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The problem'

My favorite and recurrent interests:

@ Hitting times, entrance times
o Exit times

@ Overshooting times

@ Sojourn times...

For various stochastic processes:

@ Brownian motion, Ornstein-Uhlenbeck process

o Diffusion processes, Gaussian processes

@ Lévy processes, stable processes

@ Integrated Brownian motion and other integral functionals...
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The problem'

My favorite and recurrent interests:

@ Hitting times, entrance times
o Exit times

@ Overshooting times

@ Sojourn times...

For various stochastic processes:

@ Brownian motion, Ornstein-Uhlenbeck process

o Diffusion processes, Gaussian processes

@ Lévy processes, stable processes

@ Integrated Brownian motion and other integral functionals...

In this talk: Random walks and more general Markov chains

Main goal: To provide a methodology for deriving the
probability distribution of certain sojourn times...
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Motivation: high-order heat equation'

e Continuous-time (N integer > 1):

dwu(t,x) = (-1)V" Au(t,x), t>0,x€ IR%I

where o:u(t,x) = % (t, x)

*Nu
A’:I(U(t, X) = m(t, X)
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Motivation: high-order heat equation

e Continuous-time (N integer > 1):

dwu(t,x) = (-1)V" Au(t,x), t>0,x€ IR%I

where o:u(t,x) = % (t, x)

*Nu
A’:I(U(t, X) = m(t, X)

— Pseudo-Brownian motion (B;);>o With pseudo-
transition densities
—+ oo

1 . N
Po(B; € dy)/dy = — f iUt g

—00

Warning : P is a signed measure!
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Motivation: high-order heat equation

o Discrete-time (N integer > 1):

dnu(n,x) = (-1)""'AVu(n,x), neN, xe ZI

where 9,u(n,x) = u(n + 1,x) — u(n, x)

ANu(n,x) = Z (_1)k(k2_|’_VN) u(n, x + k)

— Pseudo-random walk (Xm)mso: Xm = Xo + Z’f'; Ui
where (U;)i»1 is a sequence of i.i.d. pseudo-r.v. with
pseudo-distribution
_ . 2N\ . [-N<i<N
P — = (-1 i+N-1 f =1=
th=i=(=1) (i+N) ! { i#0

2N
P{U; =0} =1+ (—1)”(N)
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Motivation: high-order heat equation

o Discrete-time (N integer > 1):

dnu(n,x) = (-1)""'AVu(n,x), neN, xe ZI

where 9,u(n,x) = u(n + 1,x) — u(n, x)

ANu(n,x) = Z (_1)k(k2_|’_VN) u(n, x + k)

— Pseudo-random walk (Xm)mso: Xm = Xo + X", Ui

This is a (—N, N)-random walk with signed distribution
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© General random walk on R
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General framework: Markov chains
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General random walk on R

Case of nearest neighbour random walk
Case of random walk with stagnation
Case of (L, R)-random walk

General framework: Markov chains
Case of (L, R)-random walk (continued)
Case of symmetric (2,2)-random walk
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1. General random walk on R




1. General random walk on R

Definition — Let (U;)i»1 be a sequence of i.i.d. real-valued r.v.s
and (X;,)m>o0 be the random walk defined on R by X, = 0 and

m
Xm=ZU,- form > 1

i=1
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1. General random walk on R

Definition — Sojourn time of the walk (X;;)mso in R = [0, +0)
up to a fixed step n > 1

T, =#me {1,...,nk Xp 20} = ) Le(Xm)
m=1

(Convention: Ty = 0)
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1. General random walk on R

Definition — Sojourn time of the walk (X;;)mso in R = [0, +0)
up to a fixed step n > 1

T, =#me {1,...,nk Xp 20} = ) Le(Xm)
m=1

(Convention: Ty = 0)

—> Problem: Probability distribution of T,?

7/53



1. General random walk on R

Theorem A (Sparre Andersen)

[On the fluctuations of sums of random variables, 1953]

P{Ty = m} = P{T, = m} P{Tp_, = 0}

for0O<m<n

with
{Tm:m}={min Xk20}={7‘>m}
1<k<m
{T,,_,,,=0}={ max X, <o}={r‘f>n—m}
1<k<n-m
where

7~ = min{k > 1: Xk < 0}
" = min{k > 1: Xx > 0}

(Convention: min(@) = +co)
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1. General random walk on R

Definition — Generating function of the T,, n > 0

(s

K(x,y) = Z P{T, = m}x"y"™" = Z]E(xTny"‘Tn)

m,n>0:m<n n=0

Corollary — The function K satisfies
K(x,y) = K(x,0)K(0,y)

where
1- ]E(XT_]].{T-<00})
1-Xx

had 1 - ]E(yTT]]_{TT oo])
K(0,y) = Y P(T,=0}y" = o -
n=0

K(x,0) = ZIP{T,, = n)x" =
n=0
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1. General random walk on R

Theorem B (Spitzer)

[A combinatorial lemma and its application to probability theory, 1955]

(o]

) N - xk
K(x,0) = ,,ZOP{@"IQ" Xk = O}X = exp{; P{Xx > 0} 7]

N ; < y*
K(,y) = nZ_OIP{@kas)g Xk < 0} y' = exp[‘; P{Xx < 0} 7]

The probabilities P{maxi<x<n Xk < 0} and P{min;<<n Xx > 0}
are implicitly known through their generating functions...

— Next step: To invert these generating functions...
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2. Case of nearest neighbour

random walk




2. Nearest neighbour random walk

Definition — Let (U;)i»1 be a sequence of i.i.d. Bernoulli r.v.s
p =P{U, = +1}
q =P{U; = -1}
and (X;;)m>o0 be the random walk definedon Z = {...,-1,0,1,...}
by X, = 0 and

with parameters withp+qg=1

m
Xm=ZU,- form> 1

i=1
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2. Nearest neighbour random walk

Definition — Sojourn time of the walk (X;;)mso in Z'= ZN[0, +0)
up to a fixed step n > 1

T,=#{mef{l,....,n}: Xp, 20} = Z 17:(Xm)
m=1

(Convention: Ty = 0)
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2. Nearest neighbour random walk

By Sparre Andersen and Spitzer:

P{T, =m} =Pt~ > m}P{r’' >n- m}I

Theorem — Probability distribution of T,

PT,=m}=|1-q Z Ci(pq)’ (p6mn+q— Z C,1(pq)]

o<i< -t 1<i<i5m

where C ’+1 ( ) (Catalan numbers!)

Quote — As written by Spitzer:
“There is no doubt what causes the slight but ugly asymmetry

in the distribution of T,. It is slight but unpleasant difference
between positive and non-negative partial sums”




2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

[On fluctuations in coin-tossings, 1949]

= < 1 if(Xm>0 Xm =0 and Xjn_1>0
Tn=26m with 6, = it (Xm>0) or (X =0 and X;n_1>0)
o 0 if (Xm<0) or (X, =0 and X;,_1<0)

One counts each step m such that X,, >0 and only those steps
such that X,;, = 0 which correspond to a downstep: X,,,_; = 1
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Symmetriccasep = q = 1/2

Quote — As written by Chung & Feller:

“The elegance of the results to be announced
depends on this convention [definition of 6,]”

— It produces a remarkable result!

Theorem — Probability distribution of T,

[Chung & Feller: On fluctuations in coin-tossings, 1949]

o= = e = e =01 )
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Symmetriccasep = q = 1/2

Quote — As written by Chung & Feller:

“The elegance of the results to be announced
depends on this convention [definition of 6,]”

— It produces a remarkable result!

Problem — What about the case of an arbitrary p? Well-known?
Surprisingly, no precise reference in the literature...
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Definition — Generating function of the f,,, n>0

K(x,y) = Z IP’{T,, = m} xMyn-m

m,n>0:m<n

Theorem — The function K is given by
[AL: Sojourn time in Zt for the Bernoulli random walk on Z (ESAIM: P&S, 2012)]

(P-a)(x—y)+ (1 -y)VA(x) + (1 - x)VA(y)
(1-x)(1-y)(Va®X) +Va(y))
where A(u) = 1 - 4pqu?

K(XaY) =

17/53



2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Corollary — Probability distribution of T

P{f, = m}

= L{n-meven) [p Z Ci(pq)' - Z ( Z Cici—j)(PCI)i+1

n-m iehn n-m ien ici_n—-m
— <SIS3 So<i<3-1' 0gj<i-=5—

+ Tmeven) [q D Cipa) - ), ( >, CfCi-i)(pq)’+‘]
o<i<y Z<i<§-2 ‘0gj<i-F

“\——

where C,- = l-|+1 (2") (Catalan numbers)
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Remark — Similar results hold for pinned random walk/bridge
of random walk (joint distribution of (f,, | x,,))...

Theorem — Probability distribution of (:f,, | X, = 0) (even n)

ifMmiseven < n

]P{T',,=m|x,,=o}= n+2

0 else

0) is uniformly distributed on the set
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Proof — Two possible methods:
e Strong Markov property related to the first hitting time of 0

— Splitting the paths into two parts : the first excursion
and the refreshed walk (yielding recurrence relations)

e Theory of excursions away from 0

— Splitting the paths into excursions
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

If1<T,<n-1,then1<7°<n-1and
:,-; _ T0+f,-o,n ifX1 >0
Toon it X; <0

=
_ n
where > = minim>1: X,, =0} and T, = Z Om

m=7°+1
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

—~

f1<T,<n-1,then1 <T°<n—1and

n= Toon it X; <0

n
where 7° = min{m > 1: X,, = 0} and T, = Z Om

m=7°+1

By the strong Markov property, if1 <m < n-1:

BT = m= (T mise cnot)= 3 B(Tur = j)
n-1 j=1
= D P =} X% > 0 P(T,; = m - j}
j= 1
+ ZIP{T =j, X < O}IP{T_, = m} etc.

j=1 21/53



2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Remark — The generating function K does not satisfy

K(x, y) = K(X, O)E(O, y) I

But the partial generating function of the T,,n>0

I?'(x, y) = Z ]P{f, = m} xMyn=m
m,n>0:m<n

does satisfy

K (x,y) = K (x,0)K (0, y)... I
22/53



3. Case of random walk

with stagnation




3. Random walk with stagnation

Definition — Let (U;)i»1 be a sequence of i.i.d. r.v’s with

p = P{U; = +1}
distribution q=PU, =-1} withp4+qg+r=1
r = P{U; = 0}

and (X)) m>o0 be the corresponding random walk
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3. Random walk with stagnation

By Sparre Andersen and Spitzer:
P{T,=m} =Pt~ > mP{r >n- m}I

Theorem — Probability distribution of T,

1 m4-1 n-m
IP){Tn = m} = [1 + B Z Ai][p‘smn'l‘ q+ ZAi]

i=2

where

A= 43 Y Cis Cijes (r = 2YPA) ( + 2 V)
j=0

Ci = - (2") and C_; = —% (Catalan numbers)
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3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

Xm
Xm=0, Xm_1>0 or
{Xn=Xmn-1=0,Xn_2>0or

\"%
(:)

Xn=Xp_1=+-=Xo= (), Xi>0

Oom =0 if
Xm<0 or
Xm=0,Xn_1<0or
Xm=Xm-1=0,Xn_2<0or
Xn=Xm_1=---=X2=0,X; <0

(Convention: Ty = 0)

One counts each step m such that X, >0 and only those steps
such that X, = 0 which correspond to a previous descent:

Xm-1 = 10r (X,-1 = 0and X,,_, = 1), etc.
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3. Random walk with stagnation

Theorem — Generating function of the T,, n > 0 (with X; # 0)

[V. Cammarota & AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

a(x,y) + b(y) VA(x) + b(x) VA(y)
(1-x)(1- y)((1 —ry)VA(x) + (1 - rX)\/A(y))

E(Xay) =

with

a(x,y) =(p-q)(x-y)(A1-m)(1 -ry)
b(uy=(1-r)(1-u)(1 -ru)
A(u) = (1 - ru)® - 4pqu?
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3. Random walk with stagnation

Theorem — Generating function of the T,, n > 0 (with X; # 0)

[V. Cammarota & AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

a(x,y) + b(y) VA(x) + b(x) VA(y)
(1-x)(1- y)((1 —ry)VA(x) + (1 - rX)\/A(y))

Proof — Two possible methods:

R(X,y) =

e Strong Markov property related to the first hitting time of 0
(yielding recurrence relations)
o Theory of excursions away from 0 (in progress)
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3. Random walk with stagnation

Theorem — Generating function of the T,, n > 0 (with X; # 0)

[V. Cammarota & AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

a(x,y) + b(y) VA(x) + b(x) VA(y)

R(X,y) =

(1-x)(1 = y)((1 - VAR + (1 - )VA(Y))

~

b é

______l N

D &

—— A
S
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3. Random walk with stagnation

Theorem — Generating function of the T,, n > 0 (with X; # 0)

[V. Cammarota & AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

a(x,y) + b(y) VA(x) + b(x) VA(y)

R(X,y) =

(1-x)(1 = y)((1 - VAR + (1 - )VA(Y))

~

—————-a
b é

______l N

D &

—— A
—_—— ¥
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3. Random walk with stagnation

Theorem — Generating function of the T,, n > 0 (with X; # 0)

[V. Cammarota & AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.
Application to occupation times (Work in progress)]

a(x,y) + b(y) VA(x) + b(x) VA(y)
(1-x)(1- y)((1 —ry)VA(x) + (1 - rX)\/A(y))

— Next step: To invert this generating function (in progress)...

E(Xay) =

27/53



4. Case of (L,R)-random walk



4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

1 S v R L1 5 >0 25 35 Ak A%
—1]
=

Example: L =5,R =4
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Facts
e In the previous examples, {0} was a natural boundary
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4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

Facts
e In the previous examples, {0} was a natural boundary

between Z~ and Z' such that {0} c Z'

e Moving from Z~ to Z' induces an up-crossing jump of
maximal size R: [7v" = min{k > 1: X > 0}
X €{0,1,2,...,R-1}

29/53



4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

5

w

Example: L =5,R =4
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4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

Facts
o In the previous examples, {0} was a natural boundary
between Z~ and Z' such that {0} c Z'

e Moving from Z~ to Z' induces an up-crossing jump of
maximal size R: [7v" = min{k > 1: X > 0}
{XTT €{0,1,2,...,R -1}
e Moving from Z' to Z~ induces a down-crossing jump of
maximal size L: 7~ = min{k > 1: X, < 0}
X-_4€{0,1,2,...,L -1}

29/53



4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

i I\
A

w
w

o 1 2 3 a4 & 6 \7] ©# & o 1 2 3 4 5 70 9
7f -1
Kl 1

Example: L =5,R =4
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4. (L, R)-random walk

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}
and (X;,)mxo0 be the corresponding random walk

Facts

— Occurrence of a natural “boundary”
z° ={0,1,...,M -1} where M = max(L, R)
yielding a partition
Z=7Z UZ°UZ" whereZt ={M,M+1,M+2,...}

+ -+
vee—=1 0 --- M-

/e z° z*

29/53



5. General framework:

Markov chains




5. Markov chains

Settings

@ (Xm)mso: homogeneous Markov chain on & (finite or
denumerable)

o E': subset of & and E-=&\E' (‘non-negative’ and ‘negative’ states)
—> Partition | & = E' U E- |

e E°: subset of E" and E* = E\E° (‘null’ and ‘positive’ states)
—> Partition| & = E* UE° U E-|

o Conditional probabilities Pi{---} = IP{---|Xp = i} and
transition probabilities p; = Pi{{X; = j} fori,j€ &

e Sojourn time of (X;;)mxo in E™ up to a fixed time n > 1

T,=#{me(1,...n}: X e E"} = Zn: Let(Xm)
m=1

(Convention: Tp = 0) 31/53



5. Markov chains

7', rt, 7" in E°Y E',Et, E-

Settings
o First entrance times:
0=
T =
ot =
T =

min{m > 1:
min{m > 1:
min{m > 1:
min{m > 1:

(Convention: min(@) = +co)

Assumptions on E™ and E°
(A1) if Xo € E7,then ° = dl
“The chain starting out of E' enters E' necessarily
by passing through E°”
(A) if Xo € ET,then7® < 77 -1
“The chain starting in E* exits E' necessarily
by passing through E°”

Xm € E°}
Xm € EY)
X € ET)
Xm € E7}

32/53



5. Markov chains

Settings

Roughly speaking: . ..
E° acts as a kind of ‘boundary’ of E
while E* acts as a kind of ‘interior’ of E* 33/53



5. Markov chains

Settings
e Generating functions: for i, j € & and any real number x

o Generating function of the numbers P;{X;,;, = j}, m > 0:
Gii(x) = Z Pi{Xm = j} x™
m=0
o Generating function of (7°, Xr):

H:;(X) = Z| Pi{r® = m, X0 = j} xM = ]Ei(XTo]l{Xrozj’To<oo})
m=

H;;-T(X) = ]Ei(xTo]]'[X1EET,XTD=]',T°<00})

H’f;_‘(x) = IE,,-(XT ]].{X1GE_,X.,.0=I',T°<00})

34/53



5. Markov chains

Settings
e Generating functions: linear systems of equations

Chapman-Kolmogorov equation

G,']'(X) = (5,‘,’ + x Z p,'kaj(X) for i,] €&

ke&

—> yields the Gj(x)’s

Strong Markov property

G,'i(X) = 6,‘1' + Z H;;((X)ij(X) fori € 8,]. € E°
keE®

— yields the H,f’l_(x)’s
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5. Markov chains

Settings
e Generating functions: linear systems of equations

Markov property

H’f’,T(x) = x(p,-,- + Z p,-kH;;.(x)] fori€e &E,j € E°
! keE+ !
H=(x) = x ) puHi(x) forie &, jeE°

keE-

35/53



5. Markov chains

Definition — Generating function of the T,, n > 0: forany i € &

Ki(x,y) = Z P{T, = m} x"y"™""

m,n>0:m<n

Theorem — The K|, i € &, satisfy the linear system of equations
K,'(X, _V) = K,'(X,O) + K,-(O, _V) -1

o { 0— .
DY LACEEL A0 TE8Y

jeE°
-3 H?" (x)Kj(x, 0)
jeE®
where :
1_]E' XT_]]-T'oo 1_]E1 yT]]-‘rToo
Ki(x,0)= i <)) and K;(0,y)= i <o)

1-x 1-y 36/53



5. Markov chains

Remarks

e Itis enough to know K;j(x, y) only for i € E° to derive Ki(x, y)
fori € E\E°

e It provides a methodology for determining the Ki(x, y)’s, i € E°

Theorem — Matrix approach
K(x,y) = »
(1- 00 - 3 500)

(1- B () K(x,0) + K(0,y) - 1)

with the matrices
K(X, y) = (Ki(xa y))ieEO I= (6"1'),-’]650 1= (1)ieE°
B(x) = (H'(0),. B = (Hy ()

ijeE°® ijeE°® 37/53



5. Markov chains

Particular case — If E° = {iy}, then
(1= H (x))Ki (x,0) + Kig(0,y) - 1

1-H (x) - 2 H ()

ioio ioio

Kio(x9 y) =

where

HOT (X) = X(Z piokaio(x)] /Gioio(x)

folo
keE*t

H” (y) = y[z Piokaio(Y)] / Gioi (¥)

ioio
keE-
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5. Markov chains

Definition — An alternative sojourn time

with
Oom=1 if Om =0 if
Xn€E™T or Xn€E™ or
Xm G EO, Xm_1 E E+ or Xm E EO, Xm_1 e E_ OI‘

{ Xm, Xm_1 € EO, Xm_2 € E+ or < Xm’ Xm_1 € EO, X -2 € E_ or

Xm, Xm_1,..., X2€E0,X1 €eE* Xm, Xm_1,..., X2€E0,X1 €E"UE®

(Convention: Ty = 0)
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5. Markov chains

Definition — Generating function of the Tn, n > O: for anyi€é

Kix,y)= Y, P{T,=m}xmy"m

m,n>0:m<n

Theorem —The I?,-, i € &, satisfy an intricate system of equations...

[V. Cammarota& AL: Entrance and sojourn times for Markov chains.
Application to (L, R)-random walks (MPRF, 2015)]

Riey) =]
Eon =]

Matrix approach

K(x,y) =---

where K(x,y) = (ki(x, Y))

ieE®
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5. Markov chains

Definition — Generating function of the Tn, n > O: for anyi€é

Kix,y)= Y, P{T,=m}xmy"m

m,n>0:m<n

Particular case — If E° = {ip} and p;,i, = 0 (no stagnation at i), then
- + K. _ o- K. _
(1= HE(0))Kio (%, 0) + (1 = HY, ())Kio(0,y) — 1
1-H7"(x) - H"(y)

ioio ioio

k'io(x’ _V) =

o+(yy — X E : G
where Hioio (X) = G,-o,-o (X) = plok leo (X)
o y
H (y) = Z Piok Gicio (¥)

iolo Gioio (y) oA
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6. Case of (L,R)—random walk

(continued)



6. (L, R)-random walk (continued)

Definition — Let L, R be positive integers and let (U;);»1 be a
sequence of i.i.d. r.v.’s with values in {-L,-L +1,...,R -1, R}

Set

P{U; =i} forie{-L,...,R}
i =
"o fori € Z\{-L,...,R}

Let (Xm)mso0 be the random walk defined on Z by X, = 0 and

m
x,,,:ZU,- form > 1

i=1
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6. (L, R)-random walk (continued)

Definition — Generating function of the X;,;,, m > 0

Proposition — The function I';_; admits the representation

S

SETEEE— if1>]

L P (z(x))

ri0 = {47
Yy Py
tel+ PX(Z[(X))

where the z,/(x)’s,1 < ¢ < L + R, are the roots of the polynomial
P,:zp 2zt - lef':oR mi .zl and

LT ={:1z(x)>1} L ={:]z(x))<1)
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6. (L, R)-random walk (continued)

Settings — Set M = max(L, R)
We choose here
E° ={0,1,....,M -1}
E' ={0,1,2,...)
Et=MM+1,M+2,...)
E-={...,-3,-2,-1}
The settings can be rewritten in this context as
Tn=#{me{1,...,n}: X, >0}
™ =minim>1: X, € {0,1,...,M-1}}
T*:min{m21 : Xm = 0}
™ =minim>1: X, > M
T =minim>1: X, < -1}
Assumptions (A;) and (A;) are fulfilled
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6. (L, R)-random walk (continued)

Theorem — The functions Kj, 0 <i< M-1, satisfy the linear system

2M-1

Ki(x,y) _XZ[HJ '+Z s ,H (X)+ Z k- ,Ho(y)]K(X,y)
+K(x,0)+K(0 y) -1
-xZ(n, ,+an ,H°(x)]K(x,0), 0<i<M-1

j=0

k=

where
1 - Eim(X" Lirocor))
1-x

Ki(X, 0) =

2M-1
1
Ki(0,y) = y[1 -y Z =y Z =B (Y™ Lroceny)
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6. (L, R)-random walk (continued)

Theorem — The functions Kj, 0 <i< M-1, satisfy the linear system

2M-1

Ki(x,y) _XZ[HJ '+Z s ,H (X)+ Z k- ,Ho(y)]K(X,y)
+K(x,0)+K(0 y) -1
-xZ[n, ,+an ,H°(x)]K(x,0), 0<i<M-1

j=0

k=

and where the functions H,f’i solve the systems

DIHL () k(x) =Tpi(x)  M<i<2M-1,0<j<M-1

Y HWMk(y) =Tiily)  -M<i<-1,0<j<M-1
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6. (L, R)-random walk (continued)

Symmetric random walk
L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 1

where 0 < ¢ < 1/[4"” - (2,3,")]

For ¢ = 1/4M, we have n; = (

)/4"” for any i
For c = 1/[4"” - (2,.’,‘,")], we have 7, = 0

i+M
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6. (L, R)-random walk (continued)

Symmetric random walk

L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 1

_ 1 M 1+ z,(x) .
) = A —camx) ; 1= 2,(x) z(x)"

where the z,, 1 < ¢ < M, are the roots of

, o 1—-(-caM)x
(z+1)"—e'™m x z=0, 0<rs<M-1

46/53



6. (L, R)-random walk (continued)

Symmetric random walk
L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 2

(M .
7r,-=cp"'(|i|) forie {-M,...,—-1,1,..., M}

m=1-2¢c((p+1)"-1)

where ¢ < 1/(2(p + 1)M - 1)

Forc = 1/(2(p+ 1)M — 1), we have 7o = 0
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6. (L, R)-random walk (continued)

Symmetric random walk
L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 2
When p = 1:

1, (1-+2,(x)(1+2(0)")
2.

fix) = M(1-(1- c2"”+1)x) 1-2z,(x)M+1 z(x)"

=1

where the z,, 1 < ¢ < M, are the roots of

(1 -(1- 02M+1)x)z"” —ex(ZV+ 1) (z+ 1) =
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6. (L, R)-random walk (continued)

Symmetric random walk
L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 3

where 0 < ¢ < 1/(2M)

For c = 1/(2M), we have 7y = 0
For ¢ = 1/(2M + 1), the jumps are identically distributed
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6. (L, R)-random walk (continued)

Symmetric random walk
L = R = M, steps lying in {-M,-M + 1,...,M - 1, M}, such
that r; = n_; for all integer i

Example 4 — Symmetric (2,2)-random walk (L = R =M = 2)

o = HD{U1 = 0}
m = PUy = +1} = P{U; = -1}
mp = P{Uy = +2} = P{U; = -2}

with g + 271 4+ 2715 = 1
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7. Case of symmetric
(2,2)-random walk



7. Symmetric (2,2)-random walk

Definition — Let (U;)i>1 be a sequence of i.i.d. r.v.’s with values in
{—2,-1,0,1,2} and (X)) m>0 be the corresponding random walk

a1

The natural boundary is |Z° = {0,1}
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7. Symmetric (2,2)-random walk

Definition — Let (U;)i>1 be a sequence of i.i.d. r.v.’s with values in
{—2,-1,0,1,2} and (Xm)m>o0 be the corresponding random walk
Set

o = HD{U1 = 0}

my =P{U; = +1} = P{U; = -1}  withmp + 211 + 271, = 1
me = P{Uy = +2} = P{U; = -2}
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7. Symmetric (2,2)-random walk

Definition — Generating function of the X;,;,, m > 0

Proposition — The function I';_; is given by
1 (21 (X)|i_j|+1 ZQ(X)li_j|+1 ]
)

xo(x

Fi-i(x) =

1-2z(x)2 1-2z(x)?

where
0(x) = (1 + 4m2)? + 4ma(1/x = 1)

1

Z4 (X) = —4—71-2 (7T1 - \’6(X) +‘/§Jﬂ'$ + 4mymo — 275 + 270 /X — 7!'1\/6(X) )
1

ZQ(X) = —4—71_2 (71'1 +\/(5(X) +‘/§\/7T$ + 4rymo — 279 + 21 /X + 71'1\/6()(4)9)3




7. Symmetric (2,2)-random walk

Definition — Generating matrices of T, and T,

=0 =(én)  Een=(g6)

Theorem — The matrices K and K admit the representations

K(x,y) = A, y)B(x,y)  K(x,y) = A(x, y)B(x, y)

where A(x, y), B(x,y), A(x, y), B(x, y) are explicit matrices
given by... very complicated formulae!
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7. Symmetric (2,2)-random walk

d(X)d(}/) (Aoo(x, Y) A01 (X’ Y))

A(X, y) = A(X, y) A10(X, Y) A11(X, y)

where
An(x,y) = (1 - mox)d(x)d(y) — xd(y)A! (x) — yd(x)A/ (y)
Avi(x,y) = mixd(x)d(y) + xd(y)A; (x) + yd(x)A! (y)
Aio(x,y) = mixd(x)d(y) + xd(y)A; (x) + yd(x)A, (y)
Ai1(x,y) = (1 = mx)d(x)d(y) — xd(y)A;,(x) — yd(x)A; (y)

d(z) = o(2)? - I4(2)*
A(x,y) = Aw(x, ¥)A11(X,y) — Ao1 (X, ¥)A10(x,y)
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7. Symmetric (2,2)-random walk

A(x,y) =

d(x)d(y) (Aoo(x, Y) A01 (X’ Y))
A(x,y) \Au(x,y) Au(x,y)

where
A, (2) = m2(To(2)M2(2) - T4 (2)2)
Al (2) = m(To(2)T1(2) - T1(2)F2(2))

(

(
A (2) = m(Fo(2)M2(2) = F1(2)?) + m2(Fo(2)3(2) - F1(2)M2(2))
A/ (2) = mi(Fo(2)F1(2) -T1(2)M2(2)) +72(To(2)F2(2) - F1(2)T3(2))
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7. Symmetric (2,2)-random walk

) = (5]
where
Bo(x,y) = m [((1 = mox)d(x) — xA;,(x))B; (x)
—x(md(x)+ A, (x))B; (x)| + T Bi(y)-1
B, (x,y) = m [((1 = mox)d(x) - xA7, (x))B: (x)

—x(md(x)+A; (x))B; 1 _Biy)-
X(md )+ A3, () By () |+ (o Bl ()
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7. Symmetric (2,2)-random walk

569) = (2o ))

where

B, (x) = d(x) — (Fo(x) — F1(x))(T1(x) + M2(x))
B; (x) = d(x) — (Fo(x) — F1(x))(T2(x) + s(x))
Bi(y) =(1-(1-m - m)y)d(y)

= ¥(Fo(y) = 1(1))(7:T1(¥) + (1 + 7)T2(y) + 72M3(y))
Bi(y) = (1= (1 - m)y)d(y)

— may(Fo(y) = T1(¥))(T1(y) + F=(y))
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Thank you
for your attention!

http://math.univ-1lyonl.fr/~alachal/exposes/slides_augsburg_2016.pdf
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