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1 Notations

Let X1, X2, . . . , XN , . . . be independent random variables with

continuous distribution function F0 and set

Fn(x) =
1

n

n∑
i=1

1l{Xi<x}.

The random variables Ui = F0(Xi), i > 1, are independent and

uniformly distributed on (0, 1). Set also

Gn(t) =
1

n

n∑
i=1

1l{Ui<t}.

1.1 p-fold integrated empirical process

Let p > 1 be an fixed integer. Let us introduce the p-fold inte-

grated empirical process as follows:

Fp,n(x) ≡
∫ x

−∞

[F0(x)− F0(y)]
p−1

(p− 1)!
Fn(y) dF0(y),

Fp,0(x) ≡
∫ x

−∞

[F0(x)− F0(y)]
p−1

(p− 1)!
F0(y) dF0(y),

Fp,n(x) ≡
√
n[Fp,n(x)− Fp,0(x)].

We also introduce the similar quantities related to the uniform

distribution. For t ∈ [0, 1],

Gp,n(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
Gn(s) ds =

1

n

n∑
i=1

[(t− Ui)
+]p

p !
,

Gp,0(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
s ds =

tp+1

(p+ 1)!
,

Gp,n(t) ≡
√
n[Gp,n(t)−Gp,0(t)].
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1.2 Some statistics based on the p-fold inte-

grated empirical process

Let us define the statistics Dp, ω
1
p, ω

2
p, Ũ

2
p and Ū2

p by

Dp,n ≡ sup
−∞<x<+∞

|Fp,n(x)|, (Kolmogorov-Smirnov)

ω1
p,n =

∫ +∞

−∞
Fp,n(x) dF0(x),

ω2
p,n =

∫ +∞

−∞
Fp,n(x)

2 dF0(x), (Cramér–von Mises)

Ũ2
p,n =

∫ +∞

−∞

[
Fp,n(x)−

∫ +∞

−∞
Fp,n(y) dF0(y)

]2
dF0(x), (Watson)

Ū2
p,n =

∫ +∞

−∞

[
Fp,n(x)−

F0(x)
p

p !

∫ +∞

−∞
F0,n(y) dF0(y)

]2
dF0(x).

We have

Dp,n = max
06t61

Gp,n(t),

ω1
p,n =

∫ 1

0

Gp,n(t) dt = Gp+1,n(1),

ω2
p,n =

∫ 1

0

Gp,n(t)
2 dt,

Ũ2
p,n =

∫ 1

0

[
Gp,n(t)−

∫ 1

0

Gp,n(s) ds

]2
dt = ω2

p,n − (ω1
p,n)

2,

Ū2
p,n =

∫ 1

0

[
Gp,n(t)−

tp

p !

∫ 1

0

G0,n(s) ds

]2
dt.
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2 Limiting processes

Let β ≡ (β(t))06t61 be standard Brownian bridge. We introduce

the underlying processes βp = (βp(t))06t61, γ̃p = (γ̃p(t))06t61 and

γ̄p = (γ̄p(t))06t61 associated with our statistics:

βp(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
β(s) ds =

∫ t

0

(t− s)p

p !
dβ(s),

γ̃p(t) ≡ βp(t)−
∫ 1

0

βp(s) ds = βp(t)− βp+1(1),

γ̄p(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
[β(s)−

∫ 1

0

β(u) du] ds = βp(t)−
tp

p !
β1(1).

Theorem 2.1 The process Gp,n converges weakly towards βp as

n −→ +∞, and then:

Dp,n
law−→ max

06t61
|βp(t)|,

ω1
p,n

law−→ βp+1(1),

ω2
p,n

law−→
∫ 1

0

βp(t)
2 dt,

Ũ2
p,n

law−→
∫ 1

0

γ̃p(t)
2 dt =

∫ 1

0

βp(t)
2 dt− βp+1(1)

2,

Ū2
p,n

law−→
∫ 1

0

γ̄p(t)
2 dt.

Proof. The foregoing results readily come from the well-known

fact: the process G0,n converges weakly towards Brownian bridge

β, together with the continuous mapping theorem.
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3 Covariance and Green functions

Proposition 3.1 The processes βp, γ̃p and γ̄p are centered Gaus-

sian processes with respective covariance functions

Gβp(s, t) ≡ E[βp(s)βp(t)]

=

∫ s∧t

0

(s− u)p

p !

(t− u)p

p !
du− (st)p+1

(p+ 1)!2
,

Gγ̃p(s, t) ≡ E[γ̃p(s)γ̃p(t)]

=

∫ s∧t

0

(s− u)p

p !

(t− u)p

p !
du

−
∫ s

0

(s− u)p

p !

(1− u)p+1

(p+ 1)!
du

−
∫ t

0

(t− u)p

p !

(1− u)p+1

(p+ 1)!
du

− (st)p+1

(p+ 1)!2
+

sp+1 + tp+1

(p+ 1)!(p+ 2)!
+

(p+ 1)2

(p+ 2)!2(2p+ 3)
,

Gγ̄p(s, t) ≡ E[γ̄p(s)γ̄p(t)]

=

∫ s∧t

0

(s− u)p

p !

(t− u)p

p !
du

+
(st)p

p !2

[ 1

12
− s+ t

2(p+ 1)
− st

(p+ 1)2
+

s2 + t2

(p+ 1)(p+ 2)

]
.

Proof. Use

E
[∫ s

0
f(u) dβ(u)

∫ t

0
g(u) dβ(u)

]
=

∫ s∧t

0
f(u)g(u) du

−
∫ s

0
f(u) du

∫ t

0
g(u) du.
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4 Boundary value problems

Theorem 4.1 The function

f(t) =

∫ 1

0

Gβp(s, t)g(s) ds, t ∈ [0, 1],

is the unique solution of the boundary value problem:

d2p+2f

dt2p+2
(t) = (−1)p+1g(t), t ∈ (0, 1),

dif

dti
(0) = 0 for 0 6 i 6 p,

dif

dti
(1) = 0 for i = p and p+ 2 6 i 6 2p+ 1.

Theorem 4.2 The function

f(t) =

∫ 1

0

Gγ̃p(s, t)g(s) ds, t ∈ [0, 1],

is the unique solution of the boundary value problem:

d2p+2f

dt2p+2
(t) = (−1)p+1

[
g(t)−

∫ 1

0

g(s) ds

]
, t ∈ (0, 1),

dif

dti
(0) = 0 for 1 6 i 6 p,

dif

dti
(1) = 0 for i = p and p+ 2 6 i 6 2p+ 1,∫ 1

0

f(t) dt = 0.
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Theorem 4.3 For p > 2, the function

f(t) =

∫ 1

0

Gγ̄p(s, t)g(t) ds, t ∈ [0, 1],

is the unique solution of the boundary value problem:

d2p+2f

dt2p+2
(t) = (−1)p+1g(t), t ∈ (0, 1),

dif

dti
(0) = 0 for 0 6 i 6 p− 1,

dif

dti
(1) = 0 for i = p− 1 and p+ 3 6 i 6 2p+ 1,

dpf

dtp
(0) =

dpf

dtp
(1) and

dp+1f

dtp+1
(0) =

dp+1f

dtp+1
(1).

Some eigenvalue problems : find the largest eigenvalue of the ker-

nels Gβp , Gγ̃p and Gγ̄p . For instance,

λGβp
= sup

{∫ 1

0

∫ 1

0

Gβp(s, t)f(s)f(t) ds dt; f ∈ L2[0, 1], ||f ||2 = 1

}
= sup

{
var

[∫ 1

0

f(s)βp(s) ds

]
; f ∈ L2[0, 1], ||f ||2 = 1

}
.

p λGβp
λGγ̃p

λGγ̄p

0 1, 01321.10−1 2, 53302.10−2 2, 53302.10−2

1 3, 19639.10−2 1, 02659.10−2 1, 99774.10−3

2 4, 31427.10−3 2, 10317.10−3 5, 66559.10−4

3 3, 01473.10−4 1, 78626.10−4 7, 32902.10−5

4 1, 29354.10−5 8, 56456.10−6 4, 81853.10−6

5 3, 76910.10−7 2, 68114.10−7 1, 92942.10−7
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5 Bahadur theory

5.1 Bahadur exact slope

For testing H0 : F = F0 versus Hθ : F = F0(.+ θ), θ > 0, we shall

use the following result:

Suppose that the statistic T = (Tn)n>1 satisfies the following

conditions:

1)
1√
n
Tn

PHθ

−→
n→∞

bT (θ) under Hθ ;

2) lim
n→+∞

1

n
lnPH0

( 1√
n
Tn > ε

)
= −hT (ε) for all ε lying within

an interval where hT is continous and that contains bT (0,∞).

Then the so-called Bahadur exact slope of statistic T is given by

cT (θ) = 2hT (bT (θ)).

5.2 B-efficiency

The local B-efficiency of the statistic T = (Tn)n>1 is defined by

eT ≡ lim
θ→0+

cT (θ)

2K(θ)
=

lT
I(f0)

where

K(θ) ≡
∫ +∞

−∞
ln
f0(x+ θ)

f0(x)
f0(x+ θ) dx

I(f0) ≡
∫ +∞

−∞

f ′0(x)
2

f0(x)
dx =

∫ 1

0

ψ′
0(u)

2 du

are the Kullback-Leibler and Fisher informations, lT is the local

index of T and ψ0 = f0 ◦ F−1
0 is the density-quantile function (in

our cases K(θ) ∼
θ→0+

1
2I(f0)θ

2 and cT (θ) ∼
θ→0+

lT θ
2).
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5.3 The statistic ω1
p

Proposition 5.1 1) Under Hθ:

1√
n
ω1
p,n

PHθ

−→
n→∞

bω1
p
(θ) ∼

θ→0+
θ

∫ 1

0

ψ0(u)
(1− u)p

p !
du.

2) Under H0:

lim
n→+∞

1

n
lnPH0

(
1√
n
ω1
p,n > ε

)
= −hω1

p
(ε)

∼
ε→0+

1

2
p !2(p+ 2)2(2p+ 3)ε2.

Theorem 5.2 The local slope of the statistic ω1
p is given by

cω1
p
(θ) ∼

θ→0+
lω1

p
θ2

where lω1
p
is the local index defined by

lω1
p
≡ (p+ 2)2(2p+ 3)

[∫ 1

0

ψ0(u)(1− u)p du

]2
.

Proof. 1) is due to Glivenko-Cantelli theorem.

2) Observe that

ω1
p,n

law
=

1√
n

n∑
i=1

Zi,

with Zi =
Up+1
i

(p+ 1)!
− 1

(p+ 2)!
. Chernoff’s theorem asserts that if

hω1
p
(ε) = sup

s>0
[εs− lnE(esZi)] denotes the Cramér transform of the

random variable Zi, then

lim
n→+∞

1

n
lnPH0

(
1√
n
ω1
p,n > ε

)
= −hω1

p
(ε) ∼

ε→0+

ε2

2 var(Z1)
.
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5.4 The statistic Dp

Remark. We observe that hω1
p
(ε) ∼

ε→0+
hDp+1(ε) and lω1

p
=

lDp+1 . So, we only need to study one of the statistics Dp and ω1
p

to derive similar properties for the other one.

5.5 The statistic ω2
p

Proposition 5.3 1) Under Hθ:

1

n
ω2
p,n

PHθ

−→
n→∞

bω2
p
(θ)2 ∼

θ→0+
θ2

∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!
ψ0(t) dt

]2
du.

2) Under H0:

lim
n→+∞

1

n
lnPH0

(
1

n
ω2
p,n > ε2

)
= −hω2

p
(ε) ∼

ε→0+

ε2

2λGβp

where λGβp
is the largest eigenvalue of the integral operator with

kernel Gβp
.

Theorem 5.4 The local slope of the statistic ω2
p is given by

cω2
p
(θ) ∼

θ→0+
lω2

p
θ2

where lω2
p
is the local index defined by

lω2
p
≡ 1

λGβp

∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!
ψ0(t) dt

]2
du.

Proof. ω2
p,n =

∣∣∣∣∣∣ 1
n

n∑
i=1

Yi

∣∣∣∣∣∣2
2
with Yi =

[(t− Ui)
+]p

p!
− tp+1

(p+ 1)!
.

lim
n→+∞

1

n
lnPH0

(
1

n
ω2
p,n > ε2

)
∼
ε→0+

ε2

2 sup var
[∫ 1

0
f(s)βp(s) ds

]
{||f ||2 = 1}

.
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6 Some examples for f0

f1(x) ≡ φ(x) ≡ 1√
2π

e−
1
2x

2

(normal density),

f2(x) ≡ ex

(1 + ex)2
(logistic density),

f3(x) ≡ 1

2
e−|x| (Laplace density),

f4(x) ≡ 1

π coshx
(hyberbolic cosine density),

f5(x) ≡ 1

π(1 + x2)
(Cauchy density).

Gauss Logistic Laplace Hyperbolic Cauchy

D0 0.637 0.750 1 0.811 0.811

D1 0.955 1 0.750 0.986 0.608

D2 0.895 0.938 0.703 0.924 0.570

D3 0.721 0.840 0.595 0.813 0.453

ω2
0 0.907 0.987 0.822 1 0.750

ω2
1 0.912 0.968 0.749 0.964 0.629

ω2
2 0.851 0.881 0.648 0.863 0.514

ω2
3 0.787 0.789 0.540 0.756 0.395

Ū2
0 0.486 0.657 0.822 0.758 1

Ū2
1 0.142 0.199 0.261 0.234 0.321

Ū2
2 0.042 0.058 0.071 0.068 0.086

Ū2
3 0.091 0.124 0.146 0.142 0.176

Ū2
4 0.156 0.212 0.247 0.242 0.295

Ū2
5 0.217 0.292 0.333 0.333 0.396
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7 Local asymptotic optimality

We are interested in solving the problem of optimality in Bahadur-

Raghavachari inequality in regard to our statistics. This inequal-

ity can be stated as follows:

for all statistic T ,

cT (θ) 6 2K(θ).

The optimality consists of finding a distribution function F0 such

that the equality holds in the foregoing inequality, that is cT (θ) =

2K(θ) for all θ > 0. This is a difficult problem, and the local

asymptotic optimality (for short LAO) is easier to be reached.

So, we shall search the distribution function F0 such that the

asymptotics holds:

cT (θ) ∼
θ→0+

2K(θ).

This problem boils down to finding the probability density func-

tion f0 satisfying

I(f0) = lT .
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7.1 LAO for Dp

We have to solve the equation∫ 1

0

ψ′(u)2 du = (2p+ 1)(p+ 1)2
[∫ 1

0

(1− u)p−1ψ(u) du

]2
.

This equation can be formulated as a variational problem: mini-

mize

∫ 1

0

ψ′(u)2 du within the set of the functions ψ ∈ L2[0, 1] that

are absolutely continuous with derivative in L2[0, 1] subject to the

conditions ψ(0) = ψ(1) = 0, ψ > 0 and

∫ 1

0

(1 − u)p−1ψ(u) du =

1

(p+ 1)
√
2p+ 1

. The solutions ψ ∈
◦
W 2,1 [0, 1] of that problem

have the form

ψ(u) = µ(1− u)[1− (1− u)p],

where µ is any positive constant.

Now, we seek the corresponding distribution functions F related

to ψ by the relation ψ = F ′ ◦F−1. Those functions F satisfies the

following differential equation:

F ′(x) = µ(1− F (x))[1− (1− F (x))p]

from which we derive the family of distribution functions

F (x) = 1− (1 + eax+b)−1/p, a > 0, b ∈ R,

together with the related probability density functions:

f(x) =
a

p

eax+b

(1 + eax+b)1+1/p
, a > 0, b ∈ R.

As a result, we just found a generalization of the logistic distribu-

tion introduced by Dubey.
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7.2 LAO for ω2
p

The problem of LAO for ω2
p is equivalent to solving the equation

∫ 1

0

ψ′(u)2 du =
1

λGβp

∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!
ψ(t) dt

]2
du.

The corresponding variational problem consists of minimizing∫ 1

0

ψ′(u)2 du within the set of the functions ψ ∈
◦
W 2,1 [0, 1] subject

to the condition

∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!
ψ(t) dt

]2
du = λGβp

.

It may be shown that ψ is the unique solution of the following

boundary value problem:

d2p+2ψ

dt2p+2
(t) = (−1)pλψ(t), t ∈ (0, 1),

diψ

dti
(0) = 0 for i = 0 and p+ 2 6 i 6 2p+ 1,

diψ

dti
(1) = 0 for i = 0 and 2 6 i 6 p+ 1.

We are not able to solve this problem explicitly.
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7.3 LAO for Ũ2
p

The problem of LAO for Ũ2
p consists of solving the equation∫ 1

0

ψ′(u)2 du =
1

λGγ̃p

[∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!
ψ0(t) dt

]2
du

−
[∫ 1

0

(1− t)p

p !
ψ0(t) dt

]2]
.

It may be shown that ψ is the unique solution of the following

boundary value problem:

d2p+2ψ

dt2p+2
(t) = (−1)pλψ(t), t ∈ (0, 1),

diψ

dti
(0) = 0 for i = 0 and p+ 3 6 i 6 2p+ 1,

diψ

dti
(1) = 0 for i = 0 and 2 6 i 6 p+ 2.

We are not able to solve this problem explicitly.
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7.4 LAO for Ū2
p

The problem of LAO for Ū2
p is equivalent to solving the equation∫ 1

0

ψ′(u)2 du

=
1

λGγ̄p

[∫ 1

0

[∫ u

0

(u− t)p−1

(p− 1)!

(
ψ(t)−

∫ 1

0

ψ(v) dv

)
dt

]2
du

]
.

It may be shown that ψ is the unique solution of the following

boundary value problem:

d2p+2ψ

dt2p+2
(t) = (−1)pλ

[
ψ(t)−

∫ 1

0

ψ(v) dv

]
, t ∈ (0, 1),

diψ

dti
(0) = 0 for i = 0 and p+ 2 6 i 6 2p+ 1,

diψ

dti
(1) = 0 for i = 0, 3 6 i 6 p+ 2 and i = 2p+ 1.

This system may be solved by condidering the boundary value

problem satisfied by the function ψ̄:

d2p+2ψ̄

dt2p+2
(t) = (−1)pλψ̄(t), t ∈ (0, 1),

ψ̄(0) = ψ̄(1),

diψ̄

dti
(0) = 0 for p+ 2 6 i 6 2p+ 1,

diψ̄

dti
(1) = 0 for 3 6 i 6 p+ 2 and i = 2p+ 1∫ 1

0

ψ̄(s) ds = 0.

We are not able to solve this problem explicitly.


