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A common point:

“High-order” (i.e., order > 2)
partial differential equations...
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Prologue

Some fascinating formulae...

A new topic
in my life of “stochastician”...
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Some fascinating formulae...
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E. Orsingher — 1991
Processes governed by signed measures connected

with third-order “heat-type” equations
Litovskii Matematicheskii Sbornik (Lithuanian Mathematical Journal)

A kind of Arcsine Law?!
(i.e. Paul Lévy’s arcsine law for Brownian motion)
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Recalling a well-known connection

Heat equation (of order 2)
(and parabolic/elliptic equations of order 2)

⇑
⇓

Brownian motion / Random walk
(and diffusion processes)

What about the higher-order?
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High-order heat-type equation
—

Continuous space/time
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High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =
∂

∂t
andDx =


(−1)N−1

∂2N

∂x2N
=(−1)N−1∆N

x (N integer ≥ 2, even order)

±
∂2N+1

∂x2N+1
(N integer ≥ 1, odd order)
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High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =
∂

∂t
andDx =
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∂x2N
=(−1)N−1∆N

x (N integer ≥ 2, even order)

±
∂2N+1

∂x2N+1
(N integer ≥ 1, odd order)

−→ Elementary solution:

p(t , x) =


1

2π

∫ +∞

−∞

e ixu−tu2N
du (even order)

1
2π

∫ +∞

−∞

e ixu±iu2N+1
du (odd order)
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High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =
∂

∂t
andDx =


(−1)N−1

∂2N

∂x2N
=(−1)N−1∆N

x (N integer ≥ 2, even order)

±
∂2N+1

∂x2N+1
(N integer ≥ 1, odd order)

−→ Pseudo-Markov process (pseudo-Brownian motion)
(Bt)t≥0 with pseudo-transition densities

p(t; x, y) = Px{Bt ∈dy}/dy = p(t , x − y)
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High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

Warning:

p has a varying sign,
so Px is a signed measure

with total mass 1 and infinite total variation!

−→ Problems in defining properly the pseudo-process...

The results to be announced
are valid at least formally...
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

0

x

t

•
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :
Even order (Krylov 1960), arcsine law

P0{Tt ∈ds}/ds =
1

π
√

s(t − s)
s∈(0,t)

P0{Tt ≤ s} =
2
π

arcsin

√
s
t

s∈[0,t]
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :
Order 3 (Orsingher 1991), Beta law

P0{Tt ∈ds}/ds =



√
3

2π
1

3
√

s(t − s)2
for +

∂3

∂x3

√
3

2π
1

3
√

s2(t − s)
for − ∂3

∂x3

s∈(0,t)
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :
Odd order (AL 2003), Beta law – e.g. for + ∂2N+1/∂x2N+1

P0{Tt ∈ds}/ds = 1
π sin

(
N

2N+1π
)
×

 s−
N

2N+1 (t − s)−
N+1

2N+1 for even N

s−
N+1
2N+1 (t − s)−

N
2N+1 for odd N

Examples: orders 5 and 7 (Hochberg & Orsingher 1991–1994)
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

−→ Joint pseudo-distribution of (Tt ,Bt):
Intermediate solution (AL 2003), Pseudo-Brownian bridge P0{Tt ∈ds |Bt = 0}/ds =

1
t

s∈(0,t) Uniform law

P0{Tt ∈ds |Bt > (or <) 0}/ds = . . . Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)
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High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

0
1[0,+∞)(Bs) ds

−→ Joint pseudo-distribution of (Tt ,Bt):
Intermediate solution (AL 2003), Pseudo-Brownian bridge P0{Tt ∈ds |Bt = 0}/ds =

1
t

s∈(0,t) Uniform law

P0{Tt ∈ds |Bt > (or <) 0}/ds = . . . Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)

General Solution (V. Cammarota & AL 2010–2012)

Px{Tt ∈ds,Bt ∈dy}/(ds dy) = . . .
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High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max
0≤s≤t

Bs

0

x•

Mt

t

•
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High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max
0≤s≤t

Bs

−→ Pseudo-distribution of Mt :
Order 3 (Orsingher 1991)

P0{Mt ∈dy}/dy =


3 p(t , y) for +

∂3

∂x3

p(t , y)+ 1
Γ( 1

3 )

∫ t

0

∂p
∂y (s, y)

(t − s)2/3
ds for − ∂3

∂x3

y>0

with

p(t , y) =
1

2π

∫ +∞

−∞

e iyu∓itu3
du =

1
3√
3t

Ai

± x
3√
3t


where Ai is the Airy function
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High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max
0≤s≤t

Bs

−→ Pseudo-distribution of Mt :
Arbitrary order (AL 2003) – e.g. for (−1)N−1∂2N/∂x2N

Px{Mt ∈dy}/dy =
N∑

k=1

αk

∫ t

0

∂k p

∂xk
(s; x, y)

ds

(t − s)1−k/N
x<a

for some constants αk
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High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max
0≤s≤t

Bs

−→ Joint pseudo-distribution of (Mt ,Bt):
Arbitrary order (AL 2007)

Px{Mt ∈dy,Bt ∈dz}/dy dz = . . .

Examples: orders 3 and 4 (Beghin, Hochberg, Orsingher &
Ragozina 2000–2001)
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High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf
{
t ≥ 0 : Bt > a

}
x<a

0

x•

a

Bt

tτa

Bτa •
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High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf
{
t ≥ 0 : Bt > a

}
x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):
Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)
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High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf
{
t ≥ 0 : Bt > a

}
x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):
Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)

Order 4 – “Biharmonic” Brownian motion (Nishioka 1996)
−→ “Monopoles and dipoles”

Px{Bτa ∈dz}/dz = δa(z) − (x − a)δa
′(z)

in the sense

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a) for any test function ϕ
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High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf
{
t ≥ 0 : Bt > a

}
x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):
Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)

Order 4 – “Biharmonic” Brownian motion (Nishioka 1996)
−→ “Monopoles and dipoles”

Px{Bτa ∈dz}/dz = δa(z) − (x − a)δa
′(z)

in the sense

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a) for any test function ϕ

==> Bτa seems to be concentrated at a...
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High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf
{
t ≥ 0 : Bt > a

}
x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):
Arbitrary order (AL 2007) – e.g. for (−1)N−1∂2N/∂x2N

−→ “Multipoles”

Px{Bτa ∈dz}/dz =
N−1∑
q=0

(−1)q (x − a)q

q!
δ(q)

a (z)

Px{τa ∈dt ,Bτa ∈dz}/dt dz = . . .
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High-order heat-type equation – Continuous space/time

First exit time:

τab = inf
{
t ≥ 0 : Bt <(a, b)

}
x∈(a,b)

0

x•

a

b

Bt

tτab

Bτab •
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High-order heat-type equation – Continuous space/time

First exit time:

τab = inf
{
t ≥ 0 : Bt <(a, b)

}
x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):
Order 2 – Brownian motion and gambler’s ruin!

Px{Bτab ∈dz}/dz =
b − x
b − a

δa(z) +
x − a
b − a

δb(z)

In particular, the “ruin probabilities” are given by

Px
{
τ−a < τb

+
}

=
b − x
b − a

and Px
{
τb

+ < τ−a
}

=
x − a
b − a

where

τb
+ = inf{t ≥ 0 : Bt > b}
τ−a = inf{t ≥ 0 : Bt < a}
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High-order heat-type equation – Continuous space/time

First exit time:

τab = inf
{
t ≥ 0 : Bt <(a, b)

}
x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):
Even order (AL 2014) – for (−1)N−1∂2N/∂x2N

Px{Bτab ∈dz}/dz =
N−1∑
q=0

(
H−q (x) δ(q)

a (z)+H+
q (x) δ(q)

b (z)
)

where H−q , H+
q are the interpolation Hermite polynomials such that

dpH−q
dxp (a) = δpq

dpH−q
dxp (b) = 0

dpH+
q

dxp (a) = 0
dpH+

q

dxp (b) = δpq

for 0 ≤ p ≤ N − 1

Px{τab ∈dt ,Bτab ∈dz}/dt dz = . . .
11/21



High-order heat-type equation – Continuous space/time

First exit time:

τab = inf
{
t ≥ 0 : Bt <(a, b)

}
x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):
Example: order 4 – Biharmonic Brownian motion

Px{Bτab ∈dz}/dz =
(x−b)2(2x−3a+b)

(b−a)3 δa(z) −
(x−a)(x−b)2

(b−a)2 δa
′(z)

−
(x−a)2(2x+a−3b)

(b−a)3 δb(z) −
(x−a)2(x−b)

(b−a)2 δb
′(z)

In particular, the “ruin pseudo-probabilities” are given by

Px
{
τ−a<τb

+
}

=
(x−b)2(2x−3a+b)

(b−a)3 Px
{
τb

+<τ−a

}
=−

(x−a)2(2x+a−3b)

(b−a)3
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High-order heat-type equation – Continuous space/time

Tools:

Generalized Feynman-Kac formula
Boundary value problems
Polyharmonic functions
Spitzer identities (even orders)
Algebra: Vandermonde systems, special functions...
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Heat-type equation of order 4
—

Discrete space/time
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Heat-type equation of order 4 – Discrete space/time

Equation:

∂nu(n, x) = −c∆2
xu(n, x) n∈N, x∈Z

where c > 0 and
∂nu(n, x) = u(n + 1, x) − u(n, x)

∆2
xu(n, x) = u(n, x + 2) − 4u(n, x + 1) + 6u(n, x)

−4u(n, x − 1) + u(n, x − 2)
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Heat-type equation of order 4 – Discrete space/time

Equation:

∂nu(n, x) = −c∆2
xu(n, x) n∈N, x∈Z

where c > 0 and
∂nu(n, x) = u(n + 1, x) − u(n, x)

∆2
xu(n, x) = u(n, x + 2) − 4u(n, x + 1) + 6u(n, x)

−4u(n, x − 1) + u(n, x − 2)

−→ Pseudo-random walk (Wm)m≥0: Wm = W0 +
∑m

i=1
Ui

where (Ui)i≥1 is a sequence of i.i.d. pseudo-r.v. with
pseudo-distribution

P{U1 = 2} = P{U1 = −2} = −c
P{U1 = 1} = P{U1 = −1} = 4c
P{U1 = 0} = 1 − 6c
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Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf
{
n ≥ 0 : Wn ≥ a

}
x≤a

0

x•

a

Wn

nσa

Wσa
•
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Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf
{
n ≥ 0 : Wn ≥ a

}
x≤a

0

x•

a

Wn

nσa

a+1
Wσa
•
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Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf
{
n ≥ 0 : Wn ≥ a

}
x≤a

−→ Joint pseudo-distribution of (σa ,Wσa ) (Sato 2002):
In particular: marginal pseudo-distribution of Wσa

Px{Wσa =a}=a + 1 − x Px{Wσa =a + 1}=x − a

“Monopoles and dipoles”
Pseudo-Brownian motion vs. pseudo-random walk

Ex[ϕ(Wσa )] = ϕ(a) + (x − a)[ϕ(a + 1) − ϕ(a)]

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a)
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Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf
{
n ≥ 0 : Wn < (a, b)

}
x∈[a,b]

0

x•

a

b

Wn

nσab

Wσab
•
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Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf
{
n ≥ 0 : Wn < (a, b)

}
x∈[a,b]

−→ Joint pseudo-distribution of (σab ,Wσab ) (Sato 2002):
In particular: marginal pseudo-distribution of Wσab

Px{Wσab =a − 1} =
(x−a)(x−b)(b−x+1)

(b−a+1)(b−a+2)

Px{Wσab =a} = −
(x−a+1)(x−b)(b−x+1)

(b−a)(b−a+1)

Px{Wσab =b} =
(x−a)(x−a+1)(b−x+1)

(b−a)(b−a+1)

Px{Wσab =b + 1} = −
(x−a)(x−a+1)(b−x)

(b−a+1)(b−a+2)
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High-order heat-type equation
—

Discrete space/time
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High-order heat-type equation – Discrete space/time

Equation:

∂nu(n, x) = (−1)N−1c∆N
xu(n, x) n∈N, x∈Z

where c > 0 and
∂nu(n, x) = u(n + 1, x) − u(n, x)

∆N
x u(n, x) =

N∑
k=−N

(−1)k
(

2N
k + N

)
u(n, x + k)
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High-order heat-type equation – Discrete space/time

Equation:

∂nu(n, x) = (−1)N−1c∆N
xu(n, x) n∈N, x∈Z

where c > 0 and
∂nu(n, x) = u(n + 1, x) − u(n, x)

∆N
x u(n, x) =

N∑
k=−N

(−1)k
(

2N
k + N

)
u(n, x + k)

−→ Symmetric pseudo-random walk (Wm)m≥0:
Wm = W0 +

∑m
i=1

Ui where (Ui)i≥1 is a sequence of i.i.d.
pseudo-r.v. with pseudo-distribution

P{U1 = i} = (−1)i−1c
(

2N
i + N

)
if

{
−N ≤ i ≤ N

i , 0

P{U1 = 0} = 1 − c
(
2N
N

)
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High-order heat-type equation – Discrete space/time

First overshooting time:

σa = inf
{
n ≥ 0 : Wn ≥ a

}
x<a

−→ Joint pseudo-distribution of (σa ,Wσa ) (AL 2014):

Px{Wσa=k }= (−1)k+a a
k

(
N − 1
k − a

)(
a + N − 1

a

)
k∈{a,a+1,...,a+N−1}

Ex

(
zσa1{Wσa =k }

)
= . . .
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High-order heat-type equation – Discrete space/time

First exit time:

σab = inf
{
n ≥ 0 : Wn < (a, b)

}
x∈[a,b]

−→ Joint pseudo-distribution of (σab ,Wσab ) (AL 2014):
Px{Wσab=k }=(−1)k+a−1

N
k

(N−a−1
N )(N+b−1

N )(N−1
a−k)

(b−k+N−1
N )

k∈{a,a−1,...,a−N+1}

Px{Wσab=k }=(−1)k+b
N
k

(N−a−1
N )(N+b−1

N )(N−1
k−b)

(k−a+N−1
N )

k∈{b ,b+1,...,b+N−1}

Ex

(
zσab1{Wσab =k }

)
= . . .
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Thank you
for your attention!

http://math.univ-lyon1.fr/˜alachal/exposes/slides_rome_2016.pdf
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