Here are the functions used to compute the diverse projections.
Some notations:
I'm sorry for the typesetting of the code (especially indentation), which has suffered from several electronic translations and my naturally obfuscated writing style...
float sqr(float a){return a*a;}
void AzTrans(PTWProj PProj,float lo,float la,float*x,float*y) {if(PProj->pcla==pi/2){ *x=lo-PProj->az;if(*x>pi)*x-=2*pi;else if(*x<-pi)*x+=2*pi; *y=la; return;}; *x=lo-PProj->pclo; float cp=cos(*x),ct=cos(la),c0=cos(PProj->pcla),sp=sin(*x),st=sin(la),s0=sin(PProj->pcla); if(*x!=0||la!=PProj->pcla)*x=atan2(sp*ct,cp*ct*s0-st*c0);else *x=0; *y=cp*ct*c0+st*s0;if(fabs(*y)>1)*y=sig(*y); *y=asin(*y); *x-=PProj->az;if(*x>pi)*x-=2*pi;else if(*x<-pi)*x+=2*pi; }
void CylTrans(PTWProj PProj,float lo,float la,float*x,float*y) {if(PProj->pcla==0.0&&PProj->az==0.0){ *x=lo-PProj->pclo;if(*x>pi)*x-=2*pi;else if(*x<-pi)*x+=2*pi; *y=la; return;}; int j1,j2; float m1[3],m2[3],lc2=cos(la); m1[0]=lc2*cos(lo);m1[1]=lc2*sin(lo);m1[2]=sin(la); for(j1=0;j1<3;j1++){ m2[j1]=0; for(j2=0;j2<3;j2++)m2[j1]+=PProj->ma[j1][j2]*m1[j2]; }; if(fabs(m2[2])>1)m2[2]=sig(m2[2]); *y=asin(m2[2]); *x=atan2(m2[1],m2[0]); }
void Sanson(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo*cos(la/PProj->miller); *y=la*PProj->k; }
void Mercator(PTWProj PProj,float lo,float la,float*x,float*y) {float l=la/PProj->miller/2+pi/4; if(fabs(l)==pi/2||tan(l)<=0){*x=err;return;}; *x=lo; *y=log(tan(l))*PProj->k; }
void CylLambert(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo; *y=sin(la/PProj->miller)*PProj->k; }
void CylCentrale(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(la/=PProj->miller)==pi/2){*x=err;return;}; *x=lo; *y=tan(la)*PProj->miller; }
void Gnomonique(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(lo/=PProj->aitoff)>=pi/2||fabs(la/=PProj->miller)==pi/2){*x=err;return;}; *x=tan(lo)*PProj->aitoff; *y=tan(la)/cos(lo)*PProj->miller; }
void Orthographique(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(lo/=PProj->aitoff)>pi/2){*x=err;return;}; *x=sin(lo)*cos(la/=PProj->miller)*PProj->aitoff; *y=sin(la)*PProj->miller; }
void Stereographique(PTWProj PProj,float lo,float la,float*x,float*y) {float a=cos(lo/=PProj->aitoff),b=cos(la/=PProj->miller);if(a*b==-1){*x=err;return;}; *x=2*sin(lo)*b/(1+a*b)*PProj->aitoff; *y=2*sin(la)/(1+a*b)*PProj->miller; }
void CylGall(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo; *y=(1+M_SQRT2)*tan(la/PProj->miller/2)*PProj->k; }
void AzLambert(PTWProj PProj,float lo,float la,float*x,float*y) {float d=sqrt(2/(1+cos(lo/=PProj->aitoff)*cos(la/=PProj->miller))); *x=d*sin(lo)*cos(la)*PProj->aitoff; *y=d*sin(la)*PProj->miller; }
void AzHatt(PTWProj PProj,float lo,float la,float*x,float*y) {if(lo==0&&la==0){*x=0;*y=0;return;}; float l1,l2,ct=cos(la/=PProj->miller); l1=atan2(sin(lo/=PProj->aitoff)*ct,-sin(la)); l2=acos(cos(lo)*ct); *x=l2*sin(l1)*PProj->aitoff; *y=-l2*cos(l1)*PProj->miller; }
void Mollweide(PTWProj PProj,float lo,float la,float*x,float*y) {int n;float k=la/=PProj->miller,l=pi*sin(la); if(fabs(la)!=pi/2)for(n=1;n<5;n++)k=(2*k*cos(2*k)-sin(2*k)+l)/(2+2*cos(2*k)); *x=2*sqrt(2)/pi*lo*cos(k); *y=sin(k)*sqrt(2)*PProj->miller; }
void ConLambert(PTWProj PProj,float lo,float la,float*x,float*y) {if(la==-pi/2){*x=err;return;}; float a;if(la==pi/2)a=0;else a=exp(log(tan((pi/2-la)/2))*PProj->nco)/PProj->k; *x=a*sin(lo*=PProj->nco);*y=-a*cos(lo); }
void ConCentrale(PTWProj PProj,float lo,float la,float*x,float*y) {float a; if(fabs(la-PProj->cco)>=pi/2){*x=err;return;}; a=PProj->k*tan(la-PProj->cco)+PProj->y2; *x=-a*sin(lo*=PProj->nco);*y=a*cos(lo); }
void ConEquiv(PTWProj PProj,float lo,float la,float*x,float*y) {float a=sqrt(PProj->cco-2/PProj->nco*sin(la)); *x=a*sin(lo*=PProj->nco);*y=-a*cos(lo); }
void Bonne(PTWProj PProj,float lo,float la,float*x,float*y) {float a=PProj->y2+(PProj->laco1-la),nco=cos(la)/a; *x=a*sin(lo*=nco);*y=-a*cos(lo); }
void Delisle(PTWProj PProj,float lo,float la,float*x,float*y) {float a=PProj->y2+PProj->laco1-la; *x=a*sin(lo*=PProj->nco);*y=-a*cos(lo); }
void Polyconique(PTWProj,float lo,float la,float*x,float*y) {if(la!=0.0){float s=sin(la),c=cos(la); *x=c/s*sin(s*lo); *y=la-pi/2-c/s*(cos(s*lo)-1); }else{ *x=lo;*y=-pi/2; }; }
void Equid2pts(PTWProj PProj,float lo,float la,float*x,float*y) {float a=acos(cos(lo)*cos(la)),b=acos(cos(lo-PProj->k)*cos(la)); *x=(a*a-b*b)/(2*PProj->k)+PProj->k/2; *y=sqrt(fabs(a*a-*x*(*x)))*sig(la); }
void Azimutale(PTWProj PProj,float lo,float la,float*x,float*y) {float v=PProj->v,a=cos(lo/=PProj->aitoff),b=cos(la/=PProj->miller); if(a*b<=-v||(v!=0.0&&a*b<-1/v)){*x=err;return;}; *x=(v+1)*sin(lo)*b/(v+a*b)*PProj->aitoff; *y=(v+1)*sin(la)/(v+a*b)*PProj->miller; }
void Cylindrique(PTWProj PProj,float lo,float la,float*x,float*y) {float v=PProj->v,a=cos(la/=PProj->miller)+v; if(a<=0.0){*x=err;return;}; *x=lo;*y=(1+v)/a*sin(la)*PProj->k; }
void Breusing(PTWProj PProj,float lo,float la,float*x,float*y) {if(lo==0&&la==0){*x=0;*y=0;return;}; float l1,d,ct=cos(la/=PProj->miller),r; l1=atan2(sin(lo/=PProj->aitoff)*ct,-sin(la)); r=acos(cos(lo)*ct); d=2*sqrt(sin(r/2)*tan(r/2)); *x=d*sin(l1)*PProj->aitoff; *y=-d*cos(l1)*PProj->miller; }
void Breusing2(PTWProj PProj,float lo,float la,float*x,float*y) {if(lo==0&&la==0){*x=0;*y=0;return;}; float l1,d,ct=cos(la/=PProj->miller),r; l1=atan2(sin(lo/=PProj->aitoff)*ct,-sin(la)); r=acos(cos(lo)*ct); d=4*tan(r/4); *x=d*sin(l1)*PProj->aitoff; *y=-d*cos(l1)*PProj->miller; }
void Littrow(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(la/=PProj->miller)==pi/2||fabs(lo/=PProj->aitoff)>pi/2){*x=err;*y=err;return;}; *x=sin(lo)/cos(la)*PProj->aitoff; *y=cos(lo)*tan(la)*PProj->miller; }
void Apianus(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo/pi*sqrt(pi*pi-4*sqr(la/PProj->miller)); *y=la; }
void Ortelius(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo/2*(1+sqrt(pi*pi-4*sqr(la/PProj->miller))/pi); *y=la; }
void Winkel(PTWProj PProj,float lo,float la,float*x,float*y) {float d=sqrt(2/(1+cos(lo/=PProj->aitoff)*cos(la/=PProj->miller))); *x=(d*sin(lo)*cos(la)+lo)/2*PProj->aitoff; *y=(d*sin(la)+la*PProj->k)/2*PProj->miller; }
void Eckert4(PTWProj PProj,float lo,float la,float*x,float*y) {float k=(la/=PProj->miller),r=2/sqrt(pi*(4+pi)),l=(4+pi)*sin(la); if(fabs(k)!=pi/2)for(int n=1;n<5;n++) k-=(2*k+4*sin(k)+sin(2*k)-l)/(2+4*cos(k)+2*cos(2*k)); *x=r*(1+cos(k))*lo; *y=r*pi*sin(k)*PProj->miller; }
void Collignon(PTWProj PProj,float lo,float la,float*x,float*y) {*y=sqrt(pi)*(1-sqrt(1-fabs(sin(la/PProj->miller))))*PProj->miller*sig(la); *x=2/pi*lo*(sqrt(pi)-fabs(*y/PProj->miller)); }
void Braun(PTWProj PProj,float lo,float la,float*x,float*y) {*x=lo; *y=7*sin(la/=PProj->miller)/(2+5*cos(la))*PProj->k; }
void Globulaire(PTWProj PProj,float lo,float la,float*x,float*y) {if((lo/=PProj->aitoff)==0.0){*x=0;*y=la;return;}; if(fabs(la/=PProj->miller)==pi/2){*x=0;*y=pi/2*PProj->miller;return;}; if(la==0.0){*x=lo*PProj->aitoff;*y=0;return;}; float s=sig(la);la*=s; float cla=pi/2-la,d,e,g,r,yc,m2,r2,xc,l,al,th; d=sqrt(la*la+pi*pi/4-la*pi*cos(cla)); e=pi-2*asin(pi/2*sin(cla)/d); g=e+cla; r=pi/2*sin(cla)/sin(e); yc=pi/2*sin(g)/sin(e); m2=2*atan(2*lo/pi); r2=pi/2/sin(m2);xc=pi/2*cos(m2)/sin(m2); l=asin(cos(g)*sin(m2)); al=atan2(xc,yc); th=asin(sin(al)*cos(l)/cos(m2))-al; *x=r*sin(th)*PProj->aitoff; *y=r2*sin(th+l)*PProj->miller*s; }
void Polyedrique(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(lo/=PProj->aitoff)>=pi/2){*x=err;*y=err;return;}; *x=(1-sin(PProj->k)*sin(la/=PProj->miller))/cos(PProj->k)*sin(lo)/cos(lo)*PProj->aitoff; *y=(sin(la)-sin(PProj->k))/cos(PProj->k)*PProj->miller*cos(PProj->k)/cos(PProj->k*PProj->miller); }
void Trapeziforme(PTWProj PProj,float lo,float la,float*x,float*y) {*y=la; *x=lo*(PProj->nco*la+PProj->cco); }
void BalanceErr(PTWProj PProj,float lo,float la,float*x,float*y) {if(lo==0&&la==0){*x=0;*y=0;return;}; float l1,l2,d,ct=cos(la/=PProj->miller); l1=atan2(sin(lo/=PProj->aitoff)*ct,-sin(la)); l2=asin(cos(lo)*ct); l2=pi/2-l2;if((l2/=2)==pi/2){*x=err;*y=err;return;}; if(l2==0){*x=0;*y=0;return;}; d=(-2/tan(l2)*log(cos(l2))+tan(l2)*PProj->k)*2/(PProj->k+1); *x=d*sin(l1)*PProj->aitoff; *y=-d*cos(l1)*PProj->miller; }
void Lagrange(PTWProj PProj,float lo,float la,float*x,float*y) {if(fabs(lo/=PProj->aitoff)*PProj->v>=pi/2){*x=err;*y=err;return;}; if((la/=PProj->miller)==pi/2){*x=0;*y=PProj->miller/PProj->v;return;}; if(la==-pi/2){*x=0;*y=-PProj->miller/PProj->v;return;}; float u=log(tan(pi/4-la/2));complex u1=complex(0,-1)*(u+PProj->k); complex z=tan(PProj->v*(u1+lo))/PProj->v; *x=real(z)*PProj->aitoff; *y=imag(z)*PProj->miller; }
void PersoProj(PTWProj PProj,float lo,float la,float*x,float*y) {*PProj->lovar->pval=(lo/=PProj->aitoff); *PProj->lavar->pval=(la/=PProj->miller); if(PProj->zPersoProj){ float l=la/2+pi/4; if(l==0||l==pi/2){*x=err;*y=err;return;}; *PProj->zvar->pval=complex(lo,log(tan(l))); }; complex p=PProj->PersoProjExpr.Val(); if(p==complex(ErrVal)){*x=err;*y=err;return;}; *x=real(p)*PProj->aitoff;*y=imag(p)*PProj->miller; }
BOOL IsCyl(void(*projeq)(PTWProj,float,float,float*,float*)) {return(projeq==Quadratique||projeq==CylCentrale||projeq==Mercator|| projeq==CylLambert||projeq==Sanson||projeq==Cylindrique|| projeq==Mollweide||projeq==CylGall||projeq==Equid2pts|| projeq==Eckert4||projeq==Braun);}
BOOL IsAz(void(*projeq)(PTWProj,float,float,float*,float*)) {return(projeq==Stereographique||projeq==AzHatt||projeq==AzLambert ||projeq==Gnomonique||projeq==Orthographique||projeq==Azimutale ||projeq==Breusing||projeq==Breusing2||projeq==Littrow ||projeq==Apianus||projeq==Winkel||projeq==Ortelius ||projeq==Collignon||projeq==Globulaire||projeq==Polyedrique ||projeq==BalanceErr||projeq==Lagrange);}
BOOL IsCon(void(*projeq)(PTWProj,float,float,float*,float*)) {return(projeq==ConLambert||projeq==ConCentrale||projeq==ConEquiv ||projeq==Bonne||projeq==Delisle||projeq==Polyconique ||projeq==Trapeziforme);}
void TWProj::SetParams() {if(projeq==NULL)return; float x,y,laco2; if(projeq==Equid2pts&&pcla==pc2la&&pclo==pc2lo)pcla+=0.01; if(IsAz(projeq)){ az=0;if(projeq==BalanceErr)k=0; if(pclo!=pc2lo||pcla!=pc2la){ AzTrans(this,pc2lo,pc2la,&x,&y); az=-x;if(projeq==Polyedrique)az+=pi; if(projeq==BalanceErr){k=pi/2-y;k=1/sqr(tan(k/2))*log(1/sqr(cos(k/2))); }; }; if(aitoff==0.0)aitoff=1;if(miller==0.0)miller=1; }; if(IsCyl(projeq)||(projeq==PersoProj&&!PersoProjTrans)){ az=0; if(pclo!=pc2lo||pcla!=pc2la){ AzTrans(this,pc2lo,pc2la,&x,&y); az=pi/2-x; }; }; if(IsCon(projeq)||(projeq==PersoProj&&PersoProjTrans)){ az=0; if(pclo!=pc2lo||pcla!=pc2la){ AzTrans(this,pc2lo,pc2la,&x,&y); az=x;if(projeq==Trapeziforme)az=-az-pi; }; AzTrans(this,pc2lo,pc2la,&x,&y);laco1=y; AzTrans(this,pc3lo,pc3la,&x,&y);laco2=y; if(projeq==Polyconique)return; if((laco1==laco2&&projeq!=ConCentrale)||projeq==Bonne){ nco=sin(laco1); if(projeq==Bonne||projeq==Delisle){ if(laco1==0.0)laco1=0.0001;if(nco==0)nco=0.0001; y2=cos(laco1)/sin(laco1); }; if(projeq==ConEquiv){ if(laco1==0.0)laco1=0.0001;if(nco==0)nco=0.0001; cco=cos(laco1)/sin(laco1);cco=2+cco*cco; }; if(projeq==ConLambert){ y2=0;k=1;projeq(this,0,laco1,&x,&y2); k=-nco*y2/cos(laco1);if(k==0.0)k=1; }; }else{ if(projeq==ConCentrale){ if(!((laco1+laco2)/2))laco1+=0.0001; cco=(laco1+laco2)/2; nco=sin(cco); k=cos((laco1-laco2)/2); y2=-k/tan(cco); }; if(projeq==ConEquiv){ nco=(sqr(cos(laco1))-sqr(cos(laco2)))/2/(sin(laco2)-sin(laco1)); cco=(sqr(cos(laco1))+2*nco*sin(laco1))/sqr(nco); }; if(projeq==Delisle){ y2=(laco2-laco1)/(1-cos(laco2)/cos(laco1)); nco=cos(laco1)/y2; }; if(projeq==ConLambert){ nco=(log(sin(pi/2-laco1))-log(sin(pi/2-laco2)))/(log(tan((pi/2-laco1)/2))-log(tan((pi/2-laco2)/2))); y2=0;k=1;projeq(this,0,laco1,&x,&y2); k=-nco*y2/cos(laco1);if(k==0.0){y2=0;k=1;projeq(this,0,laco2,&x,&y2); k=-nco*y2/cos(laco2);}; }; }; }; if(trans==CylTrans){ cp=cos(pclo);sp=sin(pclo); ct=cos(pcla);st=sin(pcla); ca=cos(az);sa=sin(az); ma[0][0]=ct*cp;ma[0][1]=sp*ct;ma[0][2]=st; ma[1][0]=cp*st*sa-sp*ca; ma[1][1]=cp*ca+sp*st*sa;ma[1][2]=-ct*sa; ma[2][0]=-cp*st*ca-sp*sa; ma[2][1]=cp*sa-sp*st*ca;ma[2][2]=ct*ca; CylTrans(this,pc3lo,pc3la,&x,&y); if(cos(y)==0.0)y=0; if(projeq==Quadratique)k=1/cos(y); if(projeq==Mercator)k=cos(y/miller)/cos(y)*miller; if(projeq==CylGall)k=2*sqr(cos(y/miller/2))/(1+sqrtl(2))/cos(y)*miller; if(projeq==CylCentrale)k=sqr(cos(y/miller))/cos(y)*miller; if(projeq==CylLambert)k=1/cos(y/miller)/cos(y)*miller; if(projeq==Equid2pts){CylTrans(this,pc2lo,pc2la,&x,&y);k=x;}; if(projeq==Cylindrique)k=1/cos(y)*sqr(v+cos(y/miller))/(1+v)/(1+v*cos(y/miller))*miller; if(projeq==Sanson)k=cos(y/miller)/cos(y); if(projeq==Winkel)k=1/cos(y); if(projeq==Braun)k=sqr(5*cos(y/miller)+2)/(14*cos(y/miller)+35)/cos(y)*miller; if(projeq==Trapeziforme){ CylTrans(this,pc2lo,pc2la,&x,&y);laco1=y; CylTrans(this,pc3lo,pc3la,&x,&y);laco2=y; if(laco1!=laco2){nco=(cos(laco2)-cos(laco1))/(laco2-laco1);cco=cos(laco1)-nco*laco1;} else{nco=-sin(laco1);cco=cos(laco1)-nco*laco1;}; }; if(projeq==Polyedrique){ CylTrans(this,pc2lo,pc2la,&x,&y);k=y/miller; }; if(projeq==Lagrange){ CylTrans(this,pc2lo,pc2la,&x,&y);if(fabsl(y/2)==pi/4)y*=0.9999; k=-log(tan(pi/4-y/2)); CylTrans(this,pc3lo,pc3la,&x,&y);v=sqrt(1+sqr(cos(y)))/2; }; }; }