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1. Systèmes de coordonnées a) Coordonnées cartésiennes

Dans tout ce paragraphe, on se place dans le plan ou l’espace muni d’un repère
orthonormé fixe direct (O;~ex ,~ey ) ou (O;~ex ,~ey ,~ez ).

Coordonnées cartésiennes
Dans l’espace (ou le plan), tout point M peut être repéré par ses coordonnées
cartésiennes

−−→
OM = x~ex + y~ey + z~ez

Les points m(x , y , 0) et P(0, 0, z) sont les projetés orthogonaux respectifs de M sur le
plan (Oxy) et l’axe (Oz). 1

1. Systèmes de coordonnées b) Coordonnées polaires

Définition 1.1 (Coordonnées polaires)
Un point M du plan peut être repéré par sa distance r > 0 par rapport à l’origine O
et son angle (lorsque M 6= O) θ = (~ex ,

−−→
OM) avec θ ∈ [0, 2π[.

Le couple (r , θ) est constitué des coordonnées polaires du point M.

Avec ces notations, on a la relation
−−→
OM = r cos(θ)~ex + r sin(θ)~ey .

L’origine O et l’axe (O;~ex ) sont respectivement appelés pôle et axe polaire.
Le point O n’a pas de coordonnées polaires uniques.
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1. Systèmes de coordonnées b) Coordonnées polaires

Propriété 1.2 (Passage coordonnées cartésiennes/polaires)
Pour passer des coordonnées cartésiennes aux polaires et inversement :{

x = r cos(θ)
y = r sin(θ)

et
{
r =

√
x2 + y 2

cos(θ) = x
r , sin(θ) = y

r

Propriété 1.3 (Courbes coordonnées)
Les courbes coordonnées en coordonnées polaires sont obtenues en fixant une des
coordonnées :
• l’équation r = cte donne un cercle de centre O ;
• l’équation θ = cte donne une demi-droite d’origine O.

Plus précisément, pour r0 > 0 et θ0 ∈ [0, 2π[ fixes :
• l’ensemble des points M(r0, θ) est le cercle de centre O et de rayon r0 ;
• l’ensemble des points M(r , θ0) est la demi-droite d’origine O d’angle polaire θ0.
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1. Systèmes de coordonnées b) Coordonnées polaires

Courbes coordonnées et maillage

coordonnées cartésiennes coordonnées polaires
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1. Systèmes de coordonnées c) Coordonnées cylindriques

Les coordonnées cylindriques dans l’espace sont les polaires + l’altitude .

Définition 1.4 (Coordonnées cylindriques)
On projette le point M de l’espace sur le plan (Oxy) en m et sur l’axe (Oz) en P :
−−→
OM=

−−→
Om+

−→
OP, et l’on repère le projeté m par ses coordonnées polaires dans le plan :

−−→
OM = r cos(θ)~ex + r sin(θ)~ey + z~ez avec r ∈ [0,+∞[, θ ∈ [0, 2π[, z ∈ R

Le triplet (r , θ, z) est constitué des coordonnées cylindriques du point M.

5

1. Systèmes de coordonnées c) Coordonnées cylindriques

Remarque 1.5
• Les points de (Oz) n’ont pas de coordonnées cylindriques uniques.
• Si m et P sont les projetés de M sur le plan (Oxy) et la droite (Oz), alors en
coordonnées cylindriques : M(r , θ, z), m(r , θ, 0) et P(0, ??, z).

Propriété 1.6 (Passage coordonnées cartésiennes/cylindriques)
Pour passer des coordonnées cartésiennes aux cylindriques et inversement :

x = r cos(θ)
y = r sin(θ)
z = z

et


r =

√
x2 + y 2

cos(θ) = x
r , sin(θ) = y

r
z = z
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1. Systèmes de coordonnées d) Coordonnées sphériques

Définition 1.7 (Coordonnées sphériques)
On repère un point M de l’espace par :

ρ =
∥∥−−→OM∥∥ distance à l’origine

ϕ =
(
~ez ,
−−→
OM

)
colatitude (par rapport au demi-axe (Oz))

θ =
(
~ex ,
−→
Om
)

longitude (par rapport au demi-axe (Ox))
Le triplet (ρ, ϕ, θ) constitue les coordonnées sphériques du point M.
En décomposant comme précédemment

−−→
OM selon

−−→
OM=

−−→
Om+

−→
OP :

−−→
OM = ρ cos(θ) sin(ϕ)~ex + ρ sin(θ) sin(ϕ)~ey + ρ cos(ϕ)~ez avecϕ ∈ [0, π], θ ∈ [0, 2π[
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1. Systèmes de coordonnées d) Coordonnées sphériques

Remarque 1.8
• Les points de (Oz) n’ont pas de coordonnées sphériques uniques.
• Il existe plusieurs conventions pour les notations de coordonnées sphériques et
cylindriques. Le choix adopté ici est tel que θ joue le même rôle dans les
systèmes de coordonnées cylindriques et coordonnées sphériques.

Mais ce n’est pas toujours le cas !
Bien faire attention aux conventions choisies...

Propriété 1.9 (Passage coordonnées cartésiennes/sphériques)
Pour passer des coordonnées cartésiennes aux sphériques et inversement :


x = ρ cos(θ) sin(ϕ)
y = ρ sin(θ) sin(ϕ)
z = ρ cos(ϕ)

et


ρ =

√
x2 + y 2 + z2

cos(θ) = x√
x2 + y 2

, sin(θ) = y√
x2 + y 2

cos(ϕ) = z√
x2 + y 2 + z2

, sin(ϕ) =
√
x2 + y 2√

x2 + y 2 + z2
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Définition 1.10 (Courbes et surfaces coordonnées)
• Lorsqu’une des trois coordonnées est fixée, et que les deux autres varient, le
point M décrit une surface coordonnée.
• Lorsque deux des trois coordonnées sont fixées et que la troisième varie, le point
M décrit une courbe coordonnée.
Ainsi, une courbe coordonnée est l’intersection de deux surfaces coordonnées.

Courbes coordonnées en cartésiennes
Les courbes coordonnées sont obtenues en fixant deux des coordonnées :
les équations (x = cte, y = cte) ou (x = cte, z = cte) ou (y = cte, z = cte)
donnent les axes de cordonnées.

Les surfaces coordonnées sont obtenues en fixant une des coordonnées :
les équations x = cte ou y = cte ou z = cte donnent les plans de cordonnées.
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées
Courbes coordonnées en cylindriques

O y

z

x

•

θ r

•z

r =cte, θ=cte
z∈ ]−∞,+∞[
droite verticale

r =cte, z =cte
θ∈ [0, 2π[

cercle horizontal
centré sur l’axe (Oz)

θ=cte, z =cte
r ∈ [0,+∞[

demi-droite horizontale
issue de l’axe (Oz)

•

M
•
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Propriété 1.11 (Courbes coordonnées en cylindriques)
Les courbes coordonnées en coordonnées cylindriques sont obtenues en fixant
deux des coordonnées :
• les équations r = cte, θ = cte donnent une droite parallèle à l’axe (Oz) ;
• les équations r = cte, z = cte donnent un cercle centré sur l’axe (Oz) ;
• les équations θ = cte, z = cte donnent une demi-droite issue de l’axe (Oz)

parallèle au plan (Oxy).

Plus précisément, pour r0 > 0, θ0 ∈ [0, 2π[ et z0 ∈ R fixes :
• l’ensemble des points M(r0, θ0, z) est la droite parallèle à l’axe (Oz) passant par

le point de coordonnées cylindriques (r0, θ0, 0) ;
• l’ensemble des points M(r0, θ, z0) est le cercle de centre le point de coordonnées

cartésiennes (0, 0, z0) et de rayon r0 parallèle au plan (Oxy) ;
• l’ensemble des points M(r , θ0, z0) est la demi-droite issue du point de

coordonnées cartésiennes (0, 0, z0) parallèle au plan (Oxy).
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Courbes coordonnées et maillage

coordonnées cartésiennes coordonnées cylindriques
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées
Surfaces coordonnées en cylindriques

O y

z

x

•

θ r

z •

θ=cte, r ∈ [0,+∞[
z∈ ]−∞,+∞[

demi-plan vertical
d’arête l’axe (Oz)

z =cte, r ∈ [0,+∞[
θ∈ [0, 2π[

plan horizontal

r =cte, θ∈ [0, 2π[
z∈ ]−∞,+∞[
cylindre vertical

d’axe (Oz)

•

M
•
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Propriété 1.12 (Surfaces coordonnées en cylindriques)
Les surfaces coordonnées en coordonnées cylindriques sont obtenues en fixant une
des coordonnées :
• l’équation r = cte donne un cylindre d’axe (Oz) ;
• l’équation θ = cte donne un demi-plan contenant l’axe (Oz) ;
• l’équation z = cte donne un plan parallèle au plan (Oxy).

Plus précisément, pour r0 > 0, θ0 ∈ [0, 2π[ et z0 ∈ R fixes :
• l’ensemble des points M(r0, θ, z) est le cylindre d’axe (Oz) et de rayon r0 ;
• l’ensemble des points M(r , θ0, z) est le demi-plan d’arête (Oz) d’angle polaire θ0 ;
• l’ensemble des points M(r , θ, z0) est le plan d’équation z = z0.
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées
Courbes coordonnées en sphériques

x

O y

z

•

ϕ

θ

ρ

ρ=cte, θ=cte
ϕ∈ [0, π]

demi-cercle méridien
centré en O

passant par les pôles

ρ=cte, ϕ=cte
θ∈ [0, 2π[

cercle parallèle
centré sur l’axe (Oz)

θ=cte, ϕ=cte
ρ∈ [0,+∞[

demi-droite radiale
issue de O

•

M •
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Propriété 1.13 (Courbes coordonnées en sphériques)
Les courbes coordonnées en coordonnées sphériques sont obtenues en fixant deux
des coordonnées :
• les équations ρ = cte, ϕ = cte donnent un cercle centré sur l’axe (Oz)
(→ parallèle ) ;
• les équations ρ = cte, θ = cte donnent un demi-cercle de centre O passant
par les pôles (points de coordonnées (0, 0, 1) et (0, 0,−1) → méridien ) ;
• les équations θ = cte, ϕ = cte donnent une demi-droite issue de l’origine O.

Plus précisément, pour ρ0 > 0, ϕ0 ∈ [0, π] et θ0 ∈ [0, 2π[ fixes :
• l’ensemble des points M(ρ0, ϕ0, θ) est le cercle de centre le point de coordonnées
cartésiennes (0, 0, ρ0 cosϕ0) et de rayon ρ0 sinϕ0 parallèle au plan (Oxy) ;
• l’ensemble des points M(ρ0, ϕ, θ0) est le demi-cercle dont un diamètre est le
segment constitué des deux pôles et passant par le point de coordonnées cylindriques
(ρ0, θ0, 0);
• l’ensemble des points M(ρ, ϕ0, θ0) est la demi-droite issue de O et passant par
le point de coordonnées sphériques (1, ϕ0, θ0).
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Courbes coordonnées et maillage

coordonnées cartésiennes coordonnées sphériques
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées
Surfaces coordonnées en sphériques

x

O y

z

•

ϕ

θ

ρ

ρ=cte, θ∈ [0, 2π[
ϕ∈ [0, π]
sphère

de centre O
de rayon ρ

ϕ=cte, θ∈ [0, 2π[
ρ∈ [0,+∞[
demi-cône

de sommet O
d’axe (Oz)

θ=cte, ϕ∈ [0, π]
ρ∈ [0,+∞[

demi-plan vertical
d’arête l’axe (Oz)

•

M •
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Propriété 1.14 (Surfaces coordonnées en sphériques)
Les surfaces coordonnées en coordonnées sphériques sont obtenues en fixant une
des coordonnées :
• l’équation ρ = cte donne une sphère de centre O ;
• l’équation ϕ = cte donne un demi-cône de centre O et d’axe (Oz).
• l’équation θ = cte donne un demi-plan d’arête (Oz) ;

Plus précisément, pour ρ0 > 0, ϕ0 ∈ [0, π] et θ0 ∈ [0, 2π[ fixes :
• l’ensemble des points M(ρ0, ϕ, θ) est la sphère de centre O et de rayon ρ0 ;
• l’ensemble des points M(ρ, ϕ0, θ) est le demi-cône de centre O, d’axe (Oz) et
de demi-angle au sommet ϕ0 ;
• l’ensemble des points M(ρ, ϕ, θ0) est le demi-plan d’arête (Oz) d’angle azimutal θ0.
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1. Systèmes de coordonnées e) Courbes et surfaces coordonnées

Résumé : courbes et surfaces coordonnées dans les différents systèmes
Surfaces coordonnées
• En coordonnées cartésiennes, les surfaces coordonnées sont des plans.
• En coordonnées cylindriques, les surfaces coordonnées sont soit des cylindres
soit des demi-plans soit des plans.
• En coordonnées sphériques, les surfaces coordonnées sont soit des sphères, soit
des demi-cônes, soit des demi-plans.

Courbes coordonnées
• En coordonnées cartésiennes, les courbes coordonnées sont des droites.
• En coordonnées cylindriques, les courbes coordonnées sont soit des
demi-droites, soit des droites, soit des cercles.
• En coordonnées sphériques, les courbes coordonnées sont soit des demi-droites,
soit des demi-cercles, soit des cercles.

Remarque 1.15
Il est inutile de retenir tous ces résultats, il est préférable de savoir les retrouver à
l’aide de graphiques.
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Repère local
Dans un système de coordonnées, le repère local est constitué du point M comme
origine et des vecteurs tangents normés aux courbes coordonnées, orientés dans le
sens croissant de la variable.

Nous allons décrire les différents repères locaux obtenus dans les systèmes de
coordonnées cartésiennes, polaires, cylindriques et sphériques en les construisant
du point de vue différentiel.
Nous allons aussi définir les déplacements élémentaires dans chaque repère local.
Principe : lorsque les coordonnées subissent de petites variations :
(déplacement élémentaire d’un point M) ≈ (d

−−→
OM différentielle du vecteur

−−→
OM).
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2. Repères locaux a) Cartésiens : déplacement élémentaire

Méthode théorique

Formule différentielle : d
−−→
OM = ∂

−−→
OM
∂x dx + ∂

−−→
OM
∂y dy + ∂

−−→
OM
∂z dz.

Or
−−→
OM = x ~ex + y ~ey + z ~ez .

Les vecteurs ~ex ,~ey ,~ez sont fixes donc leurs dérivées en x , y , z sont nulles.

Donc ∂
−−→
OM
∂x = (1~ex + x~0) +~0 +~0 = ~ex .

De même, ∂
−−→
OM
∂y = ~ey et ∂

−−→
OM
∂z = ~ez .

Dans la base cartésienne : d
−−→
OM = dx ~ex + dy ~ey + dz ~ez

Méthode intuitive :
Le point N(x + dx , y + dy , z + dz) est infiniment
proche de M(x , y , z).
Le vecteur variation de position élémentaire est−−→
MN = dx ~ex + dy ~ey + dz ~ez assimilé à d

−−→
OM.
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2. Repères locaux b) Polaires : obtention des vecteurs

On cherche le repère local (M;~er ,~eθ ) où M est le point du plan défini par

−−→
OM = r cos(θ)~ex + r sin(θ)~ey
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2. Repères locaux b) Polaires : obtention des vecteurs

On calcule l’expression des vecteurs tangents puis on les norme.
• Vecteur unitaire tangent
à la courbe coordonnée θ = cste : ~er =

∂
−→
OM
∂r∥∥ ∂−→OM
∂r

∥∥
avec ∂

−−→
OM
∂r = cos(θ)~ex + sin(θ)~ey

qui est de norme 1 donc :

~er = cos(θ)~ex + sin(θ)~ey

• Vecteur unitaire tangent à la
courbe coordonnée r = cste : ~e

θ
=

∂
−→
OM
∂θ∥∥ ∂−→OM
∂θ

∥∥
avec ∂

−−→
OM
∂θ

= −r sin(θ)~ex + r cos(θ)~ey

qui est de norme r donc :

~e
θ

= − sin(θ)~ex + cos(θ)~ey

On remarque que

−−→
OM = r ~er et ~er ,~eθ sont orthogonaux
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2. Repères locaux c) Polaires : dérivées des vecteurs

• ~er et ~e
θ
dépendent de θ mais pas de r , donc :

∂~er
∂r =

∂~e
θ

∂r =~0

• ∂~er
∂θ

= ∂

∂θ

(
cos(θ)~ex + sin(θ)~ey

)
= − sin(θ)~ex +~0 + cos(θ)~ey +~0 = ~e

θ
, soit :

∂~er
∂θ

= ~e
θ

• ∂~e
θ

∂θ
= ∂

∂θ

(
− sin(θ)~ex + cos(θ)~ey

)
= − cos(θ)~ex +~0− sin(θ)~ey +~0 = −~er , soit :

∂~e
θ

∂θ
= −~er

=⇒ Une dérivation par rapport à θ correspond à une rotation de π2 du vecteur.
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2. Repères locaux d) Polaires : déplacement élémentaire

• 1er calcul : formule différentielle

d
−−→
OM = ∂

−−→
OM
∂r dr + ∂

−−→
OM
∂θ

dθ

Récupérons les dérivées partielles de
−−→
OM par

rapport à r , θ en fonction des vecteurs ~er ,~eθ :

∂
−−→
OM
∂r = ~er et ∂

−−→
OM
∂θ

= r ~e
θ

donc :
d
−−→
OM = dr ~er + r dθ~e

θ

• 2e calcul : calcul différentiel
Partant de

−−→
OM = r ~er on trouve (différentielle produit) :

d
−−→
OM = (dr)~er + r(d~er ) = dr ~er + r

(
∂~er
∂r︸︷︷︸
~0

dr + ∂~er
∂θ︸︷︷︸
~e
θ

dθ
)

= dr ~er + rdθ~e
θ

Remarque : le rectangle curviligne élémentaire a pour aire r dr dθ.
Cet élément de surface élémentaire sera utilisé dans le changement de variables en
coordonnées polaires dans les intégrales doubles (voir chapitre Intégrales multiples).
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2. Repères locaux d) Polaires : déplacement élémentaire

En résumé, on a obtenu les formules ci-dessous.
Plutôt que de les apprendre par cœur, il est préférable de savoir les retrouver par la
méthode visuelle.

Propriété 2.1 (Repère local polaire)
En coordonnées polaires, le repère local (orthonormé direct) est (M;~er ,~eθ ) où{

~er = cos(θ)~ex + sin(θ)~ey

~e
θ

= − sin(θ)~ex + cos(θ)~ey

Le vecteur-déplacement est donné, dans les bases cartésienne et polaire, par
−−→
OM = r cos(θ)~ex + r sin(θ)~ey = r ~er

et le déplacement élémentaire est donné, dans la base polaire, par :

d
−−→
OM = dr ~er + r dθ~e

θ
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2. Repères locaux e) Cylindriques : obtention des vecteurs

On cherche le repère local (M;~er ,~eθ ,~ez ) où M est le point de l’espace défini par
−−→
OM = r cos(θ)~ex + r sin(θ)~ey + z ~ez

Par rapport aux polaires, il n’y a que l’altitude z à rajouter.
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2. Repères locaux e) Cylindriques : obtention des vecteurs

On calcule l’expression des vecteurs tangents puis on les norme.
• Vecteur unitaire tangent à la courbe coordonnée (θ = cste, z = cste) :

~er =
∂
−→
OM
∂r∥∥ ∂−→OM
∂r

∥∥ où ∂
−−→
OM
∂r a été calculé en polaires, donc

~er = cos(θ)~ex + sin(θ)~ey

• Vecteur unitaire tangent à la courbe coordonnée (r = cste, z = cste) :

~e
θ

=
∂
−→
OM
∂θ∥∥ ∂−→OM
∂θ

∥∥ où ∂
−−→
OM
∂r a été calculé en polaires, donc

~e
θ

= − sin(θ)~ex + cos(θ)~ey

• Vecteur unitaire tangent à la courbe coordonnée (θ = cste, r = cste) :

~ez =
∂
−→
OM
∂z∥∥ ∂−→OM
∂z

∥∥ avec ∂
−−→
OM
∂z = ~ez qui est de norme 1, donc

~ez = ~ez
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2. Repères locaux e) Cylindriques : obtention des vecteurs

On remarque que
−−→
OM = r ~er + z ~ez et ~er ,~eθ ,~ez sont orthogonaux et ~er ∧~eθ = ~ez
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2. Repères locaux f) Cylindriques : dérivées des vecteurs

• ~er et ~e
θ
dépendent de θ (mais ni de r , ni de z)

∂~er
∂r =~0 ∂~er

∂z =~0
∂~e
θ

∂r =~0
∂~e
θ

∂z =~0

• ~ez est constant
∂~ez
∂r =~0, ∂~ez

∂θ
=~0, ∂~ez

∂z =~0

• On remarque que
∂~er
∂θ

= ~e
θ

et
∂~e
θ

∂θ
= −~er

=⇒ Une dérivation par rapport à θ correspond à une rotation de π
2 du vecteur.
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2. Repères locaux g)Cylindriques : déplacement élémentaire

• 1er calcul : formule différentielle

d
−−→
OM = ∂

−−→
OM
∂r dr + ∂

−−→
OM
∂θ

dθ + ∂
−−→
OM
∂z dz

Récupérons les dérivées partielles
de
−−→
OM par rapport à r , θ, z

en fonction des vecteurs ~er ,~eθ ,~ez :
∂
−−→
OM
∂r = ~er

∂
−−→
OM
∂θ

= r~e
θ

∂
−−→
OM
∂z = ~ez

=⇒ d
−−→
OM = dr ~er + r dθ~e

θ
+ dz ~ez

• 2e calcul : calcul différentiel
Partant de

−−→
OM = r ~er + z ~ez , on trouve

d
−−→
OM = (dr)~er + r(d~er ) + (dz)~ez + z(d~ez )

= dr ~er +r
(
∂~er
∂r︸︷︷︸
~0

dr+ ∂~er
∂θ︸︷︷︸
~e
θ

dθ+ ∂~er
∂z︸︷︷︸
~0

dz
)

+dz ~ez +z
(
∂~ez
∂r︸︷︷︸
~0

dr+ ∂~ez
∂θ︸︷︷︸
~0

dθ+ ∂~ez
∂z︸︷︷︸
~0

dz
)

= dr ~er + r dθ~e
θ

+ dz ~ez

Remarque : le parallélépipède curviligne élémentaire a pour volume r dr dθ dz.
Cet élément de volume élémentaire sera utilisé dans le changement de variables en
coordonnées cylindriques dans les intégrales triples (cf. chapitre Intégrales multiples).
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2. Repères locaux g)Cylindriques : déplacement élémentaire

En résumé, on a obtenu les formules ci-dessous.
Plutôt que de les apprendre par cœur, il est préférable de savoir les retrouver par la
méthode visuelle.

Propriété 2.2 (Repère local cylindrique)
En coordonnées cylindriques, le repère local (orthonormé direct) est (M;~er ,~eθ ,~ez )
où 

~er = cos(θ)~ex + sin(θ)~ey

~e
θ

= − sin(θ)~ex + cos(θ)~ey

~ez = ~ez

Le vecteur-déplacement est donné, dans les bases cartésienne et cylindrique, par
−−→
OM = r cos(θ)~ex + r sin(θ)~ey + z ~ez = r ~er + z ~ez

et le déplacement élémentaire est donné, dans la base cylindrique, par :

d
−−→
OM = dr ~er + r dθ~e

θ
+ dz ~ez
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2. Repères locaux h) Sphériques : obtention des vecteurs

On cherche le repère local (M;~eρ ,~eϕ ,~eθ ) où M est le point de l’espace défini par

−−→
OM = ρ cos(θ) sin(ϕ)~ex + ρ sin(θ) sin(ϕ)~ey + ρ cos(ϕ)~ez
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2. Repères locaux h) Sphériques : obtention des vecteurs

On calcule l’expression des vecteurs tangents puis on les norme.
• Vecteur unitaire tangent à la courbe coordonnée ϕ = cste et θ = cste :

~eρ =
∂
−→
OM
∂ρ∥∥ ∂−→OM
∂ρ

∥∥ avec ∂
−−→
OM
∂ρ

= cos(θ) sin(ϕ)~ex + sin(θ) sin(ϕ)~ey + cos(ϕ)~ez

qui est de norme 1, donc :
~eρ = cos(θ) sin(ϕ)~ex + sin(θ) sin(ϕ)~ey + cos(ϕ)~ez

• Vecteur unitaire tangent à la courbe coordonnée ρ = cste et θ = cste :

~eϕ =
∂
−→
OM
∂ϕ∥∥ ∂−→OM
∂ϕ

∥∥ avec ∂
−−→
OM
∂ϕ

= ρ cos(θ) cos(ϕ)~ex + ρ sin(θ) cos(ϕ)~ey − ρ sin(ϕ)~ez

qui est de norme ρ, donc :
~eϕ = cos(θ) cos(ϕ)~ex + sin(θ) cos(ϕ)~ey − sin(ϕ)~ez

• Vecteur unitaire tangent à la courbe coordonnée ρ = cste et ϕ = cste :

~e
θ

=
∂
−→
OM
∂θ∥∥ ∂−→OM
∂θ

∥∥ avec ∂
−−→
OM
∂θ

= −ρ sin(θ) sin(ϕ)~ex + ρ cos(θ) sin(ϕ)~ey

qui est de norme ρ sin(ϕ), donc :
~e
θ

= − sin(θ)~ex + cos(θ)~ey
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2. Repères locaux h) Sphériques : obtention des vecteurs

On remarque que
−−→
OM = ρ~eρ et ~eρ ,~eϕ ,~eθ sont orthogonaux et ~eρ ∧~eϕ = ~e

θ
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2. Repères locaux i) Sphériques : dérivées des vecteurs
• ~eρ ,~eϕ ,~eθ ne dépendent pas de ρ

∂~eρ
∂ρ

=~0
∂~eϕ
∂ρ

=~0
∂~e
θ

∂ρ
=~0

• ∂~eρ
∂ϕ

= ∂

∂ϕ

(
cos(θ) sin(ϕ)~ex + sin(θ) sin(ϕ)~ey + cos(ϕ)~ez

)
= cos(θ) cos(ϕ)~ex + sin(θ) cos(ϕ)~ey − sin(ϕ)~ez = ~eϕ

et un calcul similaire donne
∂~eϕ
∂ϕ

= −~eρ , et ~eθ ne dépend pas de ϕ, soit :

∂~eρ
∂ϕ

= ~eϕ
∂~eϕ
∂ϕ

= −~eρ
∂~e
θ

∂ϕ
=~0

• Calculs similaires pour
∂~eρ
∂θ

et
∂~eϕ
∂θ

, et l’on a
∂~e
θ

∂θ
= − cos(θ)~ex − sin(θ)~ey .

On remarque que
sin(ϕ)~eρ + cos(ϕ)~eϕ= sin(ϕ)

(
cos(θ) sin(ϕ)~ex + sin(θ) sin(ϕ)~ey + cos(ϕ)~ez

)
+ cos(ϕ)

(
cos(θ) cos(ϕ)~ex + sin(θ) cos(ϕ)~ey − sin(ϕ)~ez

)
= cos(θ)

(
cos2(ϕ)+sin2(ϕ)

)
~ex +sin(θ)

(
cos2(ϕ)+sin2(ϕ)

)
~ey

+
(

cos(ϕ) sin(ϕ)− cos(ϕ) sin(ϕ)
)
~ez

= cos(θ)~ex + sin(θ)~ey

soit ∂~eρ
∂θ

= sin(ϕ)~e
θ

∂~eϕ
∂θ

= cos(ϕ)~e
θ

∂~e
θ

∂θ
= − sin(ϕ)~eρ − cos(ϕ)~eϕ

37

2. Repères locaux j) Sphériques : déplacement élémentaire

• 1er calcul : formule différentielle

d
−−→
OM = ∂

−−→
OM
∂ρ

dρ+ ∂
−−→
OM
∂ϕ

dϕ+ ∂
−−→
OM
∂θ

dθ

Récupérons les dérivées partielles
de
−−→
OM par rapport à ρ, ϕ, θ

en fonction des vecteurs ~eρ ,~eϕ ,~eθ :

∂
−−→
OM
∂ρ

= ~eρ
∂
−−→
OM
∂ϕ

= ρ~eϕ
∂
−−→
OM
∂θ

= ρ sinϕ~e
θ

=⇒ d
−−→
OM = dρ~eρ+ρ dϕ~eϕ+ρ sin(ϕ) dθ~e

θ

• 2e calcul : calcul différentiel
Partant de

−−→
OM = ρ~eρ , on trouve

d
−−→
OM = (dρ)~eρ + ρ(d~eρ) = dρ~eρ + ρ

(
∂~eρ
∂ρ︸︷︷︸
~0

dρ+
∂~eρ
∂ϕ︸︷︷︸
~eϕ

dϕ+
∂~eρ
∂θ︸︷︷︸

sinϕ~e
θ

dθ
)

= dρ~eρ + ρ dϕ~eϕ + ρ sin(ϕ) dθ~e
θ

Remarque : le parallélépipède curviligne élémentaire a pour volume ρ2 sin(ϕ) dρdϕ dθ.
Cet élément de volume élémentaire sera utilisé dans le changement de variables en
coordonnées sphériques dans les intégrales triples (cf. chapitre Intégrales multiples).
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2. Repères locaux j) Sphériques : déplacement élémentaire

En résumé, on a obtenu les formules ci-dessous.
Plutôt que de les apprendre par cœur, il est préférable de savoir les retrouver par la
méthode visuelle.

Propriété 2.3 (Repère local sphérique)
En coordonnées sphériques, le repère local (orthonormé direct) est (M;~eρ ,~eϕ ,~eθ ) où

~eρ = cos(θ) sin(ϕ)~ex + sin(θ) sin(ϕ)~ey + cos(ϕ)~ez

~eϕ = cos(θ) cos(ϕ)~ex + sin(θ) cos(ϕ)~ey − sin(ϕ)~ez

~e
θ

= − sin(θ)~ex + cos(θ)~ey

Le vecteur-déplacement est donné, dans les bases cartésienne et sphérique, par
−−→
OM = ρ cos(θ) sin(ϕ)~ex + ρ sin(θ) sin(ϕ)~ey + ρ cos(ϕ)~ez = ρ~eρ

et le déplacement élémentaire est donné, dans la base sphérique, par :

d
−−→
OM = dρ~eρ + ρ dϕ~eϕ + ρ sin(ϕ) dθ~e

θ

39

2. Repères locaux
Remarque 2.4 (Base fixe/base locale)

Ne pas confondre :
−−→
OM dans un système de coordonnées

donné dans la base cartésienne fixe
et

−−→
OM dans un système de coordonnées

donné dans la base locale associée à ce système

Exemples :
• −−→OM en coordonnées cylindriques dans la base cartésienne fixe :

−−→
OM = r cos(θ)~ex + r sin(θ)~ey + z~ez

• −−→OM en coordonnées cylindriques dans la base locale associée :
−−→
OM = r~er + z~ez

• −−→OM en coordonnées sphériques dans la base cartésienne fixe :
−−→
OM = ρ cos(θ) sin(ϕ)~ex + ρ sin(θ) sin(ϕ)~ey + ρ cos(ϕ)~ez

• −−→OM en coordonnées sphériques dans la base locale associée :
−−→
OM = ρ~eρ
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En résumé...

Notions à retenir
• Systèmes de coordonnées classiques : cartésiennes, polaires,

cylindriques et sphériques
• Passage d’un système à un autre
• Détermination des repères locaux associés
• Description des lignes et surfaces coordonnées
• Calcul des dérivées partielles des vecteurs des repères locaux
• Calcul des déplacements élémentaires correspondants
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