,z) € U — w(x,y,z) = P(x,y, z)dx + Q(x, y, z)dy + R(x,y,z)dz ot
P, Q, R sont trois fonctions de U — R.

Notation abrégée : |w=Pdx+ Qdy + Rdz|

Si P, Q, R sont de classe C* sur U, w est dite de classe C*.

® Sif: U — R est différentiable sur U, sa différentielle

of . of ,  Of
df = 5 I+ 5, dy + 50z

est une forme différentielle. C'est plus précisément |'application
(4.9:2) > i = G0, 2)db+ 5L (x,y,2)dy + 5 (x,.2)de

® w=yzdx+ xzdy + xy dz
® |'évolution élémentaire d'un systéme thermodynamique (chaleur §Q, énergie dU,
entropie dS...)




E. Formes différentielles b) Formes différentielles exactes, fermées

Définition E.3 (Forme exacte)

Soit w : U — R une forme différentielle sur un ouvert U de R®.

Une forme différentielle w est exacte lorsqu’elle est la différentielle d'une fonction
différentiable.

Il existe donc une fonction différentiable f : U — R telle que w = df.

On dit que f est une primitive de w.

Exemples E.4

® Soit w1 = 2xdx + 2y dy + 2z dz.
En remarquant que 2x dx = d(x2) et de méme avec y et z,
puis en posant fi(x,y,z) = x*> + y? + 2%, on voit que wi = df;.
Donc w; est exacte sur R® et f; est une primitive de ws.
dx d dz
dy , dz

X y z

| A\

® Soit wy =

dx A
En remarquant que — = d(ln |XD et de méme avec y et z,
X

puis en posant f(x, y, z) = In |xyz|, on voit que wx = df, sur (R*)3.
Donc ws est exacte sur R® et £, est une primitive de w,.

® Soit w3 = yzdx + xz dy + xy dz.
En posant f3(x, y, z) = xyz, on voit que w3 = dfs.
Donc w3 est exacte sur R® et f; est une primitive de ws.




E. Formes différentielles b) Formes différentielles exactes, fermées
Définition E.5 (Forme fermée)

Une forme différentielle w de classe C* sur U C R® est fermée sur U lorsqu’en tout
point de U (conditions de fermeture) :
oP  0Q OP OR 0Q OR

A T )

Moyen mnémotechnique : la condition de fermeture se retrouve en écrivant le

9
2 P 0
produit vectoriel symbolique | — [ A | Q| = |0
4 R 0
9
0z
Pour une forme différentielle a deux variables w = Pdx + Qdy, il n'y a qu'une
" P 9@
condition de fermeture : = —.
0 Ox

|
A\

Exemple E.7

Soit w =2y dx + (2x + z) dy + y dz.
ona P _p 0Q OP_ OR 0Q_
dy =~ Ox’ 0z = 0Ox 0z

R
1= a— Donc w est fermée sur R3.

Oy Js




E. Formes différentielles
Théoréeme E.8 (Théoréme de Schwarz (conséquence))

Soit w une forme différentielle de classe C* sur un ouvert U.
w est exacte sur U —> w est fermée sur U.

Contraposée tres utile : sur tout ouvert U,
w de classe C! n’est pas fermée sur U = w n’est pas exacte sur U.

Sur certains ouverts, la réciproque est vraie. J

Théoréeme E.10 (Théoréme de Poincaré)

Soit w une forme différentielle de classe C* sur un produit d’intervalles U.
w est fermée sur U —> w est exacte sur U.

Donc, avec le théoréme précédent, sur un produit d’intervalles,
w fermée <— w exacte.

En fait, le théoréeme de Poincaré est valable sur une classe d'ouverts bien plus vaste
que les simples produits d'intervalles : les ouverts connexes simplement connexes
(i.e. « sans trou ni poignée » )...
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E. Formes différentielles
Exemple E.12 (Equation de van der Waals)

L'équation d’état de van der Waals (P—i— %) (V—pB)=KT relie trois variables P,V/, T,
avec P : pression du gaz, V : volume du gaz, T : température du gaz, «, 3, k > 0: constantes.

Considérons les formes différentielles variations d'énergie et de chaleur

w=~dT + dV et g=w+ PdV (avecy > 0 constante)

© Etude de la forme w
Posons w = w1 dT + wo dV avec wy = v et wpr =

@

W.
® Ona o _ % =0, et alors la forme différentielle w est fermée
ov — oT '

® Les fonctions wi,w» sont de classe C! sur le produit d’intervalles ]0,+oco[x]3,+00]
Le théoreme de Poincaré assure que la forme différentielle w est exacte.

1
), on obtient directement w = d(fyT — g)_

dv
® Remarquant que vz d(— I Vv

@ Etude de la forme q

Onaqg=~dT+ (i—f—P)dv. Posons g=w1 dT +ws dV avec W3:Vk7:3'
On a ow _ =0e 8W3 -k 8W1 Ons
oV taT T Vo B aT’

Ainsi, la forme différentielle g n’est pas fermee, donc pas exacte.




E. Formes différentielles d) Intégration des formes exactes

Exemple E.7 (Suite)

On reprend w = 2y dx + (2x + z) dy + y dz.

C'est une forme différentielle de classe C* sur R® qui est un produit d’intervalles et
elle est fermée. Donc d'apres le théoreme de Poincaré, elle est exacte.

On cherche f tel que w = df.

of of of

On identifie les dérivées partielles de f a P, Q, R et on intégre successivement.
On a donc : %(x,y,z) =2y, g—;(x,y,z):2x+z, %(X,y,z)zy.
On obtient ainsi le systéme ci-dessous

g—;(x,y,z) =2x+z

-y

que I'on va résoudre progressivement par intégrations successives.




E. Formes différentielles d) Intégration des formes exactes
Exemple E.7 (Suite)

of
Ix 2y (1)
of
3y = 2x+z (2)
of
9z y (3)

® On intégre (1) par rapport a x : f(x, y,z) = 2yx + g(y, ).

® On dérive f par rapport a y et on identifie avec (2) :

of _ og _
3y = 2x + t(2) ——2x+z a|n5|a— z.

En mtegrant par rapport a y. gly,z) =zy + h(z)
Pour le moment f(x, y,z) = 2yx + zy + h(z).

©® On dérive f par rapport a z et on identifie avec (3) :

of dh 8f

5 y+ s et (3): = =y, ainsi % = 0 et donc h est constante.

Finalement, il existe A € R tel que f(x,y,z) = 2yx + zy + A.

Avec une condition ponctuelle éventuelle : par exemple si I'on sait que 7(0,0,0) = 4,
alors A\ =4 et f est entierement déterminée.
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