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1 Construction

• Heat-type equation of high order n > 2:
∂u

∂t
= ±∂nu

∂xn

• Heat-type kernel: p(t;x)

� it is characterized by

∫ +∞

−∞
eiuxp(t;x) dx =

{
e−tun

for even n

e±itun

for odd n

� it satis�es

∫ +∞

−∞
p(t;x) dx = 1 and 1 <

∫ +∞

−∞
|p(t;x)| dx

{
< +∞ for even n

= +∞ for odd n

� it de�nes a Markov pseudo-process (X(t))t≥0 driven by a signed measure

(which is NOT a probability measure) by

Px{X(t) ∈ dy} = p(t;x− y) dy

and for 0 = t0 < t1 < . . . < tm and x0 = x:

Px{X(t1) ∈ dx1, . . . , X(tm) ∈ dxm} =
∏m

i=1 p(ti − ti−1;xi−1 − xi) dxi
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2 Study of certain functionals

• Sojourn time above a �xed level, or within a �nite interval

Ta(t) = measure{s ∈ [0, t] : X(s) > a} =
∫ t

0
1l{X(s)>a} ds

Tab(t) = measure{s ∈ [0, t] : X(s) ∈ [a, b]} =
∫ t

0
1l{X(s)∈[a,b]} ds

• Maximum functional of the pseudo-process

M(t) = max
0≤s≤t

X(s)

• First overshooting time of a single or double threshold

τa = inf{t ≥ 0 : X(t) > a} for x < a

τab = inf{t ≥ 0 : X(t) /∈ [a, b]} for x ∈ (a, b)

−→ Problems: What are the pseudo-distributions of Ta(t) and (X(t), Ta(t))?

Tab(t)? M(t) and (X(t),M(t)) ? (τa, X(τa)) ? (τab, X(τab))?
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Main tools

• Feynman-Kac formula

(−→ PDE and Fourier-Laplace transforms, Vandermonde algebra)

• Spitzer's identity

(−→ Fourier-Laplace transforms, complex analysis)

Warning: the results are justi�ed for EVEN n, formal for ODD n...

Feynman-Kac formula
The function

φ(t;x) = Ex

[
e−

∫ t
0
f(X(s)) dsg(X(t))

]
def
= lim

m→∞
Ex

[
e−

t
m

∑m
k=0 f(X( kt

m ))g(X(t))
]

is a solution of the PDE
∂φ

∂t
= ±∂nφ

∂xn
− fφ with the condition φ(0;x) = g(x).

The Laplace transform Φ(x) =
∫ +∞
0

e−λt φ(t;x) dt is a solution of the ODE

±dnΦ

dxn
= (f + λ)Φ− g
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3 Selected bibliography

• Krylov (1960): case even n

• Hochberg (1978): case n = 4

• Orsingher et al. (1991�2001): case n = 3 and n = 4 (and also n = 5, 7)

• Nishioka (1996�2001): case n = 4

• Lachal et al. (2003�2010): général case

5



4 Distribution of the sojourn time Ta(t)

Set Φ(x, y) =

∫ +∞

0

e−λt Ex

(
e−µTa(t), X(t) ∈ dy

)
dt.

The function Φ is a solution of the di�erential equation

±∂nΦ

∂xn
=

 (λ+ µ)Φ− δy on (a,+∞)

λΦ− δy on (−∞, a)

with regularity conditions

• at a:
∂pΦ

∂xp
(a+, y) =

∂pΦ

∂xp
(a−, y) for p ∈ {0, 1, . . . , n− 1}

• at y:

∂pΦ

∂xp
(y+, y) =

∂pΦ

∂xp
(y−, y) for p ∈ {0, 1, . . . , n− 2}

∂n−1Φ

∂xn−1
(y+, y)− ∂n−1Φ

∂xn−1
(y−, y) = ±1

6



−→Solution: A.L. and V. Cammarota (case x = a: EJP 15 (2010); case x ̸= a: submitted)

−→ Particular case: distribution of Ta(t) when x = a = 0

Theorem 1 (A.L. (EJP 8, 2003)) The distribution of T0(t) is a Beta law:

P0{T0(t) ∈ ds}/ds = sin(απ/n)

π

1l(0,t)(s)

sα/n(t− s)β/n

where (α, β) =

{
(n/2, n/2) if n is even

((n∓ 1)/2, (n± 1)/2) if n is odd
. We have α+ β = n.

This result has been obtained by Hochberg & Orsingher for n = 3, 5, 7 in 1991-94.

Example (even n, Krylov 1960)

The distribution of T0(t) is the Paul Lévy's arcsine law:

P0{T0(t) ∈ ds}/ds =
1l(0,t)(s)

π
√
s(t− s)
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5 Distribution of the sojourn time Tab(t)

Set Φ(x) =
∫ +∞
0

e−λt Ex

(
e−µTab(t)

)
dt. The function Φ solves the ODE

±dnΦ

dxn
(x) =

 (λ+ µ)Φ(x)− 1 for x ∈ (a, b)

λΦ(x)− 1 for x /∈ (a, b)

with regularity conditions

dpΦ

dxp
(a+) =

dpΦ

dxp
(a−) and

dpΦ

dxp
(b+) =

dpΦ

dxp
(b−) for p ∈ {0, 1, . . . , n− 1}

It seems to be di�cult to solve explicitly this system...

Example (x = 0, (a, b) = (−ε, ε), ε → 0+, Beghin & Orsingher 2005)

Local time for the pseudo-process (X(t))t≥0: L(t) = limε→0+
1
ε

∫ t

0
1l{X(s)∈[−ε,ε]} ds.∫ +∞

0

e−λt E0(e
−µL(t))dt =

1

λ+ cµ n
√
λ

where c =
1

αn sin π
αn

, α =

{
1 if n is odd,

2 if n is even.
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6 Distribution of the maximum M(t)

Lemma Spitzer's identity yields∫ +∞

0

e−λt Ex

(
eiµX(t)−νM(t)

)
dt =

1

λ
e(iµ−ν)x exp

[∫ +∞

0

e−λt
(
E0

(
eiµX(t)−νX(t)+

)
− 1

)dt
t

]

Theorem 2 (A.L. (EJP 12, 2007)) The distribution of (X(t),M(t)) is given by

Px{X(t) < y < z < M(t)} =
∑
k,m

αkm

∫ t

0

∫ s

0

∂mp

∂xm
(σ;x− z)

Ik(s− σ; z − y)

(t− s)1−(m+1)/n
dsdσ

where αkm are some coe�cients and
∫ +∞
0

e−λtIk(t; ξ) dt = eθk
n√
λ ξ with (θk)

n = ±1.

The distributions of (X(t),M(t)) and (M(t)|X(t) = 0) have been obtained by Beghin,

Hochberg, Orsingher & Ragozina in the cases n = 3, 4 in 2000-01.

Example (n = 4, Hochberg 1978)∫ +∞

0

e−λt [Px{M(t) ∈ da}/da] dt = −
√
2

λ3/4
e

4√
λ(x−a)/

√
2 sin

( 4
√
λ(x− a)√

2

)
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7 Distribution of the �rst overshooting time τa

Suppose that n is even and �x x < a.

Lemma The distributions of (τa, X(τa)) and (X(t),M(t)) are related by

Ex

(
e−λτa+iµX(τa)

)
= (λ∓ (iµ)n)

∫ +∞

0

e−λt Ex

(
eiµX(t)1l{M(t)>a}

)
dt

Theorem 3 (A.L. (EJP 12, 2007)) The distribution of X(τa) is given by

Px{X(τa) ∈ dz}/dz =

n/2−1∑
p=0

(a− x)p

p!
δ(p)a (z) with < δ(p)a , φ>= (−1)pφ(p)(a)

Example (n = 4, Nishioka 1997)

Px{X(τa) ∈ dz}/dz = δa(z)− (x− a)δ′a(z) with < δ′a, φ>= −φ′(a)

Px{τa ∈ dt,X(τa) ∈ dz}/dt dz = J0(t;x− a) δa(z) + J1(t;x− a) δ′a(z)

with

J0(t; ξ) =
ξ

2πt

∫ +∞
0

[
eξλ − cos(ξλ) + sin(ξλ)

]
e−tλ4

dλ

J1(t; ξ) =
2
π

∫ +∞
0

[
cos(ξλ) + sin(ξλ)− eξλ

]
λ2 e−tλ4

dλ
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8 Distribution of the �rst exit time τab

Suppose that n is even and �x x ∈ (a, b).

Theorem 4 (A.L. (in preparation)) The distribution of X(τab) is given by

Px{X(τab) ∈ dz}/dz =

n/2−1∑
p=0

H−
p (x) δ(p)a (z) +

n/2−1∑
p=0

H+
p (x) δ

(p)
b (z)

where the functions H−
p and H+

p , 0 ≤ p ≤ n/2 − 1, are the interpolation Hermite

polynomials such that
dqH−

p

dxq (a) = δpq,
dqH−

p

dxq (b) = 0 and
dqH+

p

dxq (a) = 0,
dqH+

p

dxq (b) = δpq

for 0 ≤ q ≤ n/2− 1.

Set τ+b = inf{t ≥ 0 : X(t) > b} for x < b and τ−a = inf{t ≥ 0 : X(t) < a} for x > a.

Corollary In particular, the �ruin pseudo-probabilities� are given by

Px{τ−a < τ+b } = H−
0 (x) and Px{τ+b < τ−a } = H+

0 (x).
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