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1. Systémes de coordonnées
Définition 1.1 (Coordonnées polaires)

Un point M du plan peut étre repéré par sa distance r > 0 par rapport a l'origine O
et son angle (lorsque M # 0) 6 = (€, OM) avec 6 € [0, 2x].
Le couple (r,0) est constitué des coordonnées polaires du point M.

—
Avec ces notations, on a la relation |OM = rcos(0)&, + rsin(a)é’yl.
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L'origine O et I'axe (O; &,) sont respectivement appelés péle et axe polaire.
Le point O n'a pas de coordonnées polaires uniques.
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1. Systemes de coordonnées

Les coordonnées cylindriques dans I'espace sont les « polaires + I'altitude ». J

Définition 1.4 (Coordonnées cylindriques)

O_n> projitte le point M de I'espace sur le plan (Oxy) en m et sur 'axe (Oz) en P :
OM=0m+OP, et I'on repére le projeté m par ses coordonnées polaires dans le plan :

—
|OM = rcos(0)€, + rsin(0)é, + z&, avec r € [0,+o0[, 0 € [0,27], z € ]Rl
Le triplet (r, 0, z) est constitué des coordonnées cylindriques du point M.
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1. Systemes de coordonnées

@ Systemes de coordonnées @ Reperes locaux

o Coordonnées cartésiennes o Cartésiens : déplacement élémentaire
o Coordonnées polaires o Polaires : obtention des vecteurs
@ Coordonnées cylindriques o Polaires : dérivées des vecteurs
o Coordonnées sphériques o Polaires : déplacement élémentaire
o Courbes et surfaces coordonnées o Cylindriques : obtention des vecteurs

o Cylindriques : dérivées des vecteurs

o Cylindriques : déplacement élémentaire
o Sphériques : obtention des vecteurs

o Sphériques : dérivées des vecteurs

o Sphériques : déplacement élémentaire

Propriété 1.2 (Passage coordonnées cartésiennes/polaires)

Pour passer des coordonnées cartésiennes aux polaires et inversement :

x = rcos(f) r=+/x2+y?
y=rsin(8) |« |\coste) = %, sin(0) = £

Propriété 1.3 (Courbes coordonnées)

Les courbes coord des en coord polaires sont obtenues en fixant une des
coordonnées :

® ['équation r = cte donne un cercle de centre O ;
© ['équation @ = cte donne une demi-droite d'origine O.
Plus précisément, pour ro > 0 et 0o € [0, 2n[ fixes :
® ['ensemble des points M(ro,8) est le cercle de centre O et de rayon ro ;

*® ['ensemble des points M(r, o) est la demi-droite d'origine O d'angle polaire 0.

1. Systémes de coordonnées

Dans tout ce paragraphe, on se place dans le plan ou I'espace muni d'un repére
orthonormé fixe direct (O; €,,&,) ou (0; &, €, €,).

Coordonnées cartésiennes

Dans I'espace (ou le plan), tout point M peut &tre repéré par ses coordonnées
cartésiennes

Les points m(x, y,0) et P(0,0, z) sont les projetés orthogonaux respectifs de M sur le
plan (Oxy) et I'axe (Oz).
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Courbes coordonnées et maillage

coordonnées cartésiennes coordonnées polaires

® Les points de (Oz) n'ont pas de coordonnées cylindriques uniques.

® Si m et P sont les projetés de M sur le plan (Oxy) et la droite (Oz), alors en
coordonnées cylindriques : M(r, 0, z), m(r,0,0) et P(0,77?, z).

Propriété 1.6 (Passage coordonnées cartésiennes/cylindriques)

Pour passer des coordonnées cartésiennes aux cylindriques et inversement :

x = rcos(f) r= \/xz;{(—yQ
y=rsin(6) | et cos(9) = o sin(0) = %
zZ=Z z=12z

1. Systemes de coordonnées

Définition 1.7 (Coordonnées sphériques)

On repére un point M de I'espace par :

p= HWL distance & I'origine

¢ = (&,0M) colatitude (par rapport au demi-axe (Oz))

0= (5. O_r>n) longitude (par rapport au demi-axe (Ox))
Le triplet (p, ¢, 0) constitue les coordonnées sphériques du point M.
En décomposant comme précédemment OM selon OM = Om+O_P) :

|O—I\)/I = pcos(0) sin(p) & + psin(0)sin(p) &, + pcos() & avecy € [0,7],0 € [0, 27r[|




1. Systémes de coordonnées

Remarque 1.8
® Les points de (Oz) n'ont pas de coordonnées sphériques uniques.

® |l existe plusieurs conventions pour les notations de coordonnées sphériques et
cylindriques. Le choix adopté ici est tel que 6 joue le méme rdle dans les
systémes de coordonnées cylindriques et coordonnées sphériques.

Mais ce n’est pas toujours le cas !
Bien faire attention aux conventions choisies...

1. Systémes de coordonnées

Définition 1.10 (Courbes et surfaces coordonnées)
® Lorsqu’une des trois coordonnées est fixée, et que les deux autres varient, le
point M décrit une surface coordonnée.
® Lorsque deux des trois coordonnées sont fixées et que la troisiéme varie, le point

M décrit une courbe coordonnée.
Ainsi, une courbe coordonnée est l'intersection de deux surfaces coordonnées.

Propriété 1.9 (Passage coordonnées cartésiennes/sphériques)

Pour passer des coordonnées cartésiennes aux sphériques et inversement :

p=v/x2+y2+22

x = pcos(0) sin(y) cos(0) = ———— sin(0) = ——L—

y = psin(0)sin(p) | et VRE+Y VaEEy CRy

z = pcos(ip) cos(p) = —= 2 ——, sin(y) = W 2
VX2t 47 Ve ty te

1. Systémes de coordonnées

Propriété 1.11 (Courbes coordonnées en cylindriques)

Les courbes coord. en coord cylindriques sont obtenues en fixant
deux des coordonnées :

© les équations r = cte, @ = cte donnent une droite paralléle a I'axe (Oz) ;

© les équations r = cte, z = cte donnent un cercle centré sur I'axe (Oz) ;

* les équations @ = cte, z = cte donnent une demi-droite issue de |'axe (Oz)

paralléle au plan (Oxy).

Plus précisément, pour ro > 0, 6o € [0, 27[ et zp € R fixes :
* ['ensemble des points M(ro, 0o, z) est la droite paralléle  'axe (Oz) passant par
le point de coordonnées cylindriques (ro, 6o,0) ;
© ['ensemble des points M(ro, 0, z) est le cercle de centre le point de coordonnées
cartésiennes (0,0, z0) et de rayon ry paralléle au plan (Oxy) ;
© ['ensemble des points M(r, 6o, z0) est la demi-droite issue du point de
coordonnées cartésiennes (0,0, z0) paralléle au plan (Oxy).

Courbes coordonnées en cartésiennes

Les courbes coordonnées sont obtenues en fixant deux des coordonnées :
les équations (x = cte, y = cte) ou (x = cte,z = cte) ou (y = cte, z = cte)
donnent les axes de cordonnées.

Les surfaces coordonnées sont obtenues en fixant une des coordonnées :
les équations x = cte ou y = cte ou z = cte donnent les plans de cordonnées.
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Courbes coordonnées et maillage
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coordonnées cartésiennes coordonnées cylindriques

1. Systémes de coordonnées
Courbes coordonnées en cylindriques
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1. Systémes de coordonnées

Surfaces coordonnées en cylindriques
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Propriété 1.12 (Surfaces coordonnées en cylindriques)

Les surfaces coordonné cylindriques sont obtenues en fixant une
des coordonnées :
® ['équation r = cte donne un cylindre d’axe (Oz) ;

en coord

*© I'équation @ = cte donne un demi-plan contenant I'axe (Oz) ;

© ['équation z = cte donne un plan paralléle au plan (Oxy).

Plus précisément, pour ro > 0, 0o € [0,2n[ et z0 € R fixes :
© ['ensemble des points M(ro, 8, z) est le cylindre d’axe (Oz) et de rayon ro ;
* ['ensemble des points M(r, 0o, z) est le demi-plan d’aréte (Oz) d’'angle polaire 0y ;

® ['ensemble des points M(r,0, z) est le plan d'équation z = z.

1. Systemes de coordonnées
Courbes coordonnées en sphériques

p=cte, p=
0el0,2n]

cercle paralléle

centré sur |'axe (Oz)

cte

1. Systemes de coordonnées

Propriété 1.13 (Courbes coordonnées en sphé
sphériques sont obtenues en fixant deux

ues)

Les courbes coord en coord
des coordonnées :
® les équations p = cte, p = cte donnent un cercle centré sur |'axe (Oz)
(— « paralléle »);
® les équations p = cte, @ = cte donnent un demi-cercle de centre O passant
par les péles (points de coordonnées (0,0,1) et (0,0, —1) — « méridien »);

*® les équations @ = cte, ¢ = cte donnent une demi-droite issue de |'origine O.

Plus précisément, pour po > 0, o € [0,7] et 6y € [0, 27 fixes :

* ['ensemble des points M(po, ¢o,0) est le cercle de centre le point de coordonnées
cartésiennes (0,0, po cos o) et de rayon po sin o paralléle au plan (Oxy) ;

© |'ensemble des points M(po, ¢,60) est le demi-cercle dont un diamétre est le
segment constitué des deux péles et passant par le point de coordonnées cylindriques
(o, 60, 0);

*® ['ensemble des points M(p, o, 60) est la demi-droite issue de O et passant par
le point de coordonnées sphériques (1, o, 0o).
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coordonnées cartésiennes

coordonnées sphériques

Les surfaces coord. en coord

des coordonnées :

sphériques sont obtenues en fixant une

I'équation p = cte donne une sphére de centre O ;
I'équation ¢ = cte donne un demi-céne de centre O et d’axe (Oz).

I'équation @ = cte donne un demi-plan d'aréte (Oz) ;

Plus précisément, pour po > 0, o € [0,7] et 6o € [0, 27| fixes :
I'ensemble des points M(po, ¢, 0) est la sphére de centre O et de rayon po ;

I'ensemble des points M(p, o, 0) est le demi-céne de centre O, d'axe (Oz) et
de demi-angle au sommet g ;

I'ensemble des points M(p, ¢, 6o) est le demi-plan d’aréte (Oz) d’angle azimutal .

Surfaces coordonnées
En coordonnées cartésiennes, les surfaces coordonnées sont des plans.

En coordonnées cylindriques, les surfaces coordonnées sont soit des cylindres
soit des demi-plans soit des plans.

En coordonnées sphériques, les surfaces coordonnées sont soit des sphéres, soit
des demi-cones, soit des demi-plans.

Courbes coordonnées
En coordonnées cartésiennes, les courbes coordonnées sont des droites.

En coordonnées cylindriques, les courbes coordonnées sont soit des
demi-droites, soit des droites, soit des cercles.

En coordonnées sphériques, les courbes coordonnées sont soit des demi-droites,
soit des demi-cercles, soit des cercles.

Il est inutile de retenir tous ces résultats, il est préférable de savoir les retrouver a
|'aide de graphiques.

Dans un systéme de coordonnées, le repére local est constitué du point M comme
origine et des vecteurs tangents normés aux courbes coordonnées, orientés dans le
sens croissant de la variable.

Nous allons décrire les différents repéres locaux obtenus dans les systemes de
coordonnées cartésiennes, polaires, cylindriques et sphériques en les construisant
du point de vue différentiel.

Nous allons aussi définir les déplacements élémentaires dans chaque repére local.
Principe : lorsque les coordonnées subissent de petites variations :

(déplacement élémentaire d'un point M) ~ (dOM différentielle du vecteur OM).

Méthode théorique

—
Formule différentielle : dOM = 00de + Mdy + {)OMdz.
Ix dy 0z

—
Or OM = x& +y&, + z§&,.

Les vecteurs €, , €, €, sont fixes donc leurs dérivées en x, y, z sont nulles.

oOM
Donc 3 = (18, +x0)+0+0 =g
X
De méme BOMfé et OOM*é‘
oy Y 0z ¢

Méthode intuitive :

Le point est infiniment
proche de .
Le vecteur variation de position élémentaire est

assimilé a

dx®

On cherche le repére local (M; €, &,) ot M est le point du plan défini par

[OM = reos(6) &, + rsin(6) &, |

Y

S
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=

On calcule I'expression des vecteurs tangents puis on les norme.
Vecteur unitaire tangent 20N
3 la courbe coordonnée 0 = cste : § = —2L;
— [zl = 8
a90M L o €, r
avec —— = cos(0) & +sin(0) €,
or
qui est de norme 1 donc : R M
1
[E=cos(®) . +sin(6)E, | i
i
q i
Vecteur unitaire tangent a la 208 N i
courbe coordonnée r = cste : é‘g ==L |
[l i 0
s 50 — !
oOM in(0) & e ey i
avec —g = —rsin(0) & + rcos(0) &, N :
qui est de norme r donc : [0 =) g X
w
| &, = —sin(0) &, + cos(0) €, |
On remarque que
OM =ré | et |€,¢€, sont orthogonaux
24

%eé = %(cos(()) & +sin(0) €,) = —sin(0) & + 0 + cos(6) € + i= €,, soit :
%, o, . _ o APl AP o
o 0—9(— sin(6) & + cos(0) €,) = — cos(0) & +0 —sin(0) € +0 = —&,, soit

An 5 N N q ™
= Une dérivation par rapport a 6 correspond a une rotation de 3 du vecteur.




1¢" calcul : formule différentielle

0 0
= dr + —
or a0
Récupérons les dérivées partielles de par
rapport a r, ) en fonction des vecteurs &, €, :

de

2] N a9 =
=é et —(——=re

ar " o v

donc :

2¢ calcul : calcul différentiel

Partant de = ré&, on trouve (différentielle produit) :
- Sy 08, 08, B
= (dr)é + r(dé,) =dré + r( ar dr + 50 (19) =
=~ =<~
0 &,

Remarque : le « rectangle curviligne élémentaire » a pour aire .
Cet « élé de surface élé aire » sera utilisé dans le changement de variables en
coordonnées polaires dans les intégrales doubles (voir chapitre Intégrales multiples).

En résumé, on a obtenu les formules ci-dessous.
Plutdt que de les apprendre par cceur, il est préférable de savoir les retrouver par la
méthode visuelle.

En coordonnées polaires, le repére local (orthonormé direct) est (M; €,,€,) ol
€ = cos(0) & +sin(0) €,
&, = —sin(0) & + cos(0) €,

Le vecteur-déplacement est donné, dans les bases cartésienne et polaire, par

—
OM = rcos(0) & + rsin(0) &, = ré,

et le déplacement élémentaire est donné, dans la base polaire, par :

dOM =dré, +rdf g,

On cherche le repére local (M; €, &,,€,) ou M est le point de I'espace défini par

| OM = rcos(0) € + rsin(0) €, + z €,

Par rapport aux polaires, il n'y a que l'altitude z a rajouter.

el}

Ny
RO O —- 1

On calcule I'expression des vecteurs tangents puis on les norme.

Vecteur unitaire tangent a la courbe coordonnée (6 = cste, z = cste) :

—
o d0M
é = 9L ou a été calculé en polaires, donc

H o0M
ar

‘ or

& = cos(0) & +sin(0) &, |

Vecteur unitaire tangent a la courbe coordonnée (r = cste, z = cste) :
—

aom 0_’
g = fai, ol a été calculé en polaires, donc
dOM“ or
I

| &, = —sin(0) &, + cos(0) €, |

Vecteur unitaire tangent a la courbe coordonnée (6 = cste, r = cste) :
—
o0OM

g2 —_ 0
€= ‘ "ﬁ/’H aveckun=

dz

= &, qui est de norme 1, donc

€,
- ee
M
e | —=
‘A s €
E
i
-
o
>
.

On remarque que

OM=ré, +z¢&,| et |§,, é,,€, sont orthogonaux et & A&, =&,

€ et €, dépendent de 6 (mais ni de r, ni de z)

08~ 08
G TG
1 &
9% _5 %o _3p
or g Jz 0
€, est constant
08, -~ 08 - 08 =
or =% a5 =0 02_0|
On remarque que
% _ é, et % = -8
a0 — ° 90—

== Une dérivation par rapport a 0 correspond a une rotation de 5 du vecteur.

1¢ calcul : formule différentielle

0 0 0
=5 dr + Wd/) +

Récupérons les dérivées partielles
—

N
5 ¢ <\ rae

de OM par rapport a r, 0,

en fonction des vecteurs €, €, €, :

7] . 9 . 0
-8 =

ar % Tan "% g

—

2¢ calcul : calcul différentiel

—
Partant de OM = r &, + z €,, on trouve

= (dr) & + r(dé,) + (dz) & + z(d&,)

e 0¢€, 0&, 0¢€, - 0§, 0§, 0§,
7dre,+r< or dr+ 20 do+ (?Zdz +dzé,+z or dr+ 20 do+ 9, 42
=~ =~ =~ =~ =~ =~
0 & 0 0 0 0
R que : le « parallélépipéde curviligne élé aire » a pour volume .
Cet « élé de volume élé aire » sera utilisé dans le changement de variables en

coordonnées cylindriques dans les intégrales triples (cf. chapitre Intégrales multiples).

En résumé, on a obtenu les formules ci-dessous.
Plutét que de les apprendre par cceur, il est préférable de savoir les retrouver par la
méthode visuelle.

En coordonnées cylindriques, le repére local (orthonormé direct) est (M; €., €,, €,)
ot

& = cos(0) &, +sin(0) €,
&, = —sin(0) & + cos(0) &,
g, =&,

~

e vecteur-déplacement est donné, dans les bases cartésienne et cylindrique, par
e - . — — - -
OM = rcos(0) & + rsin(0) €, + z€ =ré +z€,

et le déplacement élémentaire est donné, dans la base cylindrique, par :

[a0M = drée, + raoe, +dz&,

On cherche le repére local (M; €,,€,,€&,) ou M est le point de I'espace défini par

W/I = pcos(8) sin(p) & + psin(0)sin(p) €, + pcos(y) &

=

Y

Y ol




(1)

', €, €, ne dépendent pas de p

On calcule I'expression des vecteurs tangents puis on les norme. é’)
Vecteur unitaire tangent 3 la courbe coordonnée ¢ = cste et = cste : b @ -0 98, -0 98,
0M — dp dp dp
- D oOM . = . . = = =
& = o avec —o == cos(6) sin(p) €, + sin(0) sin(p) &, + cos(p) &, e 9 9
H@H i 0 2 = —(cos(6) sin(¢) €, + sin(8) sin(¢) &, + cos(

Do Oyp

qui est de norme 1, donc : = cos(f) cos(i) & + sin(f) cos(y) €, —sin(p) €, = €,

| €, = cos(0) sin() & + sin(0) sin(ip) &, + cos(p) &, | M, &
é’ et un calcul similaire donne 8—; = —&,, et & ne dépend pas de ¢, soit :
Vecteur unitaire tangent 3 la courbe coordonnée p = cste et 6 = cste : Z‘m 9z BE B
()OM — 3 P _z Y _ _g Z0 _5
d0M ) ) P €y ) & 90 & o
g Goy g g _ g © o 0
&, = H pr H vec 90 pcos(0) cos() & + psin(0) cos(p) €, — psin(y) &
qui est de norme p, donc : O é)y {i;é 6;9 {;;9 — cos(0) &, — sin(0) &, .
| €, = cos(0) cos(y) &, + sin(0) cos() &, — sin(y) €, | > On remarque que
8 sin(p)&, + cos()€, = sin()(cos(8) sin() & + sin(6) sin(p) &, + cos(¢) €,)
xT —
Vecteur unitaire tangent a la courbe coordonnée p = cste et ¢ = cste : 2] *“’5(”)(?5(9) cos( ) =+ efafe) cos(i) 4 5"21 () {,)
P or aO_M = cos(0) (cos? () +sin*()) &, +sm(9)(cos (A,a)+sm (¥)) &
- _ oo _ . . = BT\ _
& = ”@ avec —g= = —p sin(0) sin() €, + pcos(0) sin() €, _ Z)(s(cg)s(éf)j;(n,z(zz) §c05($)5|n(¢)) ,
qui est de norme psin(yp), donc : O e GUe NED BE 9%,
soit| 2 — g;j S =2 S — 0 — _gj g — »)é
[6, = —sn(®)& + cos(0) &, | OM = p&,| et [Z,,5,,¢, sont orthogonaux et _&, A&, = &, tlgg =sin(0)& Gy =cos(p)§ Sy = —sin(p) €, — cos(p) &,
35 36
1 calcul : formule différentielle
9 ) ) En résumé, on a obtenu les formules ci-dessous. M (s @EniEnde 3
= o ——dp+ F] ——do+ a0 ——do Plutdt que de les apprendre par cceur, il est préférable de savoir les retrouver par la & ’
méthode visuelle. « OM dans un systéme de coordonnées

Recuperons les dérivées partielles donné dans la base cartésienne fixe »

de OM par rapport a p, 0 et

P — , j
en fonction des vecteurs e/,, EPEN « OM dans un systéme de coordonnées

. B B é’z dom En coordonnées sphériques, le repére local (orthonormé direct) est (M; €,, €, €,) ol donné dans la base locale associée 3 ce systéme »
op % oy P a0 PP €, = cos(0) sin(y) & + sin(0)sin(p) €, 4 cos(y) €, Exemples :
p ® [
= == a AR - 5
= €, = cos(f) cos(@) €, +sin(0) cos() &, —sin(p) &, OM en coordonnées cylindriques dans la base cartésienne fixe :
P = —
&, = —sin(0) & + cos(0) &, | OM = rcos(0)&, + rsin(0)€, + z&,
2¢ calcul : calcul différentiel . , . L. N
Partant de W T n— Le vecteur-déplacement est donné, dans les bases cartésienne et sphérique, par OM en coordonnées cylindriques dans la base locale associée :
o1 N = =
~ . . €, OM = pcos(0)sin(p) & + psin(8)sin(¢) €, + pcos(p) €, = p€
:(dp)e,,+p(de[,):dpe/,-%—p( ) peos(0)sin(¢) & + psin(0) sin(¢) & + pcos(v) & = p&, .
et le déplacement élémentaire est donné, dans la base sphérique, par : OM en coordonnées sphériques dans la base cartésienne fixe :
0 g sinp €, X ~ - - = =
= 2 — OM = pcos(0)sin(p)é, + psin(0)sin(p)&, + pcos(p)é
[40W = 402, + pdpe, + p smip) 03, | . pcos(0) sin(p)é, + psin(0)sin(p)&, + pcos(p)é,
R que : le « parallélépipéde curviligne élé aire » a pour volume . OM en coordonnées sphériques dans la base locale associée :
Cet « élé de volume élé aire » sera utilisé dans le changement de variables en =
coordonnées sphériques dans les intégrales triples (cf. chapitre Intégrales multiples).

Systémes de coordonnées classiques : cartésiennes, polaires,
cylindriques et sphériques

Passage d'un systeme a un autre

Détermination des repéres locaux associés

Description des lignes et surfaces coordonnées

Calcul des dérivées partielles des vecteurs des repéres locaux

Calcul des déplacements élémentaires correspondants
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