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The problem
My favorite and recurrent interests:

Hitting times, entrance times
Exit times
Overshooting times
Sojourn times...

For various stochastic processes:

Brownian motion, Ornstein-Uhlenbeck process
Diffusion processes, Gaussian processes
Lévy processes, stable processes
Integrated Brownian motion and other integral functionals...

In this talk: Random walks and more general Markov chains

Main goal: To provide a methodology for deriving the
probability distribution of certain sojourn times...
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Motivation: high-order heat equation

Continuous-time (N integer > 1) :

∂tu(t , x) = (−1)N−1 ∆N
xu(t , x), t > 0, x ∈ R

where ∂tu(t , x) =
∂u
∂t

(t , x)

∆N
xu(t , x) =

∂2Nu

∂x2N
(t , x)
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Continuous-time (N integer > 1) :

∂tu(t , x) = (−1)N−1 ∆N
xu(t , x), t > 0, x ∈ R

where ∂tu(t , x) =
∂u
∂t

(t , x)

∆N
xu(t , x) =

∂2Nu

∂x2N
(t , x)

−→ Pseudo-Brownian motion (Bt)t≥0 with pseudo-
transition densities

Px{Bt ∈ dy}/dy =
1

2π

∫ +∞

−∞

e i(x−y)u−tu2N
du

Warning: Px is a signed measure!
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Motivation: high-order heat equation

Discrete-time (N integer > 1) :

∂nu(n, x) = (−1)N−1∆N
xu(n, x), n ∈ N, x ∈ Z

where ∂nu(n, x) = u(n + 1, x) − u(n, x)

∆N
xu(n, x) =

N∑
k=−N

(−1)k
(

2N
k + N

)
u(n, x + k)
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∂nu(n, x) = (−1)N−1∆N
xu(n, x), n ∈ N, x ∈ Z

where ∂nu(n, x) = u(n + 1, x) − u(n, x)

∆N
xu(n, x) =

N∑
k=−N

(−1)k
(

2N
k + N

)
u(n, x + k)

−→ Pseudo-random walk (Xm)m≥0 : Xm = X0 +
∑m

i=1
Ui

where (Ui)i≥1 is a sequence of i.i.d. pseudo-r.v. with
pseudo-distribution

P{U1 = i} = (−1)i+N−1
(

2N
i + N

)
if

{
−N ≤ i ≤ N

i , 0

P{U1 = 0} = 1 + (−1)N
(
2N
N

)
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Motivation: high-order heat equation

Discrete-time (N integer > 1) :

∂nu(n, x) = (−1)N−1∆N
xu(n, x), n ∈ N, x ∈ Z

where ∂nu(n, x) = u(n + 1, x) − u(n, x)

∆N
xu(n, x) =

N∑
k=−N

(−1)k
(

2N
k + N

)
u(n, x + k)

−→ Pseudo-random walk (Xm)m≥0 : Xm = X0 +
∑m

i=1
Ui

This is a (−N,N)–random walk with signed distribution
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Plan

1 General random walk on R

2 Case of nearest neighbour random walk
3 Case of random walk with stagnation
4 Case of (L ,R)–random walk
5 General framework: Markov chains
6 Case of (L ,R)–random walk (continued)
7 Case of symmetric (2, 2)–random walk
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1. General random walk on R
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1. General random walk on R

Definition – Let (Ui)i≥1 be a sequence of i.i.d. real-valued r.v.’s
and (Xm)m≥0 be the random walk defined on R by X0 = 0 and

Xm =
m∑

i=1

Ui for m ≥ 1
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1. General random walk on R

Definition – Sojourn time of the walk (Xm)m≥0 in R† = [0,+∞)
up to a fixed step n ≥ 1

Tn = #{m ∈ {1, . . . , n}: Xm ≥ 0} =
n∑

m=1

1
R
†(Xm)

(Convention: T0 = 0)
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1. General random walk on R

Definition – Sojourn time of the walk (Xm)m≥0 in R† = [0,+∞)
up to a fixed step n ≥ 1

Tn = #{m ∈ {1, . . . , n}: Xm ≥ 0} =
n∑

m=1

1
R
†(Xm)

(Convention: T0 = 0)

−→ Problem: Probability distribution of Tn?
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1. General random walk on R

Theorem A (Sparre Andersen)
[On the fluctuations of sums of random variables, 1953]

P{Tn = m} = P{Tm = m} P{Tn−m = 0} for 0 ≤ m ≤ n

with

{Tm = m} =
{

min
1≤k≤m

Xk ≥ 0
}

= {τ− > m}

{Tn−m = 0} =
{

max
1≤k≤n−m

Xk < 0
}

= {τ† > n − m}

where

τ− = min{k ≥ 1: Xk < 0}

τ† = min{k ≥ 1: Xk ≥ 0}

(Convention: min(∅) = +∞)
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1. General random walk on R

Definition – Generating function of the Tn, n ≥ 0

K(x, y) =
∑

m,n≥0:m≤n

P{Tn = m} xmyn−m =
∞∑

n=0

E

(
xTnyn−Tn

)
Corollary – The function K satisfies

K(x, y) = K(x, 0)K(0, y)

where

K(x, 0) =
∞∑

n=0

P{Tn = n} xn =
1 − E(xτ

−

1{τ−<∞})

1 − x

K(0, y) =
∞∑

n=0

P{Tn = 0} yn =
1 − E(yτ

†

1{τ†<∞})

1 − y
9/53



1. General random walk on R

Theorem B (Spitzer)
[A combinatorial lemma and its application to probability theory, 1955]

K(x, 0) =
∞∑

n=0

P

{
min

1≤k≤n
Xk ≥ 0

}
xn = exp

 ∞∑
k=1

P{Xk ≥ 0}
xk

k


K(0, y) =

∞∑
n=0

P

{
max
1≤k≤n

Xk < 0
}

yn = exp

 ∞∑
k=1

P{Xk < 0}
yk

k


The probabilities P

{
max1≤k≤n Xk < 0

}
and P

{
min1≤k≤n Xk ≥ 0

}
are implicitly known through their generating functions...

−→ Next step: To invert these generating functions...
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2. Case of nearest neighbour
random walk
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2. Nearest neighbour random walk

Definition – Let (Ui)i≥1 be a sequence of i.i.d. Bernoulli r.v.’s

with parameters

p = P{U1 = +1}
q = P{U1 = −1}

with p + q = 1

and (Xm)m≥0 be the random walk defined on Z = {. . . ,−1, 0, 1, . . .}
by X0 = 0 and

Xm =
m∑

i=1

Ui for m ≥ 1
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2. Nearest neighbour random walk

Definition – Sojourn time of the walk (Xm)m≥0 in Z†= Z∩[0,+∞)
up to a fixed step n ≥ 1

Tn = #{m ∈ {1, . . . , n} : Xm ≥ 0} =
n∑

m=1

1
Z
†(Xm)

(Convention: T0 = 0)
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2. Nearest neighbour random walk

By Sparre Andersen and Spitzer:

P{Tn = m} = P{τ− > m} P{τ† > n − m}

Theorem – Probability distribution of Tn

P{Tn = m} =

1 − q
∑

0≤i≤m−1
2

Ci(pq)i


pδmn + q −

∑
1≤i≤ n−m

2

Ci−1(pq)i


where Ci = 1

i+1

(
2i
i

)
(Catalan numbers !)

Quote – As written by Spitzer:
“There is no doubt what causes the slight but ugly asymmetry

in the distribution of Tn. It is slight but unpleasant difference
between positive and non-negative partial sums”
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller
[On fluctuations in coin-tossings, 1949]

T̃n =
n∑

m=1

δm with δm =

1 if (Xm>0) or (Xm =0 and Xm−1>0)

0 if (Xm<0) or (Xm =0 and Xm−1<0)

One counts each step m such that Xm>0 and only those steps
such that Xm = 0 which correspond to a downstep: Xm−1 = 1

15/53
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Symmetric case p = q = 1/2

Quote – As written by Chung & Feller:

“The elegance of the results to be announced
depends on this convention [definition of δm]”

−→ It produces a remarkable result!

Theorem – Probability distribution of T̃n
[Chung & Feller: On fluctuations in coin-tossings, 1949]

P

{
T̃n = m

}
= P

{
T̃m = m

}
P

{
T̃n−m = 0

}
=

1
2n

(
m

m/2

) (
(n − m)

(n − m)/2

)
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Symmetric case p = q = 1/2

Quote – As written by Chung & Feller:

“The elegance of the results to be announced
depends on this convention [definition of δm]”

−→ It produces a remarkable result!

Problem – What about the case of an arbitrary p? Well-known?
Surprisingly, no precise reference in the literature...
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Definition – Generating function of the T̃n, n ≥ 0

K̃(x, y) =
∑

m,n≥0:m≤n

P

{
T̃n = m

}
xmyn−m

Theorem – The function K̃ is given by
[AL: Sojourn time in Z+ for the Bernoulli random walk on Z (ESAIM: P&S, 2012)]

K̃(x, y) =
(p − q)(x − y) + (1 − y)

√
∆(x) + (1 − x)

√
∆(y)

(1 − x)(1 − y)
(√

∆(x) +
√

∆(y)
)

where ∆(u) = 1 − 4pqu2
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Corollary – Probability distribution of T̃n

P

{
T̃n = m

}
= 1{n−m even}

p ∑
n−m

2 ≤i≤ n
2

Ci(pq)i
−

∑
n−m

2 ≤i≤ n
2−1

( ∑
0≤j≤i− n−m

2

CjCi−j

)
(pq)i+1


+ 1{m even}

q ∑
m
2 ≤i≤ n

2

Ci(pq)i
−

∑
m
2 ≤i≤ n

2−2

( ∑
0≤j≤i−m

2

CjCi−j

)
(pq)i+1


where Ci = 1

i+1

(
2i
i

)
(Catalan numbers)
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Remark – Similar results hold for pinned random walk/bridge
of random walk (joint distribution of

(
T̃n | Xn

)
)...

Theorem – Probability distribution of
(
T̃n | Xn = 0

)
(even n)

P

{
T̃n = m | Xn = 0

}
=


2

n + 2
if m is even ≤ n

0 else

−→ The r.v.
(
T̃n | Xn = 0

)
is uniformly distributed on the set

{0, 2, 4, . . . , n − 2, n}
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Proof – Two possible methods:

Strong Markov property related to the first hitting time of 0

−→ Splitting the paths into two parts : the first excursion
and the refreshed walk (yielding recurrence relations)

Theory of excursions away from 0

−→ Splitting the paths into excursions
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

If 1 ≤ T̃n ≤ n − 1, then 1 ≤ τo ≤ n − 1 and

T̃n =

τo + T̃τo,n if X1 > 0
T̃τo,n if X1 < 0

where τo = min{m ≥ 1: Xm = 0} and T̃n =
n∑

m=τo+1

δm
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

If 1 ≤ T̃n ≤ n − 1, then 1 ≤ τo ≤ n − 1 and

T̃n =

τo + T̃τo,n if X1 > 0
T̃τo,n if X1 < 0

where τo = min{m ≥ 1: Xm = 0} and T̃n =
n∑

m=τo+1

δm

By the strong Markov property, if 1 ≤ m ≤ n − 1:

P

{
T̃n = m

}
= P

{
T̃n = m, 1 ≤ τo

≤ n − 1
}

=
n−1∑
j=1

P

{
T̃n, τ

o = j
}

=
n−1∑
j=1

P{τo = j, X1 > 0} P
{
T̃n−j = m − j

}
+

n−m∑
j=1

P{τo = j, X1 < 0} P
{
T̃n−j = m

}
etc.
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2. Nearest neighbour random walk

An alternative sojourn time by Chung & Feller

Remark – The generating function K̃ does not satisfy

K̃(x, y) = K̃(x, 0)K̃(0, y)

But the partial generating function of the T̃n, n ≥ 0

K̃
′

(x, y) =
∑

m,n≥0:m≤n
even m,n

P

{
T̃n = m

}
xmyn−m

does satisfy

K̃
′

(x, y) = K̃
′

(x, 0)K̃
′

(0, y)...
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3. Case of random walk
with stagnation
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3. Random walk with stagnation

Definition – Let (Ui)i≥1 be a sequence of i.i.d. r.v.’s with

distribution


p = P{U1 = +1}
q = P{U1 = −1}
r = P{U1 = 0}

with p + q + r = 1

and (Xm)m≥0 be the corresponding random walk
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3. Random walk with stagnation

By Sparre Andersen and Spitzer:

P{Tn = m} = P{τ− > m} P{τ† > n − m}

Theorem – Probability distribution of Tn

P{Tn = m} =

1 +
1
p

m+1∑
i=2

Ai


pδmn + q +

n−m∑
i=2

Ai


where

Ai =
2

4i

i∑
j=0

Cj−1Ci−j−1

(
r − 2

√
pq

)j (
r + 2

√
pq

)i−j

Ci = 1
i+1

(
2i
i

)
and C−1 = −1

2 (Catalan numbers)
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3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

T̃n =
n∑

m=1

δm

δm = 1 if

Xm>0 or
Xm =0, Xm−1>0 or
Xm =Xm−1 =0, Xm−2>0 or
...

Xm =Xm−1 = · · ·=X2 =0, X1>0

δm = 0 if

Xm<0 or
Xm =0, Xm−1<0 or
Xm =Xm−1 =0, Xm−2<0 or
...

Xm =Xm−1 = · · ·=X2 =0, X1≤0

(Convention: T̃0 = 0)
One counts each step m such that Xm>0 and only those steps
such that Xm = 0 which correspond to a previous descent:
Xm−1 = 1 or (Xm−1 = 0 and Xm−2 = 1), etc. 26/53



3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

T̃n =
n∑

m=1

δm

26/53



3. Random walk with stagnation

An alternative sojourn time by AL and V. Cammarota

T̃n =
n∑

m=1

δm

26/53



3. Random walk with stagnation

Theorem – Generating function of the T̃n, n ≥ 0 (with X1 , 0)
[V. Cammarota & AL: Entrance and sojourn times for Markov chains.

Application to (L ,R)–random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.

Application to occupation times (Work in progress)]

K̃(x, y) =
a(x, y) + b(y)

√
∆(x) + b(x)

√
∆(y)

(1 − x)(1 − y)
(
(1 − ry)

√
∆(x) + (1 − rx)

√
∆(y)

)
with

a(x, y) = (p − q)(x − y)(1 − rx)(1 − ry)

b(u) = (1 − r)(1 − u)(1 − ru)

∆(u) = (1 − ru)2
− 4pqu2
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Application to occupation times (Work in progress)]

K̃(x, y) =
a(x, y) + b(y)

√
∆(x) + b(x)

√
∆(y)

(1 − x)(1 − y)
(
(1 − ry)

√
∆(x) + (1 − rx)

√
∆(y)

)
Proof – Two possible methods:

Strong Markov property related to the first hitting time of 0
(yielding recurrence relations)
Theory of excursions away from 0 (in progress)
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3. Random walk with stagnation

Theorem – Generating function of the T̃n, n ≥ 0 (with X1 , 0)
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3. Random walk with stagnation

Theorem – Generating function of the T̃n, n ≥ 0 (with X1 , 0)
[V. Cammarota & AL: Entrance and sojourn times for Markov chains.

Application to (L ,R)–random walks (MPRF, 2015)]
[AL: Excursions for nearest neighbour random walk including stagnation.

Application to occupation times (Work in progress)]

K̃(x, y) =
a(x, y) + b(y)

√
∆(x) + b(x)

√
∆(y)

(1 − x)(1 − y)
(
(1 − ry)

√
∆(x) + (1 − rx)

√
∆(y)

)
−→ Next step: To invert this generating function (in progress)...
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4. Case of (L ,R)–random walk
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4. (L ,R)–random walk

Definition – Let L ,R be positive integers and let (Ui)i≥1 be a
sequence of i.i.d. r.v.’s with values in {−L ,−L + 1, . . . ,R − 1,R}
and (Xm)m≥0 be the corresponding random walk

Example: L = 5, R = 4
29/53
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Definition – Let L ,R be positive integers and let (Ui)i≥1 be a
sequence of i.i.d. r.v.’s with values in {−L ,−L + 1, . . . ,R − 1,R}
and (Xm)m≥0 be the corresponding random walk

Facts
In the previous examples, {0} was a natural boundary
between Z− and Z† such that {0} ⊂ Z†

Moving from Z− to Z† induces an up-crossing jump of
maximal size R:

τ† = min{k ≥ 1: Xk ≥ 0}
Xτ† ∈ {0, 1, 2, . . . ,R − 1}

Moving from Z† to Z− induces a down-crossing jump of
maximal size L:

τ− = min{k ≥ 1: Xk < 0}
Xτ−−1 ∈ {0, 1, 2, . . . , L − 1}
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4. (L ,R)–random walk

Definition – Let L ,R be positive integers and let (Ui)i≥1 be a
sequence of i.i.d. r.v.’s with values in {−L ,−L + 1, . . . ,R − 1,R}
and (Xm)m≥0 be the corresponding random walk

Example: L = 5, R = 4

τ† τ−−1
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4. (L ,R)–random walk

Definition – Let L ,R be positive integers and let (Ui)i≥1 be a
sequence of i.i.d. r.v.’s with values in {−L ,−L + 1, . . . ,R − 1,R}
and (Xm)m≥0 be the corresponding random walk

Facts

−→ Occurrence of a natural “boundary”

Z
o = {0, 1, . . . ,M − 1} where M = max(L ,R)

yielding a partition

Z = Z− ∪ Zo
∪ Z

+ where Z+ = {M,M + 1,M + 2, . . .}

· · · − 1︸                    ︷︷                    ︸ 0 · · · M − 1︸               ︷︷               ︸ M · · ·︸                   ︷︷                   ︸
Z
−

Z
o

Z
+
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5. General framework:
Markov chains

30/53



5. Markov chains

Settings
(Xm)m≥0: homogeneous Markov chain on E (finite or
denumerable)

E†: subset of E and E−=E\E† (‘non-negative’ and ‘negative’states)

−→ Partition E = E† ∪ E−

Eo: subset of E† and E+ = E†\Eo (‘null’ and ‘positive’ states)

−→ Partition E = E+ ∪ Eo ∪ E−

Conditional probabilities Pi{· · · } = P{· · · |X0 = i} and
transition probabilities pij = Pi{X1 = j} for i, j ∈ E

Sojourn time of (Xm)m≥0 in E† up to a fixed time n ≥ 1

Tn = #
{
m ∈ {1, . . . n} : Xm ∈ E†

}
=

n∑
m=1

1E†(Xm)

(Convention: T0 = 0) 31/53



5. Markov chains

Settings
First entrance times: τo, τ†, τ+, τ− in Eo, E†, E+, E−

τo = min{m ≥ 1 : Xm ∈ Eo
}

τ† = min{m ≥ 1 : Xm ∈ E†}
τ+ = min{m ≥ 1 : Xm ∈ E+

}

τ− = min{m ≥ 1 : Xm ∈ E−}

(Convention: min(∅) = +∞)

Assumptions on E† and Eo

(A1) if X0 ∈ E−, then τo = τ†

“The chain starting out of E† enters E† necessarily
by passing through Eo”

(A2) if X0 ∈ E+, then τo ≤ τ− − 1
“The chain starting in E+ exits E† necessarily

by passing through Eo”
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5. Markov chains

Settings

Roughly speaking:
Eo acts as a kind of ‘boundary’ of E†

while E+ acts as a kind of ‘interior’ of E† 33/53



5. Markov chains

Settings
Generating functions: for i, j ∈ E and any real number x

Generating function of the numbers Pi{Xm = j}, m ≥ 0:

Gij(x) =
∞∑

m=0

Pi{Xm = j} xm

Generating function of (τo, Xτo):

Ho
ij
(x) =

∞∑
m=1

Pi{τ
o = m, Xτo = j} xm = Ei

(
xτ

o
1{Xτo =j,τo<∞}

)
Ho†

ij
(x) = Ei

(
xτ

o
1{X1∈E†,Xτo =j,τo<∞}

)
Ho−

ij
(x) = Ei

(
xτ

o
1{X1∈E−,Xτo =j,τo<∞}

)
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5. Markov chains

Settings
Generating functions: linear systems of equations

Chapman-Kolmogorov equation

Gij(x) = δij + x
∑
k∈E

pik Gkj(x) for i, j ∈ E

−→ yields the Gij(x)’s

Strong Markov property

Gij(x) = δij +
∑
k∈Eo

Ho
ik

(x)Gkj(x) for i ∈ E, j ∈ Eo

−→ yields the Ho
ij
(x)’s
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5. Markov chains

Settings
Generating functions: linear systems of equations

Markov property

Ho†
ij

(x) = x

pij +
∑

k∈E+

pik Ho
kj

(x)

 for i ∈ E, j ∈ Eo

Ho−
ij

(x) = x
∑
k∈E−

pik Ho
kj

(x) for i ∈ E, j ∈ Eo
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5. Markov chains

Definition – Generating function of the Tn, n ≥ 0: for any i ∈ E

Ki(x, y) =
∑

m,n≥0:m≤n

Pi{Tn = m} xmyn−m

Theorem – The Ki, i ∈ E, satisfy the linear system of equations

Ki(x, y) = Ki(x, 0) + Ki(0, y) − 1

+
∑
j∈Eo

(
Ho†

ij
(x) +

x
y

Ho−
ij

(y)

)
Kj(x, y)

−

∑
j∈Eo

Ho†
ij

(x)Kj(x, 0)

where

Ki(x, 0) =
1− Ei(xτ

−

1{τ−<∞})

1 − x
and Ki(0, y) =

1− Ei(yτ
†

1{τ†<∞})

1 − y 36/53



5. Markov chains

Remarks
It is enough to know Ki(x, y) only for i ∈ Eo to derive Ki(x, y)
for i ∈ E\Eo

It provides a methodology for determining the Ki(x, y)’s, i ∈ Eo

Theorem – Matrix approach

K(x, y) =(
I − H

o†(x) −
x
y
H

o−(y)

)−1((
I − H

o†(x)
)
K(x, 0) + K(0, y) − 1

)
with the matrices

K(x, y) =
(
Ki(x, y)

)
i∈Eo

I =
(
δij

)
i,j∈Eo

1 =
(
1
)

i∈Eo

H
o†(x) =

(
Ho†

ij
(x)

)
i,j∈Eo

H
o−(y) =

(
Ho−

ij
(y)

)
i,j∈Eo

H
o†(x) = x

(
Poo + Po+(G+o(x) − I+o)G−1

oo (x)
)

H
o−(y) = yPo−(G−o(y) − I−o)G−1

oo (y)

Io+ =
(
δij

)
i∈Eo, j∈E+

Io− =
(
δij

)
i∈Eo, j∈E−

Poo =
(
pij

)
i,j∈Eo

Po+ =
(
pij

)
i∈Eo, j∈E+

Po− =
(
pij

)
i∈Eo, j∈E−

Go+(x) =
(
Gij(x)

)
i∈Eo, j∈E+

Go−(y) =
(
Gij(y)

)
i∈Eo, j∈E−

Goo(z) =
(
Gij(z)

)
i,j∈Eo

G(x) =
(
I − xP

)−1
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5. Markov chains

Particular case – If Eo = {i0}, then

Ki0(x, y) =

(
1 − Ho†

i0i0
(x)

)
Ki0(x, 0) + Ki0(0, y) − 1

1 − Ho†
i0i0

(x) − x
y Ho−

i0i0
(y)

where

Ho†
i0i0

(x) = x

∑
k∈E†

pi0k Gki0(x)

 /Gi0i0(x)

Ho−
i0i0

(y) = y

∑
k∈E−

pi0k Gki0(y)

 /Gi0i0(y)
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5. Markov chains

Definition – An alternative sojourn time

T̃n =
n∑

m=1

δm

with

δm = 1 if

Xm ∈E+ or
Xm ∈Eo, Xm−1∈E+ or
Xm, Xm−1∈Eo, Xm−2∈E+ or
...

Xm, Xm−1, . . ., X2∈Eo, X1∈E+

δm = 0 if

Xm ∈E− or
Xm ∈Eo, Xm−1∈E− or
Xm, Xm−1∈Eo, Xm−2∈E− or
...

Xm, Xm−1, . . ., X2∈Eo, X1∈E−∪Eo

(Convention: T̃0 = 0)
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5. Markov chains

Definition – Generating function of the T̃n, n ≥ 0: for any i ∈ E

K̃i(x, y) =
∑

m,n≥0:m≤n

Pi

{
T̃n = m

}
xmyn−m

Theorem – The K̃i, i ∈ E, satisfy an intricate system of equations...
[V. Cammarota& AL: Entrance and sojourn times for Markov chains.

Application to (L ,R)–random walks (MPRF, 2015)]

K̃i(x, y) = · · ·

Matrix approach

K̃(x, y) = · · ·

where K̃(x, y) =
(
K̃i(x, y)

)
i∈Eo
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5. Markov chains

Definition – Generating function of the T̃n, n ≥ 0: for any i ∈ E

K̃i(x, y) =
∑

m,n≥0:m≤n

Pi

{
T̃n = m

}
xmyn−m

Particular case – If Eo = {i0} and pi0i0 = 0 (no stagnation at i0), then

K̃i0(x, y) =

(
1 − Ho+

i0i0
(x)

)
K̃ i0(x, 0) +

(
1 − Ho−

i0i0
(y)

)
K̃ i0(0, y) − 1

1 − Ho+

i0i0
(x) − Ho−

i0i0
(y)

where Ho+

i0i0
(x) =

x

Gi0i0(x)

∑
k∈E+

pi0k Gki0(x)

Ho−
i0i0

(y) =
y

Gi0i0(y)

∑
k∈E−

pi0k Gki0(y)
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6. Case of (L ,R)–random walk
(continued)
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6. (L ,R)–random walk (continued)

Definition – Let L ,R be positive integers and let (Ui)i≥1 be a
sequence of i.i.d. r.v.’s with values in {−L ,−L + 1, . . . ,R − 1,R}
Set

πi =

P{U1 = i} for i ∈ {−L , . . . ,R}
0 for i ∈ Z\{−L , . . . ,R}

Let (Xm)m≥0 be the random walk defined on Z by X0 = 0 and

Xm =
m∑

i=1

Ui for m ≥ 1
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6. (L ,R)–random walk (continued)

Definition – Generating function of the Xm, m ≥ 0

Γj−i(x) =
∞∑

m=0

Pi{Xm = j} xm

Proposition – The function Γj−i admits the representation

Γj−i(x) =



∑
`∈L−

z`(x)i−j+L−1

P ′x(z`(x))
if i > j

−

∑
`∈L+

z`(x)i−j+L−1

P ′x(z`(x))
if i ≤ j

where the z`(x)’s, 1 ≤ ` ≤ L + R, are the roots of the polynomial
Px : z 7→ zL − x

∑L+R
j=0

πj−Lz j and

L
+ = {` : |z`(x)| > 1} L

− = {` : |z`(x)| < 1}
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6. (L ,R)–random walk (continued)

Settings – Set M = max(L ,R)
We choose here

Eo = {0, 1, . . . ,M − 1}

E† = {0, 1, 2, . . .}
E+ = {M,M + 1,M + 2, . . .}
E− = {. . . ,−3,−2,−1}

The settings can be rewritten in this context as

Tn = #{m ∈ {1, . . . , n} : Xm ≥ 0}
τo = min{m ≥ 1 : Xm ∈ {0, 1, . . . ,M − 1}}
τ† = min{m ≥ 1 : Xm ≥ 0}
τ+ = min{m ≥ 1 : Xm ≥ M}
τ− = min{m ≥ 1 : Xm ≤ −1}

Assumptions (A1) and (A2) are fulfilled
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6. (L ,R)–random walk (continued)

Theorem – The functionsKi, 0≤ i≤M−1, satisfy the linear system

Ki(x, y) = x
M−1∑
j=0

πj−i +
2M−1∑
k=M

πk−iHo
kj

(x) +
−1∑

k=−M

πk−iHo
kj

(y)

Kj(x, y)

+ Ki(x, 0) + Ki(0, y) − 1

−x
M−1∑
j=0

πj−i +
2M−1∑
k=M

πk−iHo
kj

(x)

Kj(x, 0), 0 ≤ i ≤ M−1

where

Ki(x, 0) =
1 − Ei+M(xτ

o
1{τo<∞})

1 − x

Ki(0, y) =
1

1 − y

1 − y
2M−1∑
j=0

πj−i − y
−1∑

k=−M

πk−iEk (yτ
o
1{τo<∞})
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6. (L ,R)–random walk (continued)

Theorem – The functionsKi, 0≤ i≤M−1, satisfy the linear system

Ki(x, y) = x
M−1∑
j=0

πj−i +
2M−1∑
k=M

πk−iHo
kj

(x) +
−1∑

k=−M

πk−iHo
kj

(y)

Kj(x, y)

+ Ki(x, 0) + Ki(0, y) − 1

−x
M−1∑
j=0

πj−i +
2M−1∑
k=M

πk−iHo
kj

(x)

Kj(x, 0), 0 ≤ i ≤ M−1

and where the functions Ho
ij

solve the systems

M−1∑
k=0

Ho
ik

(x)Γj−k (x) = Γj−i(x) M ≤ i ≤ 2M − 1, 0 ≤ j ≤ M − 1

M−1∑
k=0

Ho
ik

(y)Γj−k (y) = Γj−i(y) − M ≤ i ≤ −1, 0 ≤ j ≤ M − 1
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 1
πi = c

(
2M

i + M

)
for i ∈ {−M, . . . ,−1, 1, . . . ,M}

π0 = 1 − c
[
4M
−

(
2M
M

)]

where 0 < c ≤ 1/
[
4M −

(
2M
M

)]
For c = 1/4M, we have πi =

(
2M

i+M

)
/4M for any i

For c = 1/
[
4M −

(
2M
M

)]
, we have π0 = 0
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 1

Γj(x) =
1

M (1 − (1 − c 4M) x)

M∑
`=1

1 + z`(x)

1 − z`(x)
z`(x)|j|

where the z`, 1 ≤ ` ≤ M, are the roots of

(z + 1)2
− e i 2π

M r

√
1 − (1 − c 4M) x

c x
z = 0, 0 ≤ r ≤ M − 1
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 2
πi = cρ|i|

(
M
|i|

)
for i ∈ {−M, . . . ,−1, 1, . . . ,M}

π0 = 1 − 2c
(
(ρ + 1)M

− 1
)

where c ≤ 1/
(
2(ρ + 1)M − 1

)
For c = 1/

(
2(ρ + 1)M − 1

)
, we have π0 = 0
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 2

When ρ = 1:

Γj(x) =
1

M (1−(1−c 2M+1) x)

M∑
`=1

(1+z`(x))(1+z`(x)M)

1−z`(x)M+1
z`(x)|j|

where the z`, 1 ≤ ` ≤ M, are the roots of(
1 − (1 − c 2M+1)x

)
zM
− cx(zM + 1)(z + 1)M = 0
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 3 πi = c for i ∈ {−M, . . . ,−1, 1, . . . ,M}
π0 = 1 − 2Mc

where 0 < c ≤ 1/(2M)

For c = 1/(2M), we have π0 = 0
For c = 1/(2M + 1), the jumps are identically distributed
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6. (L ,R)–random walk (continued)

Symmetric random walk
L = R = M, steps lying in {−M,−M + 1, . . . ,M − 1,M}, such
that πi = π−i for all integer i

Example 4 – Symmetric (2, 2)-random walk (L = R = M = 2)
π0 = P{U1 = 0}
π1 = P{U1 = +1} = P{U1 = −1}
π2 = P{U1 = +2} = P{U1 = −2}

with π0 + 2π1 + 2π2 = 1
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7. Case of symmetric
(2, 2)–random walk
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7. Symmetric (2, 2)–random walk

Definition – Let (Ui)i≥1 be a sequence of i.i.d. r.v.’s with values in
{−2,−1, 0, 1, 2} and (Xm)m≥0 be the corresponding random walk

The natural boundary is Zo = {0, 1}
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7. Symmetric (2, 2)–random walk

Definition – Let (Ui)i≥1 be a sequence of i.i.d. r.v.’s with values in
{−2,−1, 0, 1, 2} and (Xm)m≥0 be the corresponding random walk
Set
π0 = P{U1 = 0}
π1 = P{U1 = +1} = P{U1 = −1}
π2 = P{U1 = +2} = P{U1 = −2}

with π0 + 2π1 + 2π2 = 1
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7. Symmetric (2, 2)–random walk

Definition – Generating function of the Xm, m ≥ 0

Γj−i(x) =
∞∑

m=0

Pi{Xm = j} xm

Proposition – The function Γj−i is given by

Γj−i(x) =
1

x
√
δ(x)

z1(x)|i−j|+1

1 − z1(x)2
−

z2(x)|i−j|+1

1 − z2(x)2


where
δ(x) = (π1 + 4π2)2 + 4π2(1/x − 1)

z1(x) = −
1

4π2

(
π1−

√
δ(x) +

√
2
√
π2

1
+ 4π1π2 − 2π2 + 2π2/x − π1

√
δ(x)

)
z2(x) = −

1
4π2

(
π1+

√
δ(x) +

√
2
√
π2

1
+ 4π1π2 − 2π2 + 2π2/x + π1

√
δ(x)

)
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7. Symmetric (2, 2)–random walk

Definition – Generating matrices of Tn and T̃n

K(x, y) =

(
K0(x, y)
K1(x, y)

)
K̃(x, y) =

(
K̃0(x, y)

K̃1(x, y)

)

Theorem – The matrices K and K̃ admit the representations

K(x, y) = A(x, y)B(x, y) K̃(x, y) = Ã(x, y)B̃(x, y)

where A(x, y),B(x, y), Ã(x, y), B̃(x, y) are explicit matrices
given by... very complicated formulae !
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7. Symmetric (2, 2)–random walk

A(x, y) =
d(x)d(y)

A(x, y)

(
A00(x, y) A01(x, y)
A10(x, y) A11(x, y)

)
where

A00(x, y) = (1 − π0x)d(x)d(y) − xd(y)A ′
11

(x) − yd(x)A ′
00

(y)

A01(x, y) = π1xd(x)d(y) + xd(y)A ′
01

(x) + yd(x)A ′
10

(y)

A10(x, y) = π1xd(x)d(y) + xd(y)A ′
10

(x) + yd(x)A ′
01

(y)

A11(x, y) = (1 − π0x)d(x)d(y) − xd(y)A ′
00

(x) − yd(x)A ′
11

(y)

d(z) = Γ0(z)2
− Γ1(z)2

A(x, y) = A00(x, y)A11(x, y) − A01(x, y)A10(x, y)
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7. Symmetric (2, 2)–random walk

A(x, y) =
d(x)d(y)

A(x, y)

(
A00(x, y) A01(x, y)
A10(x, y) A11(x, y)

)
where

A ′
00

(z) = π2

(
Γ0(z)Γ2(z) − Γ1(z)2

)
A ′

01
(z) = π2

(
Γ0(z)Γ1(z) − Γ1(z)Γ2(z)

)
A ′

10
(z) = π1

(
Γ0(z)Γ2(z) − Γ1(z)2

)
+ π2

(
Γ0(z)Γ3(z) − Γ1(z)Γ2(z)

)
A ′

11
(z) = π1

(
Γ0(z)Γ1(z)−Γ1(z)Γ2(z)

)
+π2

(
Γ0(z)Γ2(z)−Γ1(z)Γ3(z)

)
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7. Symmetric (2, 2)–random walk

B(x, y) =

(
B0(x, y)
B1(x, y)

)
where

B0(x, y) =
1

(1 − x)d(x)2

[(
(1 − π0x)d(x) − xA ′

00
(x)

)
B−

0
(x)

−x
(
π1d(x)+A ′

01
(x)

)
B−

1
(x)

]
+

1

(1 − y)d(y)
B†

0
(y)−1

B1(x, y) =
1

(1 − x)d(x)2

[(
(1 − π0x)d(x) − xA ′

11
(x)

)
B−

1
(x)

−x
(
π1d(x)+A ′

10
(x)

)
B−

0
(x)

]
+

1

(1 − y)d(y)
B†

1
(y)−1
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7. Symmetric (2, 2)–random walk

B(x, y) =

(
B0(x, y)
B1(x, y)

)
where

B−
0

(x) = d(x) −
(
Γ0(x) − Γ1(x)

)(
Γ1(x) + Γ2(x)

)
B−

1
(x) = d(x) −

(
Γ0(x) − Γ1(x)

)(
Γ2(x) + Γ3(x)

)
B†

0
(y) =

(
1 − (1 − π1 − π2)y

)
d(y)

− y
(
Γ0(y) − Γ1(y)

)(
π1Γ1(y) + (π1 + π2)Γ2(y) + π2Γ3(y)

)
B†

1
(y) =

(
1 − (1 − π2)y

)
d(y)

− π2y
(
Γ0(y) − Γ1(y)

)(
Γ1(y) + Γ2(y)

)
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Thank you
for your attention!

http://math.univ-lyon1.fr/˜alachal/exposes/slides_augsburg_2016.pdf
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