Some distributions

on pseudo-Brownian motion
and pseudo-random walk

Aimé LACHAL

Institut Camille Jordan
Université de Lyon, INSA de Lyon — France

Recent developments in probability theory and stochastic processes
A conference in honour of Enzo Orsingher
On the occasion of his 70th birthday
Rome — September 23, 2016

1/21



Acknowledgments

It is a great honor
and a huge pleasure for me
to open this conference

dedicated to Professor Enzo Orsinghetr.

I warmly thank the organizers
for having invited me
at this exceptional event.




Acknowledgments I

I met Enzo the first time in 2004,
it was the beginning

of several collaborations
and many correspondences.

2/21



Acknowledgments

Avaiiable anline at wwsciencoditact com
*.” ScienceDirect
A 1. . Poncad - R 42 0006) 753172
Minimal cyclic random motion in R” and hyper-Bessel functions
A. Lachal>*, S. Leorato®, E. Orsingher”

D0 de oo, Con e Mo B Lo e Vock 10, vt A it 531 Wb s s
L Saplenca”, Plazale A Moro, 5, 00185 Roma, fsly

Statsics amd Probably Leters 79 2009) 243-254

Contants lsts aailabl at SciancaDirect
Statistics and Probability Letters

Iournal hamepage: www.slsevier comocatalstapro

Some Darling-Siegert relationships connected with random flights
V. Cammarota?, A. Lachal >, E. Orsingher®

e
63621 Viewrbame Gedey Frnce

SPL 2008

at o,
Electr® by

[ ——
[P~
Joint distribution of the process and its sojourn time on
the positive halfline for pseudo-processes governed by
high-order heat equation

Valenring Casnunko”and Aimé Licias!

EJP 2010

SciVerse ScienceDirect

FLSEVIER St oo s ke A 122 0010217289

Joint distribution of the process and its sojourn time in a
half-line [, +00) for pseudo-processes driven by a
high-order heat-type equation
Valentina Cammarota®, Aimé Lachal™*

S

Entrance and Sojourn Times for Markov
Chains. Application to (L, R)-random
walks

V. Cammarota’ nndA Lachal?

Ty el et

s ey, 39 . i, 653 Wi G, e

SPA 2012

MPRF 2015

Nice collaborations...

(with Enzo Orsingher, Samantha Leorato and Valentina Cammarota)

/21



Acknowledgments I

A common point:

“High-order” (i.e., order > 2)
partial differential equations...

2/21



Acknowledgments

Not simply a probabilist colleague,
not simply a collaborator of mine,
Enzo is a genuine friend.

I would like to thank him
especially for his immense generosity:
Each time | came in Roma,

I have always been very well received.




Acknowledgments I

Assisi 2004 Ravello 2006 Gubbio 2008

Nice memories...

2/21



Prologue

Some fascinating formulae...

A new topic
in my life of “stochastician’...




Some fascinating formulae...

B 1
i m s € (0,1)

]P{ Tte ds} /ds =

IP{T; € ds}/ds = RE L

2 {5i=9)

E. Orsingher — 1991
Processes governed by signed measures connected
with third-order “heat-type” equations

Litovskii Matematicheskii Sbornik (Lithuanian Mathematical Journal)

A kind of Arcsine Law?!

(i.e. Paul Lévy’s arcsine law for Brownian motion)
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Recalling a well-known connection

Heat equation (of order 2)

(and parabolic/elliptic equations of order 2)

J

Brownian motion / Random walk

(and diffusion processes)

What about the higher-order?
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High-order heat-type equation

Continuous space/time




High-Order heat—type equation — Continuous space/time

e Equation:

owu(t, x) = Dyu(t, x) t>0, xeR

where
2N

(-1)N-1 N =(-1)N-1 A’:’( (N integer > 2, even order)
X
02N+1

+ FYCTE (N integer > 1, odd order)
X

0
6,=a—tand2)x=
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High—Order heat—type equation — Continuous space/time

e Equation:

owu(t, x) = Dyu(t, x) t>0, xeR

where
2N
9 (_1)N_1(9 2N =(-nM! A’:’( (N integer > 2, even order)
_ < _ X
0 = Py and D, = 2N+
ia NI (N integer > 1, odd order)
X

— Elementary solution:

1 e ixu—tu?N
2— e du
TJ-0

27,

(even order)

iy ig2N+1
Ixuziu du (odd order)
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High—Order heat—type equation — Continuous space/time

e Equation:
owu(t, x) = Dyu(t, x) t>0, xeR
where
2N

9 (-1)N-1 N =(-1)N-1 A’:’( (N integer > 2, even order)
8 = < and D, = Ox

at 62N+1

ia NI (N integer > 1, odd order)
X

—> Pseudo-Markov process (pseudo-Brownian motion)
(Bt)t>0 with pseudo-transition densities

p(t; x,y) = Px{Biedy}/dy = p(t,x - y) I

7/21



High—Order heat—type equation — Continuous space/time

e Equation:

owu(t, x) = Dyu(t, x) t>0, xeR

Warning:
p has a varying sign,
so PP, is a sighed measure
with total mass 1 and infinite total variation!

— Problems in defining properly the pseudo-process...

The results to be announced
are valid at least formally...
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High-Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0
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High—Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0

— Pseudo-distribution of T;:
e Even order (Krylov 1960), arcsine law

Po{T;€ds}/ds = ; se(0,t)
ns(t - s)

2
Po{T; < s} = - arcsin \/g se[0,1]
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High—Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0

— Pseudo-distribution of T;:
e Order 3 (Orsingher 1991), Beta law

V3 1

3
e — for+a—

27T 3 _ 2 ax3
Po(Teds)/ds =\ - VS(’1 s) se(01)
3

= -

3
2r Js2(t - s) o
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High—Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0

— Pseudo-distribution of T;:
e Odd order (AL 2003), Beta law — e.g. for + 92N+1/9x2N+1

__N_ _N+1
S 2N+1 (t - S) 2N+1 for even N

Po{T;€ds}/ds =1 sin (ﬁn)x{

N4t N
ST2N+ (t — §) 2N+ forodd N

Examples: orders 5 and 7 (Hochberg & Orsingher 1991-1994)
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High—Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0

— Joint pseudo-distribution of (T;, B;):
o Intermediate solution (AL 2003), Pseudo-Brownian bridge

1
Po{T;€ds | B; = 0}/ds = ? se(0,t) Uniform law
Po{Tieds|B; > (or <)0}/ds =... Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)

8/21



High—Order heat—type equation — Continuous space/time

e Sojourn time:

t
T; = measure{s€|[0,t]: B > 0} = f Lio,+)(Bs) ds
0

— Joint pseudo-distribution of (T;, B;):
o Intermediate solution (AL 2003), Pseudo-Brownian bridge

1
Po{T;€ds | B; = 0}/ds = ? se(0,t) Uniform law
Po{Tieds|B; > (or <)0}/ds =... Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)

o General Solution (V. Cammarota & AL 2010-2012)

Py{T;eds,Biedy}/(dsdy) =... I
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High-Order heat—type equation — Continuous space/time

M; = max Bg I
0<s<t

e Running maximum:

9/21



High—Order heat—type equation — Continuous space/time

M; = max Bg I
0<s<t

— Pseudo-distribution of M;:
e Order 3 (Orsingher 1991)

e Running maximum:

3p(ty) f°r+a‘9—:s
Po{M; € dy}/dy = t 2(s,Y) , 0
p(t,y)+; —ds for—%

rd)Jo (t - s)2/3

with ] oo ]
p(ty) = — f W dy = — Aj (isL]
2r ). W U e

where Ai is the Airy function
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High—Order heat—type equation — Continuous space/time

e Running maximum:

M; = max Bg I
0<s<t

— Pseudo-distribution of M;:
o Arbitrary order (AL 2003) — e.g. for (-1)N-152N/gx2N

y tokp ds
Py{M;edy}/dy = a/kf —(six, y)———— x<a
e ,; 0 ax"( )(t—s)1—"/”

for some constants
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High-Order heat—type equation — Continuous space/time

e Running maximum:

M; = max Bg I
0<s<t

— Joint pseudo-distribution of (M, B;):
o Arbitrary order (AL 2007)

Py{M;edy,B;edz}/dydz = ... I

Examples: orders 3 and 4 (Beghin, Hochberg, Orsingher &
Ragozina 2000-2001)
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High-Order heat—type equation — Continuous space/time

o First overshooting time:

T, = inf{tzo: B, > a} x<a
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High-Order heat—type equation — Continuous space/time

o First overshooting time:

T, = inf{tzo: B, > a} x<a

— Joint pseudo-distribution of (7., B;,):
o Order 2 — Brownian motion!

B, = a = Px{B, €dz}/dz = §,(2)

a
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High—Order heat—type equation — Continuous space/time

o First overshooting time:

T, = inf{tzo: B, > a} x<a

— Joint pseudo-distribution of (7., B;,):
e Order 2 — Brownian motion!

B, = a = Px{B, €dz}/dz = §,(2)

a

e Order 4 — “Biharmonic” Brownian motion (Nishioka 1996)
— “Monopoles and dipoles”

Py{B:, €dz}/dz = 6,(2) — (x — a)64(2) I

in the sense

Ex[ga(BTa)] = ¢p(a) + (x — a)¢’(a) for any test function ¢
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High—Order heat—type equation — Continuous space/time

o First overshooting time:

T, = inf{tzo: B, > a} x<a

— Joint pseudo-distribution of (7., B;,):
e Order 2 — Brownian motion!

B, = a = Px{B, €dz}/dz = §,(2)

a

e Order 4 — “Biharmonic” Brownian motion (Nishioka 1996)
— “Monopoles and dipoles”

Py{B:, €dz}/dz = 6,(2) — (x — a)64(2) I

in the sense

Ex[ga(BTa)] = ¢p(a) + (x — a)¢’(a) for any test function ¢

=> B, seems to be concentrated at a...
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High—Order heat—type equation — Continuous space/time

o First overshooting time:

T, = inf{tzo: B, > a} x<a

— Joint pseudo-distribution of (7., B;,):
o Arbitrary order (AL 2007) — e.g. for (=1)N-192N /gx2N
— “Multipoles”

N-1 _ a\q
Py{B., edz}/dz = Z(_1)q(x q'a) 849 (z)
q=0 )

Py{ra€dt, B, €dz}/dtdz = ... I
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High—Order heat—type equation — Continuous space/time

o First exit time:

Tap = inf{t > 0: Bi¢(a,b)]  xe(ab)

B:
Tab
b

Tab
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High—Order heat—type equation — Continuous space/time

o First exit time:

Tap = inf{t > 0: Bi¢(a,b)]  xe(ab)
B;

b

.
Y MWW )

T
Tab
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High—Ol’del‘ heat—type equation — Continuous space/time

o First exit time:

Tap = inf{t > 0: Bi¢(a,b)]  xe(ab)

— Joint pseudo-distribution of (s, B.,,):
e Order 2 — Brownian motion and gambler’s ruin!

b-x X—a
Py{B.,, €dz}/dz = 0a(z
x(Br, €d2)/dz = - —6a(2) + —

6b(Z)

In particular, the “ruin probabilities” are given by

Py

= inf{t > 0: B; < a}

v = inf{t > 0: B; > b}
where
Ta
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High—Ol’del‘ heat—type equation — Continuous space/time

o First exit time:

Tap = inf{t > 0: Bi¢(a,b)]  xe(ab)

— Joint pseudo-distribution of (s, B.,,):
e Even order (AL 2014) — for (-1)N-192N/9x?N
N-1
Px(Br, €dz}/dz=) " (H (x) 8 (2)+H} (x) 57 (2))
q=0

where H‘ H+ are the interpolation Hermite polynomials such that
dP H‘ PH‘

= (a) = a0 (D) =0
de+ deq for0<p<N-1
(@) =0 - (b) = 6pq

Py{tap€dt, B, €dz}/dtdz = ... I
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High—Ol’del‘ heat—type equation — Continuous space/time

o First exit time:

Tap = inf{t > 0: Bi¢(a,b)]  xe(ab)

— Joint pseudo-distribution of (s, B.,,):

o Example: order 4 — Biharmonic Brownian motion

]PX{BTab edz}/dz = (X—b)z(Zﬂ 63(2) - M 6;(2)

(b-a)3 (b-a)?
-a)2(2x+a-3b —a)2(x-b) .,
) ) o) gy

In particular, the “ruin pseudo-probabilities” are given by

_ __ (x—-b)?(2x-3a+b) -1_ (x—a)?(2x+a-3b)
]Px{‘ra<‘r;}_ —_— IPX{T;_<T3} —— o

(b-a)®
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High-Order heat—type equation — Continuous space/time

o Tools:

Generalized Feynman-Kac formula

Boundary value problems

Polyharmonic functions

Spitzer identities (even orders)

Algebra: Vandermonde systems, special functions...
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Heat-type equation of order 4

Discrete space/time




Heat‘type equation Of Ol‘der 4 — Discrete space/time

e Equation:

Bnu(n, X) = —cAiu(n, X) neN, xez
where ¢ > 0 and
opu(n,x) = u(n+1,x) - u(n,x)
A2u(n,x) = u(n,x + 2) — 4u(n,x + 1) + 6u(n, x)
—4u(n,x —1) + u(n,x — 2)
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

e Equation:

Bnu(n, X) = —cAiu(n, X) neN, xez

where ¢ > 0 and
opu(n,x) = u(n+ 1,x) — u(n, x)
A2u(n,x) = u(n,x + 2) — 4u(n,x + 1) + 6u(n, x)
—4u(n,x — 1) + u(n,x — 2)

— Pseudo-random walk (W) mso: Wm = Wy + Z;’; Ui
where (U;);»1 is a sequence of i.i.d. pseudo-r.v. with
pseudo-distribution

P{U; =2} =P{U; = -2} = -
P{U; =1} =P{U; = -1} = 4c¢
P{U; =0} =1-6¢c
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First overshooting time:

O = inf{nz 0: W, > a} x<a
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First overshooting time:

O = inf{nz 0: W, > a} x<a
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First overshooting time:

0, = inf{nzo: w, > a}

— Joint pseudo-distribution of (05, W,;,) (Sato 2002):
o In particular: marginal pseudo-distribution of W,,,

Py{W,,=a}=a+1-x Py{W,,=a+1}=x-a

e “Monopoles and dipoles”
Pseudo-Brownian motion vs. pseudo-random walk

Ex[p(Wo,)] = ¢(a) + (x - a)lp(a + 1) - ¢(a)]
Ex[e(Br,)] = ¢(a) + (x - a)¢’(a)
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First exit time:

Wh

oap = inf{n > 0: W, ¢ (a, b))

x€[a,b]

o’
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First exit time:

Oap = inf{n > 0: W, ¢ (a,b)]  xelab)
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First exit time:

Oap = inf{n > 0: W, ¢ (a,b)]  xelab)

W,
b
X
Tab
0 | 4
w, \
a abv
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First exit time:

Oap = inf{n > 0: W, ¢ (a,b)]  xelab)
W,
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Heat‘type equation Of Ol‘der 4 — Discrete space/time

o First exit time:

Oap = inf{n > 0: W, ¢ (a,b)]  xelab)

— Joint pseudo-distribution of (05, W,,,) (Sato 2002):
o In particular: marginal pseudo-distribution of W,,,,

(x—a)(x—b)(b—x+1)
(b—a+1)(b-a+2)
(x—a+1)(x—b)(b—x+1)
T (b-a)(b-a+1)
__ (x-a)(x—a+1)(b—x+1)
(b-a)(b-a+1)
_ (x-a)(x—a+1)(b-x)

PyWey, =a -1} =

Px{Wo,, = a} =

]PX{WG'ab =b}

Pe(Wop, =b + 1} =

(b-a+1)(b-a+2)
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High-order heat-type equation

Discrete space/time




High-Order heat—type equation — Discrete space/time

e Equation:

where ¢ > 0 and

onpu(n, x)

{
ANu(n, x)

dnu(n,x) = (-1)""'cAu(n, x) neN,erI

u(n+1,x) — u(n, x)

i (_1)k(k2-|’—VN) u(n, x + k)

k=-N
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High—Order heat—type equation — Discrete space/time

e Equation:

dnu(n,x) = (-1)""'cAu(n, x) neN,erI

where ¢ > 0 and

onpu(n,x) = u(n+1,x) - u(n, x)

1 AN N k[ 2N
ANu(n,x) = ;Z‘NH) k4 ) (X £ K)
— Symmetric pseudo-random walk (Wp,)mso:

Wn =W, + Z’f'; Ui where (Ui)i»1 is a sequence of i.i.d.

pseudo-r.v. with pseudo-distribution

o ( qi-iaf 2N} L J-N<i<N
P{U; =i} = (-1) c(’_+N if i£0

2N
P{U, :0}:1—C(N)
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High—Order heat—type equation — Discrete space/time

o First overshooting time:

O = inf{nz 0: W, > a} x<a

— Joint pseudo-distribution of (0,, W,,) (AL 2014):

(N—1)(a+N—1)
ke{a,a+1,...,a+N-1}
k —a a

Py{W,,= k)= (—1)““%

Ex(Zo-a]].{Waazk}) =...
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High—Ol’del‘ heat—type equation — Discrete space/time

o First exit time:

Oap = inf{n > 0: W, ¢ (a,b)]  xelab)

— Joint pseudo-distribution of (0ap, Wy, ) (AL 2014):

W — - 1N(N_a 1)(N+b 1)(
x{ Oab— }=1 K (b KN ke{a,a—1,..,a—N+1}
) ~ N,
NG
Py{W,,,= K} =(-1)k+0— Kke{b,b+1,...b+N-1}
k (k—a+N— )
N
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Thank you
for your attention!

http://math.univ-1lyonl. fr/~alachal/exposes/slides_rome_2016.pdf
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