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1 Settings

Let (W (t))t>0 and (β(t))t>0 be respectively standard Wiener pro-

cess started at 0 and standard Brownian bridge on [0, 1], and de-

note by

Wn(t) =

∫ t

0

(t− s)n

n!
dW (s)

and

βn(t) =

∫ t

0

(t− s)n

n!
dβ(s)

their respective n-fold primitives for any integer n > 0 (W0 = W ,

β0 = β).

Let us imbed Wn into the (n+ 1)-dimensional Gaussian process

Un = (W0,W1, . . . ,Wn)

and introduce the process (Un(t) |Un(1) = 0)06t61 we shall call

“bridge” associated with Un pinned at times 0 and 1 at the origin 0

in Rn+1.

Since (di/dti)Wn = Wn−i for 0 6 i 6 n, we shall only consider

the bridge (Wn(t) |Un(1) = 0)06t61.
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Referring to the classical representations for standard Brownian

bridge (β(t))06t61,

(W (t) |W (1) = 0)06t61 (conditioning)

(tW ( 1t − 1))06t61 (time-inversion)

(W (t)− tW (1))06t61 (random drift) ,

we have similar representations for Bn:

• Conditioning Wn

(Bn(t))06t61
law
= (Wn(t) |Un(1) = 0)06t61.

• Time-inversion

(Bn(t))0<t<1
law
=

(
t2n+1Wn

(1
t
− 1

))
0<t<1

law
=

(
(1− t)2n+1Wn

( t

1− t

))
0<t<1

.

• Random drift

(Bn(t))06t61
law
= (Wn(t)−

∑n
i=0 pn−i n(t)Wi(1))06t61,

where pin(t) =
(−1)i

i! tn+1(1− t)i
∑n−i

j=0

(
n+ j

n

)
(1− t)j .

The (pin)06i6n are the classical interpolation polynomials at

0 and 1 with degree 2n+ 1 such that

djpin
dtj

(0) = 0 and
djpin
dtj

(1) = δij for 0 6 j 6 n.

• Conditioning βn and random drift

(Bn(t))06t61
law
= (βn(t) |β1(1) = . . . = βn(1) = 0)06t61

law
= (βn(t)−

∑n
i=1 pn−i n(t)βi(1))06t61.



Bridges of certain Wiener integrals 4'

&

$

%

2 Prediction property

Set Bnℓ(t) = (W (t) |Un(ℓ) = 0), 0 6 t 6 ℓ (bridge with length ℓ).

Theorem 2.1 Fix an instant t0 ∈ (0, 1). We have for 0 6 t 6
1− t0:

Bn(t+ t0) = B̃n 1−t0(t) +
n∑

i=0

pin(t0; t+ t0)
diBn

dti
(t0)

where B̃n 1−t0 is a copy of the process Bn 1−t0 which is independent

of (Bn(t))06t6t0 , and

pin(t0; t) =
1

i!

(
1− t

1− t0

)n+1

(t− t0)
i
n−i∑
j=0

(
n+ j

n

)(
t− t0
1− t0

)j

are the interpolation polynomials at t0 and 1 such that

djpin
dtj

(t0; t0) = δij and
djpin
dtj

(t0; 1) = 0 for 0 6 j 6 n.
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3 Boundary value problems

We consider the following differential equation:

d2n+2f

dx2n+2
(x) = (−1)n+1g(x), x ∈ (0, 1)

(where g is any given continuous function defined on [0, 1]) subject

to different types of boundary value conditions:

(I)
dif

dxi
(0) = 0 for 0 6 i 6 n;

(II)
dif

dxi
(1) = 0 for 0 6 i 6 n;

(III)
dif

dxi
(1) = 0 for n+ 1 6 i 6 2n+ 1;

(IV)
dif

dxi
(1) = 0 for i = n and n+ 2 6 i 6 2n+ 1.

Theorem 3.1 The unique solution of each boundary value prob-

lem (I–II), (I–III) and (I–IV) is given by

f(x) =

∫ 1

0

G(x, y)g(y) dy, x ∈ [0, 1]

where G is respectively one of the following Green functions GBn ,

GWn and Gβn :

(I–II): GBn(x, y) = E[Bn(x)Bn(y)];

(I–III): GWn(x, y) = E[Wn(x)Wn(y)];

(I–IV): Gβn(x, y) = E[βn(x)βn(y)],

for (x, y) ∈ [0, 1]× [0, 1].
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Let i be an integer such that 0 6 i 6 n and set

Wn(t) = [Wn(t) |Wi(1) = 0]
law
= Wn(t)−

E[Wn(t)Wi(1)]

E[Wi(1)2]
Wi(1).

We have βn
law
= W0n.

Let us consider the following boundary value conditions:

(I)
dif

dxi
(0) = 0 for 0 6 i 6 n;

(V)
djf

dxi
(1) = 0 for j ∈ {n− i, n+ 1, n+ 2, . . . , 2n+ 1}\{n+ i+ 1}.

Theorem 3.2 The unique solution of the boundary value problem

(I–V) is given by

f(x) =

∫ 1

0

GWin(x, y)g(y) dy, x ∈ [0, 1]

where

GWin(x, y) = E[Win(x)Win(y)] for (x, y) ∈ [0, 1]× [0, 1].
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4 The distribution of the maximum

Let us introduce the probability measure Qx defined by the fol-

lowing Cameron-Martin-Girsanov density with respect to P:

dQ x
wn(x)

dPwn(x)

∣∣∣∣
Ft

= exp
[
− (n+ 1

2 )
(2n)! 2

n! 2
x2[(t+ 1)2n+1 + 1]

−(2n+ 1)!x
n∑

i=0

(−1)i
(t+ 1)n−i

(n− i)!
Wi(t)

]
where wn(x) = −(2n + 1)!x

(
1

(n+1)! ,
1

(n+2)! , . . . ,
1

(2n+1)!

)
and

(Ft)t>0 is the Brownian filtration.

Write τ0 = min {t > 0 : Wn(t) = 0} (with min ∅ = +∞) for

the first hitting time through 0 for Wn.

Theorem 4.1 The distribution function of max06t61 Bn(t) is ex-

pressible by means of the law of τ0 as follows:

P
{

max
06t61

Bn(t) < x
}
= Q x

wn(x)
{τ0 = +∞}

= exp
[
− (n+ 1

2 )
(2n)! 2

n! 2 x2
]

×Ewn(x)

{
exp

[
− (n+ 1

2 )
(2n)! 2

n! 2
x2(τ0 + 1)2n+1

−(2n+ 1)!x
n−1∑
i=0

(−1)i
(τ0 + 1)n−i

(n− i)!
Wi(τ0)

]}
.

In particular,

P
{

max
06t61

B1(t) < x
}

= 1− e−6x2E(−3x,−x)

{
exp

[
−6x2(τ0 + 1)3 − 6x(τ0 + 1)W0(τ0)

] }
,

P
{

max
06t61

β(t) < x
}
= 1− e−x2

E−x

{
e−

1
2x

2τ0
}
= 1− e−2x2

.
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Theorem 4.2 The distribution function of max06t61 βn(t) is

given by

P
{

max
06t61

βn(t) < x
}
=

∫
Rn

Q x
γn(x,ω){τ0 = +∞}pn(1; dω)

where the components of point γn(x, ω) are given by
γn(x, ω)0 =

n∑
j=1

αnn−j nωj −
(2n+ 1)!

(n+ 1)!
x,

γn(x, ω)i =
n∑

j=i

αn−i n−j nωj −
(2n+ 1)!

(n+ 1 + i)!
x if 1 6 i 6 n,

with

αijn = (−1)j
i!

j!

(
2n+ 1− j

i− j

)
for 0 6 j 6 i 6 n

and

pn(1; dω) = P{(β1(1), . . . , βn(1)) ∈ dω1 . . . dωn}.

Theorem 4.3

pn(1;ω) =
An

(2π)(n+1)/2
exp

[
− 1

2

∑
16i,j6n

gijωiωj

]
where the matrix (gij)06i,j6n is the inverse of the matrix

(γij)06i,j6n with

γij =
1

i! j! (i+ j + 1)
and An = (

∏2n+1
i=n+1 i!/

∏n
i=1 i!)

1
2 .
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Write

τx = inf{t > 0 : Wn(t) /∈ (−x, x)}, x > 0

for the first exit time from the interval (−x, x) for Wn, and

pn(t; dw) = P{Un(t) ∈ dw}, w = (w0, w1, . . . , wn),

( resp. qn,x(t; dw) = P{Un(t) ∈ dw, t < τx})

for the density of the process (Un(t))t>0 (resp. killed process

(Un(t))06t<τx).

Theorem 4.4 The distribution functions of max06t61 |Bn(t)|
and max06t61 |βn(t)| can be written for x > 0 as follows:

P
{

max
06t61

|Bn(t)| < x
}

=
qn,x(1;0)

pn(1;0)
,

P
{

max
06t61

|βn(t)| < x
}

=
√
2π

∫
Rn

qn,x(1; 0, dw1, . . . , dwn).
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5 Goodness-of-fit testing

Let X1, X2, . . . , XN , . . . be independent random variables with

continuous distribution function F and write

FN (x) =
1

N

N∑
i=1

1l{Xi<x}

for the usual empirical distribution function of the sample

(X1, X2, . . . , XN ). The random variables Ui = F (Xi), i > 1, are

independent and uniformly distributed on (0, 1). Let

GN (x) =
1

N

N∑
i=1

1l{Ui<x}.

We have FN = GN◦F . For testing the null hypothesisH0: F = F0

where F0 is an a priori specified continuous distribution function,

we introduce

Fn,N (x) =

∫ x

−∞

[F0(x)− F0(y)]
n

n!
dFN (y),

Fn,0(x) =

∫ x

−∞

[F0(x)− F0(y)]
n

n!
dF0(y) =

F0(x)
n+1

(n+ 1)!
,

Fn,N (x) =
√
N [Fn,N (x)− Fn,0(x)],

and

Gn,N (t) =

∫ t

0

(t− s)n

n!
dGN (s) =

1

N

N∑
i=1

[(t− Ui)
+]n

n!
,

Gn,0(t) =

∫ t

0

(t− s)n

n!
ds =

tn+1

(n+ 1)!
,

Gn,N (t) =
√
N [Gn,N (t)−Gn,0(t)].

We have under H0: Fn,N = Gn,N ◦ F0 a.s.
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Let us define the following statistics:

T 1
n,N = sup

−∞<x<+∞
Fn,N (x),

T 2
n,N = sup

−∞<x<+∞
|Fn,N (x)|,

T 3
n,N =

∫ +∞

−∞
Fn,N (x) dF0(x).

We have under H0:

T 1
n,N = max

06t61
Gn,N (t) a.s.,

T 2
n,N = max

06t61
|Gn,N (t)| a.s.,

T 3
n,N =

∫ 1

0

Gn,N (t) dt = Gn+1,N (1) a.s.

law
=

√
N

(n+ 1)!

[
1

N

N∑
i=1

Un+1
i − 1

n+ 2

]
.

Theorem 5.1 The process Gn,N converges weakly towards βn as

N −→ +∞, and then, under H0,

T 1
n,N

law−→
N→∞

max
06t61

βn(t),

T 2
n,N

law−→
N→∞

max
06t61

|βn(t)|,

T 3
n,N

law−→
N→∞

βn+1(1).

Particular case n = 1:

• Henze & Nikitin: large deviations results, computation of the

Bahadur efficiency under H1 : F = F (·+ θ), θ > 0.

• Schmid & Trede, Hawkins & Kochar: stochastic dominance.
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We define in a similar manner:

F̃n,N (x) =

∫ x

−∞

[F0(x)− F0(y)]
n

n!
dFN (y)

−
n∑

j=0

pn−j n(F0(x))

∫ x

−∞

[1− F0(y)]
j

j!
dFN (y),

F̃n,0(x) =

∫ x

−∞

[F0(x)− F0(y)]
n

n!
dF0(y)

−
n∑

j=0

pn−j n(F0(x))

∫ x

−∞

[1− F0(y)]
j

j!
dF0(y),

F̃n,N (x) =
√
N [F̃n,N (x)− F̃n,0(x)],

and

G̃n,N (t) =

∫ t

0

(t− s)n

n!
dGN (s)−

n∑
j=0

pn−j n(t)

∫ 1

0

(1− s)j

j!
dGN (s)

=
1

N

N∑
i=1

[(t− Ui)
+]n

n!
−

n∑
j=0

pn−j n(t)
( 1

N

N∑
i=1

(1− Ui)
j

j!

)
,

G̃n,0(t) =

∫ t

0

(t− s)n

n!
ds−

n∑
j=0

pn−j n(t)

∫ 1

0

(1− s)j

j!
ds = 0,

G̃n,N (t) =
√
N [G̃n,N (t)− G̃n,0(t)].

We have under H0: F̃n,N = G̃n,N ◦ F0 a.s.
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Let us define the new following statistics:

T̃ 1
n,N = sup

−∞<x<+∞
F̃n,N (x),

T̃ 2
n,N = sup

−∞<x<+∞
|F̃n,N (x)|,

T̃ 3
n,N =

∫ +∞

−∞
F̃n,N (x) dF0(x).

We have under H0:

T̃ 1
n,N = max

06t61
G̃n,N (t) a.s.,

T̃ 2
n,N = max

06t61
|G̃n,N (t)| a.s.,

T̃ 3
n,N =

∫ 1

0

G̃n,N (t) dt a.s.

Theorem 5.2 The process Gn,N converges weakly towards Bn as

N −→ +∞, and then, under H0,

T̃ 1
n,N

law−→
N→∞

max
06t61

Bn(t),

T̃ 2
n,N

law−→
N→∞

max
06t61

|Bn(t)|,

T̃ 3
n,N

law−→
N→∞

∫ 1

0

Bn(s) ds.


