Entrance and sojourn times for Markov chains

Application to (L, \boldsymbol{R})-random walks

Aimé LACHAL

Joint work with Valentina Cammarota (Rome university)

Institut Camille Jordan
Université de Lyon, INSA de Lyon
Stochastic processes under constraints
Augsburg - July 18-21, 2016

The problem

My favorite and recurrent interests:

- Hitting times, entrance times
- Exit times
- Overshooting times
- Sojourn times...

For various stochastic processes:

- Brownian motion, Ornstein-Uhlenbeck process
- Diffusion processes, Gaussian processes
- Lévy processes, stable processes
- Integrated Brownian motion and other integral functionals...

The problem

My favorite and recurrent interests:

- Hitting times, entrance times
- Exit times
- Overshooting times
- Sojourn times...

For various stochastic processes:

- Brownian motion, Ornstein-Uhlenbeck process
- Diffusion processes, Gaussian processes
- Lévy processes, stable processes
- Integrated Brownian motion and other integral functionals...

In this talk: Random walks and more general Markov chains
Main goal: To provide a methodology for deriving the probability distribution of certain sojourn times...

Motivation: high-order heat equation

- Continuous-time (N integer > 1):

$$
\partial_{t} u(t, x)=(-1)^{N-1} \Delta_{x}^{N} u(t, x), \quad t>0, x \in \mathbb{R}
$$

where

$$
\begin{aligned}
\partial_{t} u(t, x) & =\frac{\partial u}{\partial t}(t, x) \\
\Delta_{x}^{N} u(t, x) & =\frac{\partial^{2 N} u}{\partial x^{2 N}}(t, x)
\end{aligned}
$$

Motivation: high-order heat equation

- Continuous-time (N integer > 1):

$$
\partial_{t} u(t, x)=(-1)^{N-1} \Delta_{x}^{N} u(t, x), \quad t>0, x \in \mathbb{R}
$$

where

$$
\begin{aligned}
\partial_{t} u(t, x) & =\frac{\partial u}{\partial t}(t, x) \\
\Delta_{x}^{N} u(t, x) & =\frac{\partial^{2 N} u}{\partial x^{2 N}}(t, x)
\end{aligned}
$$

\longrightarrow Pseudo-Brownian motion $\left(B_{t}\right)_{t \geq 0}$ with pseudotransition densities

$$
\mathbb{P}_{x}\left\{B_{t} \in d y\right\} / d y=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i(x-y) u-t u^{2 N}} d u
$$

Warning: \mathbb{P}_{x} is a signed measure!

Motivation: high-order heat equation

- Discrete-time (N integer >1):

$$
\partial_{n} u(n, x)=(-1)^{N-1} \Delta_{x}^{N} u(n, x), \quad n \in \mathbb{N}, x \in \mathbb{Z}
$$

where

$$
\begin{aligned}
\partial_{n} u(n, x) & =u(n+1, x)-u(n, x) \\
\Delta_{x}^{N} u(n, x) & =\sum_{k=-N}^{N}(-1)^{k}\binom{2 N}{k+N} u(n, x+k)
\end{aligned}
$$

Motivation: high-order heat equation

- Discrete-time (N integer >1):

$$
\partial_{n} u(n, x)=(-1)^{N-1} \Delta_{x}^{N} u(n, x), \quad n \in \mathbb{N}, x \in \mathbb{Z}
$$

where

$$
\begin{aligned}
\partial_{n} u(n, x) & =u(n+1, x)-u(n, x) \\
\Delta_{x}^{N} u(n, x) & =\sum_{k=-N}^{N}(-1)^{k}\binom{2 N}{k+N} u(n, x+k)
\end{aligned}
$$

\longrightarrow Pseudo-random walk $\left(X_{m}\right)_{m \geq 0}: X_{m}=X_{0}+\sum_{i=1}^{m} U_{i}$ where $\left(U_{i}\right)_{i \geq 1}$ is a sequence of i.i.d. pseudo-r.v. with pseudo-distribution

$$
\left\{\begin{array}{l}
\mathbb{P}\left\{U_{1}=i\right\}=(-1)^{i+N-1}\binom{2 N}{i+N} \quad \text { if }\left\{\begin{array}{c}
-N \leq i \leq N \\
i \neq 0
\end{array}\right. \\
\mathbb{P}\left\{U_{1}=0\right\}=1+(-1)^{N}\binom{2 N}{N}
\end{array}\right.
$$

Motivation: high-order heat equation

- Discrete-time (N integer >1):

$$
\partial_{n} u(n, x)=(-1)^{N-1} \Delta_{x}^{N} u(n, x), \quad n \in \mathbb{N}, x \in \mathbb{Z}
$$

where

$$
\begin{aligned}
\partial_{n} u(n, x) & =u(n+1, x)-u(n, x) \\
\Delta_{x}^{N} u(n, x) & =\sum_{k=-N}^{N}(-1)^{k}\binom{2 N}{k+N} u(n, x+k)
\end{aligned}
$$

\longrightarrow Pseudo-random walk $\left(X_{m}\right)_{m \geq 0}: X_{m}=X_{0}+\sum_{i=1}^{m} U_{i}$

This is a $(-N, N)-r a n d o m$ walk with signed distribution

- General random walk on \mathbb{R}
- General random walk on \mathbb{R}
- Case of nearest neighbour random walk
- General random walk on \mathbb{R}
- Case of nearest neighbour random walk
- Case of random walk with stagnation

Plan

- General random walk on \mathbb{R}
- Case of nearest neighbour random walk
- Case of random walk with stagnation
- Case of (L,R)-random walk

Plan

- General random walk on \mathbb{R}
- Case of nearest neighbour random walk
- Case of random walk with stagnation
- Case of (L, R)-random walk
- General framework: Markov chains

Plan

(1) General random walk on \mathbb{R}
(2 Case of nearest neighbour random walk

- Case of random walk with stagnation
- Case of (L,R)-random walk
- General framework: Markov chains
- Case of (L, R)-random walk (continued)

Plan

- General random walk on \mathbb{R}
- Case of nearest neighbour random walk
- Case of random walk with stagnation
- Case of (L,R)-random walk
- General framework: Markov chains
- Case of (L, R)-random walk (continued)
- Case of symmetric (2, 2)-random walk

1. General random walk on \mathbb{R}

1. General random walk on \mathbb{R}

Definition - Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. real-valued r.v.'s and $\left(X_{m}\right)_{m \geq 0}$ be the random walk defined on \mathbb{R} by $X_{0}=0$ and

$$
X_{m}=\sum_{i=1}^{m} U_{i} \quad \text { for } m \geq 1
$$

1. General random walk on \mathbb{R}

Definition - Sojourn time of the walk $\left(X_{m}\right)_{m \geq 0}$ in $\mathbb{R}^{\dagger}=[0,+\infty)$ up to a fixed step $n \geq 1$

$$
T_{n}=\#\left\{m \in\{1, \ldots, n\}: X_{m} \geq 0\right\}=\sum_{m=1}^{n} \mathbb{1}_{\mathbb{R}^{j}}\left(X_{m}\right)
$$

(Convention: $T_{0}=0$)

1. General random walk on \mathbb{R}

Definition - Sojourn time of the walk $\left(X_{m}\right)_{m \geq 0}$ in $\mathbb{R}^{\dagger}=[0,+\infty)$ up to a fixed step $n \geq 1$

$$
T_{n}=\#\left\{m \in\{1, \ldots, n\}: X_{m} \geq 0\right\}=\sum_{m=1}^{n} \mathbb{1}_{\mathbb{R}^{j}}\left(X_{m}\right)
$$

(Convention: $\boldsymbol{T}_{0}=0$)
\rightarrow Problem: Probability distribution of T_{n} ?

1. General random walk on \mathbb{R}

Theorem A (Sparre Andersen)

[On the fluctuations of sums of random variables, 1953]

$$
\mathbb{P}\left\{T_{n}=m\right\}=\mathbb{P}\left\{T_{m}=m\right\} \mathbb{P}\left\{T_{n-m}=0\right\} \quad \text { for } 0 \leq m \leq n
$$

with

$$
\begin{aligned}
\left\{T_{m}=m\right\} & =\left\{\min _{1 \leq k \leq m} X_{k} \geq 0\right\}=\left\{\tau^{-}>m\right\} \\
\left\{T_{n-m}=0\right\} & =\left\{\max _{1 \leq k \leq n-m} X_{k}<0\right\}=\left\{\tau^{\dagger}>n-m\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \tau^{-}=\min \left\{k \geq 1: X_{k}<0\right\} \\
& \tau^{\dagger}=\min \left\{k \geq 1: X_{k} \geq 0\right\}
\end{aligned}
$$

(Convention: $\min (\varnothing)=+\infty)$

1. General random walk on \mathbb{R}

Definition - Generating function of the $T_{n}, n \geq 0$

$$
K(x, y)=\sum_{m, n \geq 0: m \leq n} \mathbb{P}\left\{T_{n}=m\right\} x^{m} y^{n-m}=\sum_{n=0}^{\infty} \mathbb{E}\left(x^{T_{n}} y^{n-T_{n}}\right)
$$

Corollary - The function K satisfies

$$
K(x, y)=K(x, 0) K(0, y)
$$

where

$$
\begin{aligned}
& K(x, 0)=\sum_{n=0}^{\infty} \mathbb{P}\left\{T_{n}=n\right\} x^{n}=\frac{1-\mathbb{E}\left(\boldsymbol{x}^{\tau^{\tau}} \mathbb{1}_{\left\{\tau^{-}<\infty\right\}}\right)}{1-x} \\
& K(0, y)=\sum_{n=0}^{\infty} \mathbb{P}\left\{T_{n}=0\right\} y^{n}=\frac{1-\mathbb{E}\left(y^{\tau^{\dagger}} \mathbb{1}_{\left\{\tau^{\dagger}<\infty\right\}}\right)}{1-y}
\end{aligned}
$$

1. General random walk on \mathbb{R}

Theorem B (Spitzer)

[A combinatorial lemma and its application to probability theory, 1955]

$$
\begin{aligned}
& K(x, 0)=\sum_{n=0}^{\infty} \mathbb{P}\left\{\min _{1 \leq k \leq n} X_{k} \geq 0\right\} x^{n}=\exp \left(\sum_{k=1}^{\infty} \mathbb{P}\left\{X_{k} \geq 0\right\} \frac{\boldsymbol{x}^{k}}{k}\right) \\
& K(0, y)=\sum_{n=0}^{\infty} \mathbb{P}\left\{\max _{1 \leq k \leq n} X_{k}<0\right\} y^{n}=\exp \left(\sum_{k=1}^{\infty} \mathbb{P}\left\{X_{k}<0\right\} \frac{y^{k}}{k}\right)
\end{aligned}
$$

The probabilities $\mathbb{P}\left\{\max _{1 \leq k \leq n} X_{k}<0\right\}$ and $\mathbb{P}\left\{\min _{1 \leq k \leq n} X_{k} \geq 0\right\}$ are implicitly known through their generating functions...
\longrightarrow Next step: To invert these generating functions...

2. Case of nearest neighbour random walk

2. Nearest neighbour random walk

Definition - Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. Bernoulli r.v.'s with parameters $\left\{\begin{array}{l}p=\mathbb{P}\left\{U_{1}=+1\right\} \\ q=\mathbb{P}\left\{U_{1}=-1\right\}\end{array} \quad\right.$ with $p+q=1$
and $\left(X_{m}\right)_{m \geq 0}$ be the random walk defined on $\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ by $X_{0}=0$ and

$$
X_{m}=\sum_{i=1}^{m} U_{i} \quad \text { for } m \geq 1
$$

2. Nearest neighbour random walk

Definition - Sojourn time of the walk $\left(X_{m}\right)_{m \geq 0}$ in $\mathbb{Z}^{\dagger}=\mathbb{Z} \cap[0,+\infty)$ up to a fixed step $n \geq 1$

$$
T_{n}=\#\left\{m \in\{1, \ldots, n\}: X_{m} \geq 0\right\}=\sum_{m=1}^{n} \mathbb{1}_{\mathbb{Z i}^{i}}\left(X_{m}\right)
$$

(Convention: $T_{0}=0$)

2. Nearest neighbour random walk

By Sparre Andersen and Spitzer:

$$
\mathbb{P}\left\{\boldsymbol{T}_{\boldsymbol{n}}=\boldsymbol{m}\right\}=\mathbb{P}\left\{\boldsymbol{\tau}^{-}>\boldsymbol{m}\right\} \mathbb{P}\left\{\boldsymbol{\tau}^{\dagger}>\boldsymbol{n}-\boldsymbol{m}\right\}
$$

Theorem - Probability distribution of $\boldsymbol{T}_{\boldsymbol{n}}$
$\mathbb{P}\left\{T_{n}=m\right\}=\left(1-q \sum_{0 \leq i \leq \frac{m-1}{2}} C_{i}(p q)^{i}\right)\left(p \delta_{m n}+q-\sum_{1 \leq i \leq \frac{n-m}{2}} c_{i-1}(p q)^{i}\right)$
where $C_{i}=\frac{1}{i+1}\binom{2 i}{i}$ (Catalan numbers!)
Quote - As written by Spitzer:
"There is no doubt what causes the slight but ugly asymmetry in the distribution of T_{n}. It is slight but unpleasant difference between positive and non-negative partial sums"

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
[On fluctuations in coin-tossings, 1949]

$$
\widetilde{\boldsymbol{T}}_{n}=\sum_{m=1}^{n} \delta_{m} \quad \text { with } \delta_{m}= \begin{cases}1 & \text { if }\left(X_{m}>0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}>0\right) \\ 0 & \text { if }\left(X_{m}<0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}<0\right)\end{cases}
$$

One counts each step m such that $X_{m}>0$ and only those steps such that $X_{m}=0$ which correspond to a downstep: $X_{m-1}=1$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
[On fluctuations in coin-tossings, 1949]

$$
\widetilde{\boldsymbol{T}}_{n}=\sum_{m=1}^{n} \delta_{m} \quad \text { with } \delta_{m}= \begin{cases}1 & \text { if }\left(X_{m}>0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}>0\right) \\ 0 & \text { if }\left(X_{m}<0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}<0\right)\end{cases}
$$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
[On fluctuations in coin-tossings, 1949]

$$
\widetilde{T}_{n}=\sum_{m=1}^{n} \delta_{m} \quad \text { with } \delta_{m}= \begin{cases}1 & \text { if }\left(X_{m}>0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}>0\right) \\ 0 & \text { if }\left(X_{m}<0\right) \text { or }\left(X_{m}=0 \text { and } X_{m-1}<0\right)\end{cases}
$$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
Symmetric case $p=q=1 / 2$
Quote - As written by Chung \& Feller:
"The elegance of the results to be announced depends on this convention [definition of δ_{m}]"
\rightarrow It produces a remarkable result!
Theorem - Probability distribution of $\widetilde{\boldsymbol{T}}_{\boldsymbol{n}}$
[Chung \& Feller: On fluctuations in coin-tossings, 1949]

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
Symmetric case $p=q=1 / 2$
Quote - As written by Chung \& Feller:
"The elegance of the results to be announced depends on this convention [definition of δ_{m}]"
\longrightarrow It produces a remarkable result!
Problem - What about the case of an arbitrary p? Well-known? Surprisingly, no precise reference in the literature...

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller

Definition - Generating function of the $\widetilde{\boldsymbol{T}}_{\boldsymbol{n}}, \boldsymbol{n} \geq \mathbf{0}$

$$
\widetilde{K}(x, y)=\sum_{m, n \geq 0: m \leq n} \mathbb{P}\left\{\widetilde{T}_{n}=m\right\} x^{m} y^{n-m}
$$

Theorem - The function \widetilde{K} is given by [AL: Sojourn time in \mathbb{Z}^{+}for the Bernoulli random walk on \mathbb{Z} (ESAIM: P\&S, 2012)]

$$
\widetilde{K}(x, y)=\frac{(p-q)(x-y)+(1-y) \sqrt{\Delta(x)}+(1-x) \sqrt{\Delta(y)}}{(1-x)(1-y)(\sqrt{\Delta(x)}+\sqrt{\Delta(y)})}
$$

where $\Delta(u)=1-4 p q u^{2}$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller

Corollary - Probability distribution of \widetilde{T}_{n}

$$
\begin{aligned}
& \mathbb{P}\left\{\widetilde{T}_{n}=\boldsymbol{m}\right\} \\
&= \mathbb{1}_{\{n-m \text { even }\}}\left(p \sum_{\frac{n-m}{2} \leq i \leq \frac{n}{2}} c_{i}(p q)^{i}-\sum_{\frac{n-m}{2} \leq i \leq \frac{n}{2}-1}\left(\sum_{0 \leq j \leq i-\frac{n-m}{2}} c_{j} c_{i-j}\right)(p q)^{i+1}\right) \\
&+\mathbb{1}_{\{m \text { even }\}}\left(q \sum_{\frac{m}{2} \leq i \leq \frac{n}{2}} c_{i}(p q)^{i}-\sum_{\frac{m}{2} \leq i \leq \frac{n}{2}-2}\left(\sum_{0 \leq j \leq i-\frac{m}{2}} c_{j} c_{i-j}\right)(p q)^{i+1}\right)
\end{aligned}
$$

where $C_{i}=\frac{1}{i+1}\binom{2 i}{i}$ (Catalan numbers)

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller

Remark - Similar results hold for pinned random walk/bridge of random walk (joint distribution of $\left(\widetilde{T}_{n} \mid X_{n}\right)$)...

Theorem - Probability distribution of $\left(\widetilde{T}_{n} \mid X_{n}=0\right)$ (even n)

$$
\mathbb{P}\left\{\widetilde{T}_{n}=m \mid X_{n}=0\right\}= \begin{cases}\frac{2}{n+2} & \text { if } m \text { is even } \leq n \\ 0 & \text { else }\end{cases}
$$

\longrightarrow The r.v. ($\left.\widetilde{T}_{n} \mid X_{n}=0\right)$ is uniformly distributed on the set $\{0,2,4, \ldots, n-2, n\}$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
Proof - Two possible methods:

- Strong Markov property related to the first hitting time of 0 \rightarrow Splitting the paths into two parts : the first excursion and the refreshed walk (yielding recurrence relations)
- Theory of excursions away from 0
\longrightarrow Splitting the paths into excursions

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
If $1 \leq \widetilde{\boldsymbol{T}}_{n} \leq n-1$, then $1 \leq \tau^{0} \leq n-1$ and

$$
\widetilde{T}_{n}= \begin{cases}\tau^{0}+\widetilde{T}_{\tau^{0}, n} & \text { if } X_{1}>0 \\ \widetilde{\tau}_{\tau^{0}, n} & \text { if } X_{1}<0\end{cases}
$$

where $\tau^{0}=\min \left\{m \geq 1: X_{m}=0\right\}$ and $\widetilde{T}_{n}=\sum_{m=\tau^{0}+1}^{n} \delta_{m}$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller

If $\mathbf{1} \leq \widetilde{\boldsymbol{T}}_{\boldsymbol{n}} \leq \boldsymbol{n} \mathbf{- 1}$, then $\mathbf{1} \leq \boldsymbol{\tau}^{\mathbf{0}} \leq \boldsymbol{n}-\mathbf{1}$ and

$$
\widetilde{T}_{n}= \begin{cases}\tau^{0}+\widetilde{T}_{\tau^{0}, n} & \text { if } X_{1}>0 \\ \widetilde{\tau}_{\tau^{0}, n} & \text { if } X_{1}<0\end{cases}
$$

where $\tau^{0}=\min \left\{m \geq 1: X_{m}=0\right\}$ and $\widetilde{T}_{n}=\sum_{m=\tau^{0}+1}^{n} \delta_{m}$
By the strong Markov property, if $\mathbf{1} \leq \boldsymbol{m} \leq \boldsymbol{n}-\mathbf{1}$:

$$
\begin{aligned}
\mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n}=\boldsymbol{m}\right\}= & \mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n}=\boldsymbol{m}, \mathbf{1} \leq \tau^{0} \leq \boldsymbol{n}-\mathbf{1}\right\}=\sum_{j=1}^{n-1} \mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n}, \tau^{0}=j\right\} \\
= & \sum_{j=1}^{n-1} \mathbb{P}\left\{\tau^{0}=j, \boldsymbol{X}_{1}>0\right\} \mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n-j}=\boldsymbol{m}-j\right\} \\
& +\sum_{j=1}^{n-m} \mathbb{P}\left\{\tau^{0}=j, X_{1}<0\right\} \mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n-j}=\boldsymbol{m}\right\} \text { etc. }
\end{aligned}
$$

2. Nearest neighbour random walk

An alternative sojourn time by Chung \& Feller
Remark - The generating function \widetilde{K} does not satisfy

$$
\widetilde{K}(x, y)=\widetilde{K}(x, 0) \widetilde{K}(0, y)
$$

But the partial generating function of the $\widetilde{T}_{n}, n \geq 0$

$$
\widetilde{K}^{\prime}(\boldsymbol{x}, \boldsymbol{y})=\sum_{\substack{m, n \geq 0 . m \leq n \\ \text { even } m, n}} \mathbb{P}\left\{\widetilde{\boldsymbol{T}}_{n}=\boldsymbol{m}\right\} \boldsymbol{x}^{m} \boldsymbol{y}^{n-m}
$$

does satisfy

$$
\widetilde{K}^{\prime}(X, Y)=\widetilde{K}^{\prime}(X, 0) \widetilde{K}^{\prime}(0, y)
$$

3. Case of random walk with stagnation

3. Random walk with stagnation

Definition - Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.s with distribution $\left\{\begin{array}{l}p=\mathbb{P}\left\{U_{1}=+1\right\} \\ q=\mathbb{P}\left\{U_{1}=-1\right\} \\ r=\mathbb{P}\left\{U_{1}=0\right\}\end{array} \quad\right.$ with $p+q+r=1$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

3. Random walk with stagnation

By Sparre Andersen and Spitzer:

$$
\mathbb{P}\left\{\boldsymbol{T}_{\boldsymbol{n}}=\boldsymbol{m}\right\}=\mathbb{P}\left\{\boldsymbol{\tau}^{-}>\boldsymbol{m}\right\} \mathbb{P}\left\{\boldsymbol{\tau}^{\dagger}>\boldsymbol{n}-\boldsymbol{m}\right\}
$$

Theorem - Probability distribution of T_{n}

$$
\mathbb{P}\left\{T_{n}=m\right\}=\left(1+\frac{1}{p} \sum_{i=2}^{m+1} A_{i}\right)\left(p \delta_{m n}+q+\sum_{i=2}^{n-m} A_{i}\right)
$$

where

$$
A_{i}=\frac{2}{4} \sum_{j=0}^{i} c_{j-1} C_{i-j-1}(r-2 \sqrt{p q})^{j}(r+2 \sqrt{p q})^{i-j}
$$

$C_{i}=\frac{1}{i+1}\binom{2 i}{i}$ and $C_{-1}=-\frac{1}{2}$ (Catalan numbers)

3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

$$
\widetilde{\boldsymbol{T}}_{n}=\sum_{m=1}^{n} \delta_{m}
$$

$\delta_{m}=1$ if	
$\left(\begin{array}{l}X_{m}>0 \text { or } \\ X_{m}=0, X_{m-1}>0 \text { or } \\ X_{m}=X_{m-1}=0, X_{m-2}>0 \text { or } \\ \vdots \\ X_{m}=X_{m-1}=\cdots=X_{2}=0, X_{1}>0\end{array}\right.$	$\left(\begin{array}{l}X_{m}<0 \text { or } \\ X_{m}=0, X_{m-1}<0 \text { or } \\ X_{m}=X_{m-1}=0, X_{m-2}<0 \text { or } \\ \vdots \\ X_{m}=X_{m-1}=\cdots=X_{2}=0, X_{1} \leq 0\end{array}\right.$

(Convention: $\widetilde{T}_{0}=0$)
One counts each step m such that $X_{m}>0$ and only those steps such that $X_{m}=0$ which correspond to a previous descent:
$X_{m-1}=1$ or $\left(X_{m-1}=0\right.$ and $\left.X_{m-2}=1\right)$, etc.

3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

$$
\widetilde{T}_{n}=\sum_{m=1}^{n} \delta_{m}
$$

3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

$$
\widetilde{T}_{n}=\sum_{m=1}^{n} \delta_{m}
$$

3. Random walk with stagnation

Theorem - Generating function of the $\widetilde{T}_{n}, \boldsymbol{n} \geq \mathbf{0}$ (with $X_{1} \neq 0$)
[V. Cammarota \& AL: Entrance and sojourn times for Markov chains. Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation. Application to occupation times (Work in progress)]

$$
\widetilde{K}(x, y)=\frac{a(x, y)+b(y) \sqrt{\Delta(x)}+b(x) \sqrt{\Delta(y)}}{(1-x)(1-y)((1-r y) \sqrt{\Delta(x)}+(1-r x) \sqrt{\Delta(y)})}
$$

with

$$
\begin{aligned}
a(x, y) & =(p-q)(x-y)(1-r x)(1-r y) \\
b(u) & =(1-r)(1-u)(1-r u) \\
\Delta(u) & =(1-r u)^{2}-4 p q u^{2}
\end{aligned}
$$

3. Random walk with stagnation

Theorem - Generating function of the $\widetilde{T}_{n}, \boldsymbol{n} \geq 0$ (with $X_{1} \neq 0$)
[V. Cammarota \& AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

$$
\widetilde{K}(x, y)=\frac{a(x, y)+b(y) \sqrt{\Delta(x)}+b(x) \sqrt{\Delta(y)}}{(1-x)(1-y)((1-r y) \sqrt{\Delta(x)}+(1-r x) \sqrt{\Delta(y)})}
$$

Proof - Two possible methods:

- Strong Markov property related to the first hitting time of 0 (yielding recurrence relations)
- Theory of excursions away from 0 (in progress)

3. Random walk with stagnation

Theorem - Generating function of the $\widetilde{\boldsymbol{T}}_{n}, \boldsymbol{n} \geq \mathbf{0}$ (with $X_{1} \neq 0$)

[V. Cammarota \& AL: Entrance and sojourn times for Markov chains. Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation. Application to occupation times (Work in progress)]

$$
\frac{a(x, y)+b(y) \sqrt{\Delta(x)}+b(x) \sqrt{\Delta(y)}}{x)(1-y)((1-r y) \sqrt{\Delta(x)}+(1-r x) \sqrt{\Delta(y)})}
$$

3. Random walk with stagnation

Theorem - Generating function of the $\widetilde{\boldsymbol{T}}_{n}, \boldsymbol{n} \geq \mathbf{0}$ (with $X_{1} \neq 0$)

[V. Cammarota \& AL: Entrance and sojourn times for Markov chains. Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation. Application to occupation times (Work in progress)]

$$
\frac{a(x, y)+b(y) \sqrt{\Delta(x)}+b(x) \sqrt{\Delta(y)}}{x)(1-y)((1-r y) \sqrt{\Delta(x)}+(1-r x) \sqrt{\Delta(y)})}
$$

3. Random walk with stagnation

Theorem - Generating function of the $\widetilde{\boldsymbol{T}}_{n}, \boldsymbol{n} \geq \mathbf{0}$ (with $X_{1} \neq 0$)

[V. Cammarota \& AL: Entrance and sojourn times for Markov chains. Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation. Application to occupation times (Work in progress)]

$$
\widetilde{K}(x, y)=\frac{a(x, y)+b(y) \sqrt{\Delta(x)}+b(x) \sqrt{\Delta(y)}}{(1-x)(1-y)((1-r y) \sqrt{\Delta(x)}+(1-r x) \sqrt{\Delta(y)})}
$$

\longrightarrow Next step: To invert this generating function (in progress)...

4. Case of (L, \boldsymbol{R})-random walk

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Example: $L=5, R=4$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Facts

- In the previous examples, $\{0\}$ was a natural boundary between \mathbb{Z}^{-}and \mathbb{Z}^{\dagger} such that $\{0\} \subset \mathbb{Z}^{\dagger}$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Facts

- In the previous examples, $\{0\}$ was a natural boundary between \mathbb{Z}^{-}and \mathbb{Z}^{\dagger} such that $\{0\} \subset \mathbb{Z}^{\dagger}$
- Moving from \mathbb{Z}^{-}to \mathbb{Z}^{\dagger} induces an up-crossing jump of maximal size R : $\left\{\begin{array}{l}\tau^{\dagger}=\min \left\{k \geq 1: X_{k} \geq 0\right\} \\ X_{\tau^{\dagger}} \in\{0,1,2, \ldots, R-1\}\end{array}\right.$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Example: $L=5, R=4$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Facts

- In the previous examples, $\{0\}$ was a natural boundary between \mathbb{Z}^{-}and \mathbb{Z}^{\dagger} such that $\{0\} \subset \mathbb{Z}^{\dagger}$
- Moving from \mathbb{Z}^{-}to \mathbb{Z}^{\dagger} induces an up-crossing jump of maximal size R : $\left\{\begin{array}{l}\tau^{\dagger}=\min \left\{k \geq 1: X_{k} \geq 0\right\} \\ X_{\tau^{\dagger}} \in\{0,1,2, \ldots, R-1\}\end{array}\right.$
- Moving from \mathbb{Z}^{\dagger} to \mathbb{Z}^{-}induces a down-crossing jump of maximal size $L:\left\{\begin{array}{l}\tau^{-}=\min \left\{k \geq 1: X_{k}<0\right\} \\ X_{\tau^{-}-1} \in\{0,1,2, \ldots, L-1\}\end{array}\right.$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Example: $L=5, R=4$

4. (L, R)-random walk

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

Facts
\longrightarrow Occurrence of a natural "boundary"

$$
\mathbb{Z}^{0}=\{0,1, \ldots, M-1\} \quad \text { where } M=\max (L, R)
$$

yielding a partition

$$
\mathbb{Z}=\mathbb{Z}^{-} \cup \mathbb{Z}^{0} \cup \mathbb{Z}^{+} \quad \text { where } \mathbb{Z}^{+}=\{M, M+1, M+2, \ldots\}
$$

5. General framework: Markov chains

5. Markov chains

Settings

- $\left(X_{m}\right)_{m \geq 0}$: homogeneous Markov chain on \mathcal{E} (finite or denumerable)
- E^{\dagger} : subset of \mathcal{E} and $E^{-}=\mathcal{E} \backslash E^{\dagger}$ ('non-negative' and 'negative'states)
\longrightarrow Partition $\mathcal{E}=E^{\dagger} \cup E^{-}$
- E^{0} : subset of E^{\dagger} and $E^{+}=E^{\dagger} \backslash E^{0}$ ('null' and 'positive' states) \longrightarrow Partition $\mathcal{E}=E^{+} \cup E^{0} \cup E^{-}$
- Conditional probabilities $\mathbb{P}_{i}\{\cdots\}=\mathbb{P}\left\{\cdots \mid X_{0}=i\right\}$ and transition probabilities $p_{i j}=\mathbb{P}_{i}\left\{X_{1}=j\right\}$ for $i, j \in \mathcal{E}$
- Sojourn time of $\left(X_{m}\right)_{m \geq 0}$ in E^{\dagger} up to a fixed time $n \geq 1$

$$
T_{n}=\#\left\{m \in\{1, \ldots n\}: X_{m} \in E^{\dagger}\right\}=\sum_{m=1}^{n} \mathbb{1}_{E^{\dagger}}\left(X_{m}\right)
$$

5. Markov chains

Settings

- First entrance times: $\tau^{0}, \tau^{\dagger}, \tau^{+}, \tau^{-}$in $E^{0}, E^{\dagger}, E^{+}, E^{-}$

$$
\begin{aligned}
& \tau^{0}=\min \left\{m \geq 1: X_{m} \in E^{o}\right\} \\
& \tau^{\dagger}=\min \left\{m \geq 1: X_{m} \in E^{\dagger}\right\} \\
& \tau^{+}=\min \left\{m \geq 1: X_{m} \in E^{+}\right\} \\
& \tau^{-}=\min \left\{m \geq 1: X_{m} \in E^{-}\right\}
\end{aligned}
$$

(Convention: $\min (\varnothing)=+\infty$)
Assumptions on E^{\dagger} and E^{0}
$\left(A_{1}\right)$ if $X_{0} \in E^{-}$, then $\tau^{0}=\tau^{\dagger}$
"The chain starting out of E^{\dagger} enters E^{\dagger} necessarily by passing through E^{0} "
$\left(A_{2}\right)$ if $X_{0} \in E^{+}$, then $\tau^{0} \leq \tau^{-}-1$
"The chain starting in E^{+}exits E^{\dagger} necessarily by passing through E^{0} "

5. Markov chains

Settings

E^{0} acts as a kind of 'boundary' of E^{\dagger} while E^{+}acts as a kind of 'interior' of E^{\dagger}

5. Markov chains

Settings

- Generating functions: for $i, j \in \mathcal{E}$ and any real number x
- Generating function of the numbers $\mathbb{P}_{i}\left\{X_{m}=j\right\}, m \geq 0$:

$$
G_{i j}(x)=\sum_{m=0}^{\infty} \mathbb{P}_{i}\left\{X_{m}=j\right\} x^{m}
$$

- Generating function of $\left(\tau^{0}, X_{\tau^{0}}\right)$:

$$
\begin{aligned}
H_{i j}^{0}(x) & =\sum_{m=1}^{\infty} \mathbb{P}_{i}\left\{\tau^{0}=m, X_{\tau^{0}}=j\right\} x^{m}=\mathbb{E}_{i}\left(x^{\tau^{0}} \mathbb{1}_{\left\{X_{\tau^{0}}=j, \tau^{0}<\infty\right\}}\right) \\
H_{i j}^{0 \dagger}(x) & =\mathbb{E}_{i}\left(x^{\tau^{0}} \mathbb{1}_{\left\{X_{1} \in E^{\dagger}, X_{\tau^{0}}=j, \tau^{0}<\infty\right\}}\right) \\
H_{i j}^{0-}(x) & =\mathbb{E}_{i}\left(x^{\tau^{0}} \mathbb{1}_{\left\{X_{1} \in E^{-}, X_{\tau^{0}}=j, \tau^{0}<\infty\right\}}\right)
\end{aligned}
$$

5. Markov chains

Settings

- Generating functions: linear systems of equations

Chapman-Kolmogorov equation

$$
G_{i j}(x)=\delta_{i j}+x \sum_{k \in \mathcal{E}} p_{i k} G_{k j}(x) \quad \text { for } i, j \in \mathcal{E}
$$

\longrightarrow yields the $G_{i j}(x)$'s
Strong Markov property

$$
G_{i j}(x)=\delta_{i j}+\sum_{k \in E^{o}} H_{i k}^{o}(x) G_{k j}(x) \quad \text { for } i \in \mathcal{E}, j \in E^{o}
$$

\longrightarrow yields the $H_{i j}^{\circ}(x)$'s

5. Markov chains

Settings

- Generating functions: linear systems of equations

Markov property

$$
\begin{aligned}
& H_{i j}^{\circ \dagger}(x)=x\left(p_{i j}+\sum_{k \in E^{+}} p_{i k} H_{k j}^{0}(x)\right) \quad \text { for } i \in \mathcal{E}, j \in E^{o} \\
& H_{i j}^{0-}(x)=x \sum_{k \in E^{-}} p_{i k} H_{k j}^{o}(x) \quad \text { for } i \in \mathcal{E}, j \in E^{o}
\end{aligned}
$$

5. Markov chains

Definition - Generating function of the $T_{n}, n \geq 0$: for any $i \in \mathcal{E}$

$$
K_{i}(x, y)=\sum_{m, n \geq 0: m \leq n} \mathbb{P}_{i}\left\{T_{n}=m\right\} x^{m} y^{n-m}
$$

Theorem - The $K_{i}, i \in \mathcal{E}$, satisfy the linear system of equations

$$
\begin{aligned}
K_{i}(x, y)= & K_{i}(x, 0)+K_{i}(0, y)-1 \\
& +\sum_{j \in E^{0}}\left(H_{i j}^{\circ \dagger}(x)+\frac{x}{y} H_{i j}^{0-}(y)\right) K_{j}(x, y) \\
& -\sum_{j \in E^{0}} H_{i j}^{o \dagger}(x) K_{j}(x, 0)
\end{aligned}
$$

where

$$
K_{i}(x, 0)=\frac{1-\mathbb{E}_{i}\left(\boldsymbol{x}^{\tau^{-}} \mathbb{1}_{\left\{\tau^{-}<\infty\right\}}\right)}{1-x} \text { and } K_{i}(0, y)=\frac{1-\mathbb{E}_{i}\left(\boldsymbol{y}^{\tau^{\dagger}} \mathbb{1}_{\left\{\tau^{\dagger}<\infty\right\}}\right)}{1-\boldsymbol{y}}
$$

5. Markov chains

Remarks

- It is enough to know $K_{i}(x, y)$ only for $i \in E^{0}$ to derive $K_{i}(x, y)$ for $i \in \mathcal{E} \backslash E^{0}$
- It provides a methodology for determining the $K_{i}(x, y)$'s, $i \in E^{o}$

Theorem - Matrix approach

$$
\begin{aligned}
& \mathbb{K}(x, y)= \\
& \left(\mathbb{I}-\mathbb{H}^{0^{\dagger}}(x)-\frac{x}{y} \mathbb{H}^{0-}(y)\right)^{-1}\left(\left(\mathbb{I}-\mathbb{H}^{0^{\dagger}}(x)\right) \mathbb{K}(x, 0)+\mathbb{K}(0, y)-\mathbb{1}\right)
\end{aligned}
$$

with the matrices

$$
\begin{array}{cc}
\mathbb{K}(x, y)=\left(K_{i}(x, y)\right)_{i \in E^{0}} \quad \mathbb{I}=\left(\delta_{i j}\right)_{i, j \in E^{0}} \quad \mathbb{1}=(1)_{i \in E^{0}} \\
\mathbb{H}^{0 \dagger}(x)=\left(H_{i j}^{0 \dagger}(x)\right)_{i, j \in E^{0}} & \mathbb{H}^{0-}(y)=\left(H_{i j}^{0-}(y)\right)_{i, j \in E^{0}}
\end{array}
$$

5. Markov chains

Particular case - If $\boldsymbol{E}^{\mathbf{o}}=\left\{i_{0}\right\}$, then

$$
K_{i_{0}}(x, y)=\frac{\left(1-H_{i_{0} i_{0}}^{\circ \dagger}(x)\right) K_{i_{0}}(x, 0)+K_{i_{0}}(0, y)-1}{1-H_{i_{0} i_{0}}^{\circ \dagger}(x)-\frac{x}{y} H_{i_{0} i_{0}}^{0-}(y)}
$$

where

$$
\begin{aligned}
& H_{i_{i_{0} 0}}^{\circ \dagger \dagger}(x)=x\left(\sum_{k \in E^{\dagger}} p_{i_{0} k} G_{k i_{0}}(x)\right) / G_{i_{0} i_{0}}(x) \\
& H_{i_{0} i_{0}}^{0-}(y)=y\left(\sum_{k \in E^{-}} p_{i_{0} k} G_{k i_{0}}(y)\right) / G_{i_{0} i_{0}}(y)
\end{aligned}
$$

5. Markov chains

Definition - An alternative sojourn time

$$
\widetilde{\boldsymbol{T}}_{n}=\sum_{m=1}^{n} \delta_{m}
$$

with

$$
\begin{array}{l|l|l}
\hline \delta_{m}=1 & \text { if } & \delta_{m}=0 \text { if }
\end{array}
$$

$\left\{\begin{array}{l}X_{m} \in E^{+} \text {or } \\ X_{m} \in E^{o}, X_{m-1} \in E^{+} \text {or } \\ X_{m}, X_{m-1} \in E^{o}, X_{m-2} \in E^{+} \text {or } \\ \vdots \\ X_{m}, X_{m-1}, \ldots, X_{2} \in E^{o}, X_{1} \in E^{+}\end{array}\right.$
$\left\{\begin{array}{l}X_{m} \in E^{-} \text {or } \\ X_{m} \in E^{o}, X_{m-1} \in E^{-} \text {or } \\ X_{m}, X_{m-1} \in E^{o}, X_{m-2} \in E^{-} \text {or } \\ \vdots \\ X_{m}, X_{m-1}, \ldots, X_{2} \in E^{o}, X_{1} \in E^{-} \cup E^{o}\end{array}\right.$
(Convention: $\widetilde{T}_{0}=0$)

5. Markov chains

Definition - Generating function of the $\widetilde{\boldsymbol{T}}_{\boldsymbol{n}}, \boldsymbol{n} \geq \mathbf{0}$: for any $\boldsymbol{i} \in \mathcal{E}$

$$
\widetilde{K}_{i}(x, y)=\sum_{m, n \geq 0: m \leq n} \mathbb{P}_{i}\left\{\widetilde{T}_{n}=m\right\} x^{m} y^{n-m}
$$

Theorem - The $\widetilde{K}_{i}, i \in \mathcal{E}$, satisfy an intricate system of equations...
[V. Cammarota\& AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]

$$
\widetilde{K_{i}}(x, y)=\cdots
$$

Matrix approach

$$
\widetilde{\mathbb{K}}(x, y)=\cdots
$$

where $\widetilde{\mathbb{K}}(x, y)=\left(\widetilde{K_{i}}(x, y)\right)_{i \in E^{\circ}}$

5. Markov chains

Definition - Generating function of the $\widetilde{\boldsymbol{T}}_{\boldsymbol{n}}, \boldsymbol{n} \geq 0$: for any $i \in \mathcal{E}$

$$
\widetilde{K}_{i}(x, y)=\sum_{m, n \geq 0: m \leq n} \mathbb{P}_{i}\left\{\widetilde{T}_{n}=m\right\} x^{m} y^{n-m}
$$

Particular case - If $E^{0}=\left\{i_{0}\right\}$ and $p_{i_{0_{0}}}=0$ (no stagnation at i_{0}), then

$$
\widetilde{K}_{i_{0}}(x, y)=\frac{\left(1-H_{i_{0} i_{0}}^{0+}(x)\right) \widetilde{K}_{i_{0}}(x, 0)+\left(1-H_{i_{i_{0}}}^{0-}(y)\right) \widetilde{K}_{i_{0}}(0, y)-1}{1-H_{i_{0} i_{0}}^{0+}(x)-H_{i_{i_{0}}}^{0-}(y)}
$$

where

$$
\begin{aligned}
& H_{i_{0 i_{0}}}^{0+}(x)=\frac{x}{G_{i i_{0} i_{0}}(x)} \sum_{k \in E^{+}} p_{i_{0} k} G_{k i_{0}}(x) \\
& H_{i_{0} i_{0}}^{0-}(y)=\frac{y}{G_{i_{0} i_{0}}(y)} \sum_{k \in E^{-}} p_{i_{0} k} G_{k i_{0}}(y)
\end{aligned}
$$

6. Case of (L,R)-random walk (continued)

6. (L, R)-random walk (continued)

Definition - Let L, R be positive integers and let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-L,-L+1, \ldots, R-1, R\}$ Set

$$
\pi_{i}= \begin{cases}\mathbb{P}\left\{U_{1}=i\right\} & \text { for } i \in\{-L, \ldots, R\} \\ 0 & \text { for } i \in \mathbb{Z} \backslash\{-L, \ldots, R\}\end{cases}
$$

Let $\left(X_{m}\right)_{m \geq 0}$ be the random walk defined on \mathbb{Z} by $X_{0}=0$ and

$$
X_{m}=\sum_{i=1}^{m} U_{i} \quad \text { for } m \geq 1
$$

6. (L, R)-random walk (continued)

Definition - Generating function of the $X_{m}, \boldsymbol{m} \geq 0$

$$
\Gamma_{j-i}(x)=\sum_{m=0}^{\infty} \mathbb{P}_{i}\left\{X_{m}=j\right\} x^{m}
$$

Proposition - The function Γ_{j-i} admits the representation

$$
\Gamma_{j-i}(x)= \begin{cases}\sum_{\ell \in \mathcal{L}^{-}} \frac{z_{\ell}(x)^{i-j+L-1}}{P_{x}^{\prime}\left(z_{\ell}(x)\right)} & \text { if } i>j \\ -\sum_{\ell \in \mathcal{L}^{+}} \frac{z_{\ell}(x)^{i-j+L-1}}{P_{x}^{\prime}\left(z_{\ell}(x)\right)} & \text { if } i \leq j\end{cases}
$$

where the $z_{\ell}(x)$'s, $1 \leq \ell \leq L+R$, are the roots of the polynomial $P_{x}: z \mapsto z^{L}-x \sum_{j=0}^{L+R} \pi_{j-L} z^{j}$ and

$$
\mathcal{L}^{+}=\left\{\ell:\left|z_{\ell}(x)\right|>1\right\} \quad \mathcal{L}^{-}=\left\{\ell:\left|z_{\ell}(x)\right|<1\right\}
$$

6. (L, R)-random walk (continued)

Settings - Set $M=\max (L, R)$
We choose here

$$
\begin{aligned}
E^{o} & =\{0,1, \ldots, M-1\} \\
E^{\dagger} & =\{0,1,2, \ldots\} \\
E^{+} & =\{M, M+1, M+2, \ldots\} \\
E^{-} & =\{\ldots,-3,-2,-1\}
\end{aligned}
$$

The settings can be rewritten in this context as

$$
\begin{aligned}
T_{n} & =\#\left\{m \in\{1, \ldots, n\}: X_{m} \geq 0\right\} \\
\tau^{0} & =\min \left\{m \geq 1: X_{m} \in\{0,1, \ldots, M-1\}\right\} \\
\tau^{\dagger} & =\min \left\{m \geq 1: X_{m} \geq 0\right\} \\
\tau^{+} & =\min \left\{m \geq 1: X_{m} \geq M\right\} \\
\tau^{-} & =\min \left\{m \geq 1: X_{m} \leq-1\right\}
\end{aligned}
$$

Assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ are fulfilled

6. (L, R)-random walk (continued)

Theorem - The functions $K_{i}, 0 \leq i \leq M-1$, satisfy the linear system

$$
\begin{aligned}
K_{i}(x, y)= & x \sum_{j=0}^{M-1}\left(\pi_{j-i}+\sum_{k=M}^{2 M-1} \pi_{k-i} H_{k j}^{0}(x)+\sum_{k=-M}^{-1} \pi_{k-i} H_{k j}^{0}(y)\right) K_{j}(x, y) \\
& +K_{i}(x, 0)+K_{i}(0, y)-1 \\
& -x \sum_{j=0}^{M-1}\left(\pi_{j-i}+\sum_{k=M}^{2 M-1} \pi_{k-i} H_{k j}^{0}(x)\right) K_{j}(x, 0), \quad 0 \leq i \leq M-1
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{i}(x, 0)=\frac{1-\mathbb{E}_{i+M}\left(x^{\tau^{0}} \mathbb{1}_{\left\{\tau^{0}<\infty\right\}}\right)}{1-x} \\
& K_{i}(0, y)=\frac{1}{1-y}\left(1-y \sum_{j=0}^{2 M-1} \pi_{j-i}-y \sum_{k=-M}^{-1} \pi_{k-i} \mathbb{E}_{k}\left(y^{\tau^{0}} \mathbb{1}_{\left\{\tau^{0}<\infty\right\}}\right)\right)
\end{aligned}
$$

6. (L, R)-random walk (continued)

Theorem - The functions $K_{i}, 0 \leq i \leq M-1$, satisfy the linear system

$$
\begin{aligned}
K_{i}(x, y)= & x \sum_{j=0}^{M-1}\left(\pi_{j-i}+\sum_{k=M}^{2 M-1} \pi_{k-i} H_{k j}^{o}(x)+\sum_{k=-M}^{-1} \pi_{k-i} H_{k j}^{o}(y)\right) K_{j}(x, y) \\
& +K_{i}(x, 0)+K_{i}(0, y)-1 \\
& -x \sum_{j=0}^{M-1}\left(\pi_{j-i}+\sum_{k=M}^{2 M-1} \pi_{k-i} H_{k j}^{o}(x)\right) K_{j}(x, 0), \quad 0 \leq i \leq M-1
\end{aligned}
$$

and where the functions $H_{i j}^{0}$ solve the systems
$\sum_{k=0}^{n-1}$
$\sum_{k=0}^{n-1} H_{\mu k}^{(k)}(y) \Gamma_{L_{-k}(y)}=\Gamma_{1-(y)}$
$M \leq i \leq 2 M-1,0 \leq j \leq M-1$
$-M \leq i \leq-1,0 \leq j \leq M-1$

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 1

$$
\left\{\begin{array}{l}
\pi_{i}=c\binom{2 M}{i+M} \quad \text { for } i \in\{-M, \ldots,-1,1, \ldots, M\} \\
\pi_{0}=1-c\left[4^{M}-\binom{2 M}{M}\right]
\end{array}\right.
$$

where $0<c \leq 1 /\left[4^{M}-\binom{2 M}{M}\right]$
For $c=1 / 4^{M}$, we have $\pi_{i}=\binom{2 M}{i+M} / 4^{M}$ for any i
For $c=1 /\left[4^{M}-\binom{2 M}{M}\right]$, we have $\pi_{0}=0$

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 1

$$
\Gamma_{j}(x)=\frac{1}{M\left(1-\left(1-c 4^{M}\right) x\right)} \sum_{\ell=1}^{M} \frac{1+z_{\ell}(x)}{1-z_{\ell}(x)} z_{\ell}(x)^{|j|}
$$

where the $z_{\ell}, 1 \leq \ell \leq M$, are the roots of

$$
(z+1)^{2}-e^{i \frac{2 \pi}{M} r} \sqrt{\frac{1-\left(1-c 4^{M}\right) x}{c x}} z=0, \quad 0 \leq r \leq M-1
$$

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 2

$$
\left\{\begin{array}{l}
\pi_{i}=c \rho^{|i|}\binom{M}{|i|} \quad \text { for } i \in\{-M, \ldots,-1,1, \ldots, M\} \\
\pi_{0}=1-2 c\left((\rho+1)^{M}-1\right)
\end{array}\right.
$$

where $c \leq 1 /\left(2(\rho+1)^{M}-1\right)$
For $c=1 /\left(2(\rho+1)^{M}-1\right)$, we have $\pi_{0}=0$

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 2

When $\rho=1$:

$$
\Gamma_{j}(x)=\frac{1}{M\left(1-\left(1-c 2^{M+1}\right) x\right)} \sum_{\ell=1}^{M} \frac{\left(1+z_{\ell}(x)\right)\left(1+z_{\ell}(x)^{M}\right)}{1-z_{\ell}(x)^{M+1}} z_{\ell}(x)^{|j|}
$$

where the $z_{\ell}, 1 \leq \ell \leq M$, are the roots of

$$
\left(1-\left(1-c 2^{M+1}\right) x\right) z^{M}-c x\left(z^{M}+1\right)(z+1)^{M}=0
$$

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 3

$$
\left\{\begin{array}{l}
\pi_{i}=c \quad \text { for } i \in\{-M, \ldots,-1,1, \ldots, M\} \\
\pi_{0}=1-2 M c
\end{array}\right.
$$

where $0<c \leq 1 /(2 M)$
For $c=1 /(2 M)$, we have $\pi_{0}=0$
For $c=1 /(2 M+1)$, the jumps are identically distributed

6. (L, R)-random walk (continued)

Symmetric random walk
$L=R=M$, steps lying in $\{-M,-M+1, \ldots, M-1, M\}$, such that $\pi_{i}=\pi_{-i}$ for all integer i

Example 4 - Symmetric (2, 2)-random walk ($L=R=M=2$)

$$
\left\{\begin{array}{l}
\pi_{0}=\mathbb{P}\left\{U_{1}=0\right\} \\
\pi_{1}=\mathbb{P}\left\{U_{1}=+1\right\}=\mathbb{P}\left\{U_{1}=-1\right\} \\
\pi_{2}=\mathbb{P}\left\{U_{1}=+2\right\}=\mathbb{P}\left\{U_{1}=-2\right\}
\end{array}\right.
$$

with $\pi_{0}+2 \pi_{1}+2 \pi_{2}=1$

7. Case of symmetric (2, 2)-random walk

7. Symmetric (2, 2)-random walk

Definition - Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-2,-1,0,1,2\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk

The natural boundary is $\mathbb{Z}^{0}=\{0,1\}$

7. Symmetric (2, 2)-random walk

Definition - Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with values in $\{-2,-1,0,1,2\}$ and $\left(X_{m}\right)_{m \geq 0}$ be the corresponding random walk Set

$$
\left\{\begin{array}{l}
\pi_{0}=\mathbb{P}\left\{U_{1}=0\right\} \\
\pi_{1}=\mathbb{P}\left\{U_{1}=+1\right\}=\mathbb{P}\left\{U_{1}=-1\right\} \quad \text { with } \pi_{0}+2 \pi_{1}+2 \pi_{2}=1 \\
\pi_{2}=\mathbb{P}\left\{U_{1}=+2\right\}=\mathbb{P}\left\{U_{1}=-2\right\}
\end{array}\right.
$$

7. Symmetric (2, 2)-random walk

Definition - Generating function of the $X_{m}, m \geq 0$

$$
\Gamma_{j-i}(x)=\sum_{m=0}^{\infty} \mathbb{P}_{i}\left\{X_{m}=j\right\} x^{m}
$$

Proposition - The function Γ_{j-i} is given by

$$
\Gamma_{j-i}(x)=\frac{1}{x \sqrt{\delta(x)}}\left(\frac{z_{1}(x)^{|i-j|+1}}{1-z_{1}(x)^{2}}-\frac{z_{2}(x)^{|i-j|+1}}{1-z_{2}(x)^{2}}\right)
$$

where

$$
\begin{aligned}
& \delta(x)=\left(\pi_{1}+4 \pi_{2}\right)^{2}+4 \pi_{2}(1 / x-1) \\
& z_{1}(x)=-\frac{1}{4 \pi_{2}}\left(\pi_{1}-\sqrt{\delta(x)}+\sqrt{2} \sqrt{\pi_{1}^{2}+4 \pi_{1} \pi_{2}-2 \pi_{2}+2 \pi_{2} / x-\pi_{1} \sqrt{\delta(x)}}\right) \\
& z_{2}(x)=-\frac{1}{4 \pi_{2}}\left(\pi_{1}+\sqrt{\delta(x)}+\sqrt{2} \sqrt{\pi_{1}^{2}+4 \pi_{1} \pi_{2}-2 \pi_{2}+2 \pi_{2} / x+\pi_{1} \sqrt{\delta(x)}}\right)
\end{aligned}
$$

7. Symmetric (2, 2)-random walk

Definition - Generating matrices of T_{n} and \widetilde{T}_{n}

$$
\mathbb{K}(x, y)=\binom{K_{0}(x, y)}{K_{1}(x, y)} \quad \widetilde{\mathbb{K}}(x, y)=\binom{\widetilde{K}_{0}(x, y)}{\widetilde{K}_{1}(x, y)}
$$

Theorem - The matrices \mathbb{K} and $\widetilde{\mathbb{K}}$ admit the representations

$$
\mathbb{K}(x, y)=\mathbb{A}(x, y) \mathbb{B}(x, y) \quad \widetilde{\mathbb{K}}(x, y)=\widetilde{\mathbb{A}}(x, y) \widetilde{\mathbb{B}}(x, y)
$$

where $\mathrm{A}(x, y), \mathrm{B}(x, y), \widetilde{\mathrm{A}}(x, y), \widetilde{\mathrm{B}}(x, y)$ are explicit matrices given by... very complicated formulae!

7. Symmetric (2, 2)-random walk

$$
A(x, y)=\frac{d(x) d(y)}{A(x, y)}\left(\begin{array}{ll}
A_{00}(x, y) & A_{01}(x, y) \\
A_{10}(x, y) & A_{11}(x, y)
\end{array}\right)
$$

where

$$
\begin{gathered}
A_{00}(x, y)=\left(1-\pi_{0} x\right) d(x) d(y)-x d(y) A_{11}^{\prime}(x)-y d(x) A_{00}^{\prime}(y) \\
A_{01}(x, y)=\pi_{1} x d(x) d(y)+x d(y) A_{01}^{\prime}(x)+y d(x) A_{10}^{\prime}(y) \\
A_{10}(x, y)=\pi_{1} x d(x) d(y)+x d(y) A_{10}^{\prime}(x)+y d(x) A_{01}^{\prime}(y) \\
A_{11}(x, y)=\left(1-\pi_{0} x\right) d(x) d(y)-x d(y) A_{00}^{\prime}(x)-y d(x) A_{11}^{\prime}(y) \\
d(z)=\Gamma_{0}(z)^{2}-\Gamma_{1}(z)^{2} \\
A(x, y)=A_{00}(x, y) A_{11}(x, y)-A_{01}(x, y) A_{10}(x, y)
\end{gathered}
$$

7. Symmetric (2, 2)-random walk

$$
\mathbb{A}(x, y)=\frac{d(x) d(y)}{A(x, y)}\left(\begin{array}{ll}
A_{00}(x, y) & A_{01}(x, y) \\
A_{10}(x, y) & A_{11}(x, y)
\end{array}\right)
$$

where

$$
A_{00}^{\prime}(z)=\pi_{2}\left(\Gamma_{0}(z) \Gamma_{2}(z)-\Gamma_{1}(z)^{2}\right)
$$

$$
A_{01}^{\prime}(z)=\pi_{2}\left(\Gamma_{0}(z) \Gamma_{1}(z)-\Gamma_{1}(z) \Gamma_{2}(z)\right)
$$

$$
A_{10}^{\prime}(z)=\pi_{1}\left(\Gamma_{0}(z) \Gamma_{2}(z)-\Gamma_{1}(z)^{2}\right)+\pi_{2}\left(\Gamma_{0}(z) \Gamma_{3}(z)-\Gamma_{1}(z) \Gamma_{2}(z)\right)
$$

$$
A_{11}^{\prime}(z)=\pi_{1}\left(\Gamma_{0}(z) \Gamma_{1}(z)-\Gamma_{1}(z) \Gamma_{2}(z)\right)+\pi_{2}\left(\Gamma_{0}(z) \Gamma_{2}(z)-\Gamma_{1}(z) \Gamma_{3}(z)\right)
$$

7. Symmetric $(2,2)-r a n d o m$ walk

$$
\mathbb{B}(x, y)=\binom{B_{0}(x, y)}{B_{1}(x, y)}
$$

where

$$
\begin{aligned}
B_{0}(x, y)= & \frac{1}{(1-x) d(x)^{2}}\left[\left(\left(1-\pi_{0} x\right) d(x)-x A_{00}^{\prime}(x)\right) B_{0}^{-}(x)\right. \\
& \left.-x\left(\pi_{1} d(x)+A_{01}^{\prime}(x)\right) B_{1}^{-}(x)\right]+\frac{1}{(1-y) d(y)} B_{0}^{\dagger}(y)-1 \\
B_{1}(x, y)= & \frac{1}{(1-x) d(x)^{2}}\left[\left(\left(1-\pi_{0} x\right) d(x)-x A_{11}^{\prime}(x)\right) B_{1}^{-}(x)\right. \\
& \left.-x\left(\pi_{1} d(x)+A_{10}^{\prime}(x)\right) B_{0}^{-}(x)\right]+\frac{1}{(1-y) d(y)} B_{1}^{\dagger}(y)-1
\end{aligned}
$$

7. Symmetric (2, 2)-random walk

$$
\mathbb{B}(x, y)=\binom{B_{0}(x, y)}{B_{1}(x, y)}
$$

where

$$
\begin{aligned}
B_{0}^{-}(x)= & d(x)-\left(\Gamma_{0}(x)-\Gamma_{1}(x)\right)\left(\Gamma_{1}(x)+\Gamma_{2}(x)\right) \\
B_{1}^{-}(x)= & d(x)-\left(\Gamma_{0}(x)-\Gamma_{1}(x)\right)\left(\Gamma_{2}(x)+\Gamma_{3}(x)\right) \\
B_{0}^{\top}(y)= & \left(1-\left(1-\pi_{1}-\pi_{2}\right) y\right) d(y) \\
& -y\left(\Gamma_{0}(y)-\Gamma_{1}(y)\right)\left(\pi_{1} \Gamma_{1}(y)+\left(\pi_{1}+\pi_{2}\right) \Gamma_{2}(y)+\pi_{2} \Gamma_{3}(y)\right) \\
B_{1}^{\dagger}(y)= & \left(1-\left(1-\pi_{2}\right) y\right) d(y) \\
& -\pi_{2} y\left(\Gamma_{0}(y)-\Gamma_{1}(y)\right)\left(\Gamma_{1}(y)+\Gamma_{2}(y)\right)
\end{aligned}
$$

Thank you for your attention!

http://math.univ-lyon1.fr/~alachal/exposes/slides_augsburg_2016.pdf

