Some stochastic processes related to the

1D-polyharmonic differential operator

Or

"My favorite processes"

Aimé LACHAL

Institut Camille Jordan
Université de Lyon, INSA de Lyon (France)

Introduction

- Harmonic operator (Laplacian): $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}$

Introduction

- Harmonic operator (Laplacian): $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}$
- Polyharmonic operator (iterated Laplacian): $\Delta^{n}=\left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}\right)^{n}$

Introduction

- Harmonic operator (Laplacian): $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}$
- Polyharmonic operator (iterated Laplacian): $\Delta^{n}=\left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}\right)^{n}$
- 1D-polyharmonic operator $(d=1)$:
$\frac{d^{2 n}}{d^{2 n} x_{1}}$

Introduction

- Harmonic operator (Laplacian): $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}$
- Polyharmonic operator (iterated Laplacian): $\Delta^{n}=\left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}\right)^{n}$
- 1D-polyharmonic operator $(d=1)$:
$\frac{d^{2 n}}{d^{2 n} x_{1}} \nearrow \nearrow$ temporal operator $\frac{d^{2 n}}{d^{2 n} t} \longrightarrow$ Gaussian processes

Introduction

- Harmonic operator (Laplacian): $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}$
- Polyharmonic operator (iterated Laplacian): $\Delta^{n}=\left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial^{2} x_{i}}\right)^{n}$
- 1D-polyharmonic operator $(d=1)$:
$\frac{d^{2 n}}{d^{2 n} x_{1}}{ }^{\nearrow}$ temporal operator $\frac{d^{2 n}}{d^{2 n} t} \longrightarrow$ Gaussian processes

spatial operator $\frac{d^{2 n}}{d^{2 n} x} \longrightarrow$ "pseudo"-diffusion processes

1 The Laplacian Δ
1.1 Temporal operator $d^{2} / d t^{2}$

1 The Laplacian Δ

1.1 Temporal operator $d^{2} / d t^{2}$

- Related processes: linear Brownian motion, Brownian bridge ... (viewed as Gaussian processes)

1 The Laplacian Δ
1.1 Temporal operator $d^{2} / d t^{2}$

- Related processes: linear Brownian motion, Brownian bridge ...
(viewed as Gaussian processes)
- Connection: the covariance functions (on $[0,1]$)

$$
c(s, t)=\mathbb{E}[W(s) W(t)]=s \wedge t \quad \text { or } \quad \mathbb{E}[B(s) B(t)]=s \wedge t-s t
$$

- Related processes: linear Brownian motion, Brownian bridge ... (viewed as Gaussian processes)
- Connection: the covariance functions (on $[0,1]$)

$$
c(s, t)=\mathbb{E}[W(s) W(t)]=s \wedge t \quad \text { or } \quad \mathbb{E}[B(s) B(t)]=s \wedge t-s t
$$

are Green functions of the equation (φ is given)

$$
\frac{d^{2} f}{d t^{2}}(t)=-\varphi(t)
$$

with various boundary values at $t=0$ and $t=1$:

$$
f(0)=\frac{d f}{d t}(1)=0 \quad \text { or } \quad f(0)=f(1)=0
$$

- Related processes: linear Brownian motion, Brownian bridge ... (viewed as Gaussian processes)
- Connection: the covariance functions (on $[0,1]$)

$$
c(s, t)=\mathbb{E}[W(s) W(t)]=s \wedge t \quad \text { or } \quad \mathbb{E}[B(s) B(t)]=s \wedge t-s t
$$

are Green functions of the equation (φ is given)

$$
\frac{d^{2} f}{d t^{2}}(t)=-\varphi(t)
$$

with various boundary values at $t=0$ and $t=1$:
\longrightarrow Solution:

$$
f(0)=\frac{d f}{d t}(1)=0 \quad \text { or } \quad f(0)=f(1)=0
$$

$$
f(t)=\int_{0}^{1} c(s, t) \varphi(s) d s
$$

- Example of use: prediction, construction of bridges ...

1 The Laplacian Δ
1.2 Spatial operator $d^{2} / d x^{2}$

1 The Laplacian Δ

1.2 Spatial operator $d^{2} / d x^{2}$

- Related processes: linear Brownian motion (with possible absorption, reflection, elasticity or killing ... viewed as diffusion processes)

1 The Laplacian Δ

- Related processes: linear Brownian motion (with possible absorption, reflection, elasticity or killing ... viewed as diffusion processes)
- Connection: the density $p(t ; x, y)=\mathbb{P}_{x}\{W(t) \in d y\}$ is a solution of the Kolmogorov and Fokker-Planck equations

$$
\frac{\partial p}{\partial t}(t ; x, y)=\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}}(t ; x, y)=\frac{1}{2} \frac{\partial^{2} p}{\partial y^{2}}(t ; x, y)
$$

1 The Laplacian Δ

- Related processes: linear Brownian motion (with possible absorption, reflection, elasticity or killing ... viewed as diffusion processes)
- Connection: the density $p(t ; x, y)=\mathbb{P}_{x}\{W(t) \in d y\}$ is a solution of the Kolmogorov and Fokker-Planck equations

$$
\frac{\partial p}{\partial t}(t ; x, y)=\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}}(t ; x, y)=\frac{1}{2} \frac{\partial^{2} p}{\partial y^{2}}(t ; x, y)
$$

- Example of use: computation of the expectation of various functionals of the processes when it starts at x (first hitting times, sojourn times...)

2 The iterated Laplacian Δ^{n} 2.1 Temporal operator $d^{2 n} / d t^{2 n}$

2 The iterated Laplacian Δ^{n} 2.1 Temporal operator $d^{2 n} / d t^{2 n}$

- Related processes: iterated integrals of Brownian motion or Brownian bridge, bridges of iterated integrals of Brownian motion ...

$$
X(t)=\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} d W(s) \quad \text { or } \quad \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} d B(s) \ldots
$$

2 The iterated Laplacian Δ^{n} 2.1 Temporal operator $d^{2 n} / d t^{2 n}$

- Related processes: iterated integrals of Brownian motion or Brownian bridge, bridges of iterated integrals of Brownian motion ...

$$
X(t)=\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} d W(s) \quad \text { or } \quad \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} d B(s) \ldots
$$

- Connection: the covariance functions $c(s, t)=\mathbb{E}[X(s) X(t)]$ (on $[0,1]$) are Green functions of the equation

$$
\frac{d^{2 n} f}{d t^{2 n}}(t)=(-1)^{n} \varphi(t)
$$

with various boundary values at $t=0$ and $t=1$: for certain i 's,

$$
\begin{array}{|l|}
\hline \frac{d^{i} f}{d t^{i}}(0)=0 \\
\hline
\end{array} \quad \text { or/and } \quad \frac{d^{i} f}{d t^{i}}(1)=0
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: a) integrated Brownian motion (the so-called Langevin process)

$$
X(t)=\int_{0}^{t} W(s) d s
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: a) integrated Brownian motion (the so-called Langevin process)

$$
X(t)=\int_{0}^{t} W(s) d s
$$

Historical context: Langevin equation (1908)
\longrightarrow Modelling the displacements of a harmonic oscillator excited by a white noise \dot{W}

$$
m \frac{d^{2} X}{d t^{2}}(t)-f \frac{d X}{d t}(t)+m \omega^{2} X(t)=(k T \beta) \dot{W}(t)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: a) integrated Brownian motion (the so-called Langevin process)

$$
X(t)=\int_{0}^{t} W(s) d s
$$

- Connection: the covariance function (on $[0,1]$)

$$
c_{X}(s, t)=\mathbb{E}[X(s) X(t)]=\frac{1}{6}[s \wedge t]^{2}[3(s \vee t)-s \wedge t]
$$

is the Green function of the equation

$$
\frac{d^{4} f}{d t^{4}}(t)=\varphi(t)
$$

with boundary values

$$
f(0)=\frac{d f}{d t}(0)=0 \quad \text { and } \quad \frac{d^{2} f}{d t^{2}}(1)=\frac{d^{3} f}{d t^{3}}(1)=0
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: b) integrated Brownian bridge

$$
Y(t)=\int_{0}^{t} B(s) d s=(X(t) \mid W(1)=0)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: b) integrated Brownian bridge

$$
Y(t)=\int_{0}^{t} B(s) d s=(X(t) \mid W(1)=0)
$$

- Connection: the covariance function (on $[0,1]$)

$$
c_{Y}(s, t)=\frac{1}{6}[s \wedge t]^{2}[3(s \vee t)-s \wedge t]-\frac{1}{4} s^{2} t^{2}
$$

is the Green function of the equation

$$
\frac{d^{4} f}{d t^{4}}(t)=\varphi(t)
$$

with boundary values

$$
f(0)=\frac{d f}{d t}(0)=0 \quad \text { and } \quad \frac{d f}{d t}(1)=\frac{d^{3} f}{d t^{3}}(1)=0
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: c) bridge of integrated Brownian motion

$$
U(t)=\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=0\right)=(X(t) \mid X(1)=0)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: c) bridge of integrated Brownian motion

$$
U(t)=\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=0\right)=(X(t) \mid X(1)=0)
$$

- Connection: the covariance function (on $[0,1]$)

$$
c_{U}(s, t)=\frac{1}{6}[s \wedge t]^{2}[3(s \vee t)-s \wedge t]-\frac{1}{12} s^{2} t^{2}(3-s)(3-t)
$$

is the Green function of the equation

$$
\frac{d^{4} f}{d t^{4}}(t)=\varphi(t)
$$

with boundary values

$$
f(0)=\frac{d f}{d t}(0)=0 \quad \text { and } \quad f(1)=\frac{d^{2} f}{d t^{2}}(1)=0
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: d) another bridge of integrated Brownian motion

$$
Z(t)=\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right)=(X(t) \mid X(1)=W(1)=0)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

- Related processes: d) another bridge of integrated Brownian motion

$$
Z(t)=\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right)=(X(t) \mid X(1)=W(1)=0)
$$

- Connection: the covariance function (on $[0,1]$)
$c_{Z}(s, t)=\mathbb{E}[Z(s) Z(t)]=\frac{1}{6}[s \wedge t]^{2}[1-s \vee t]^{2}[3(s \vee t)-s \wedge t-2 s t]$
is the Green function of the equation

$$
\frac{d^{4} f}{d t^{4}}(t)=\varphi(t)
$$

with boundary values

$$
f(0)=f(1)=0 \quad \text { and } \quad \frac{d f}{d t}(0)=\frac{d f}{d t}(1)=0
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$
Motivation
A problem in elasticity : deformations of embedded beams, plates ...
\longrightarrow Lauricella problem

$$
\begin{array}{rlrl}
\Delta^{2} f & =\varphi & & \text { on } \mathcal{D} \\
f & =\psi & & \text { on } \partial \mathcal{D} \\
\frac{\partial f}{\partial n} & =\chi & & \text { on } \partial \mathcal{D} \\
\hline
\end{array}
$$

\longrightarrow Aim: find a probabilistic representation for the solution f

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

Bridges and polynomial drift

$$
\begin{aligned}
Z(t) & =\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right) \\
& =(X(t) \mid X(1)=W(1)=0)
\end{aligned}
$$

For $0 \leq t \leq 1$:

$$
Z(t)=X(t)-H(t) X(1)-K(t) W(1)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

Bridges and polynomial drift

$$
\begin{aligned}
Z(t) & =\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right) \\
& =(X(t) \mid X(1)=W(1)=0)
\end{aligned}
$$

For $0 \leq t \leq 1$:

$$
Z(t)=X(t)-H(t) X(1)-K(t) W(1)
$$

where the functions H and K are the interpolation Hermite polynomials which are solutions of

$$
\frac{d^{4} H}{d t^{4}}(t)=\frac{d^{4} K}{d t^{4}}(t)=0
$$

with boundary values

$$
\left\{\begin{array} { l }
{ H (0) = \frac { d H } { d t } (0) = 0 } \\
{ H (1) = 1 , \quad \frac { d H } { d t } (1) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
K(0)=\frac{d K}{d t}(0)=0 \\
K(1)=0, \quad \frac{d K}{d t}(1)=1
\end{array}\right.\right.
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

Prediction

$$
\begin{aligned}
Z(t) & =\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right) \\
& =(X(t) \mid X(1)=W(1)=0)
\end{aligned}
$$

For $t_{0} \leq t \leq 1$:

$$
Z(t)=\tilde{Z}_{t_{0}}\left(t-t_{0}\right)+H_{t_{0}}(t) Z\left(t_{0}\right)+K_{t_{0}}(t) \frac{d Z}{d t}\left(t_{0}\right)
$$

2 The iterated Laplacian Δ^{2} 2.2 Temporal operator $d^{4} / d t^{4}$

Prediction

$$
\begin{aligned}
Z(t) & =\left(\int_{0}^{t} W(s) d s \mid \int_{0}^{1} W(s) d s=W(1)=0\right) \\
& =(X(t) \mid X(1)=W(1)=0)
\end{aligned}
$$

For $t_{0} \leq t \leq 1$:

$$
Z(t)=\tilde{Z}_{t_{0}}\left(t-t_{0}\right)+H_{t_{0}}(t) Z\left(t_{0}\right)+K_{t_{0}}(t) \frac{d Z}{d t}\left(t_{0}\right)
$$

where $\tilde{Z}_{t_{0}}$ is a bridge of length $1-t_{0}$ and the functions $H_{t_{0}}$ and $K_{t_{0}}$ are the interpolation Hermite polynomials which are solutions of

$$
\frac{d^{4} H_{t_{0}}}{d t^{4}}(t)=\frac{d^{4} K_{t_{0}}}{d t^{4}}(t)=0
$$

with boundary values

$$
\left\{\begin{array} { l }
{ H _ { t _ { 0 } } (t _ { 0 }) = 1 , \frac { d H _ { t _ { 0 } } } { d t } (t _ { 0 }) = 0 } \\
{ H _ { t _ { 0 } } (1) = \frac { d H _ { t _ { 0 } } } { d t } (1) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
K_{t_{0}}\left(t_{0}\right)=0, \frac{d K_{t_{0}}}{d t}\left(t_{0}\right)=1 \\
K_{t_{0}}(1)=\frac{d K_{t_{0}}}{d t}(1)=0
\end{array}\right.\right.
$$

2 The iterated Laplacian Δ^{n} 2.3 Spatial operator $d^{2 n} / d x^{2 n}$

2 The iterated Laplacian Δ^{n} 2.3 Spatial operator $d^{2 n} / d x^{2 n}$

- Connection: let us introduce the pseudo-Markov kernel $p(t ; x)$ which is a solution of the heat-type equation of high order $2 n>2$

$$
\frac{\partial p}{\partial t}(t ; x)=(-1)^{n+1} \frac{\partial^{2 n} p}{\partial x^{2 n}}(t ; x) \quad \text { and } p(0 ; x)=\delta(x)
$$

2 The iterated Laplacian Δ^{n} 2.3 Spatial operator $d^{2 n} / d x^{2 n}$

- Connection: let us introduce the pseudo-Markov kernel $p(t ; x)$ which is a solution of the heat-type equation of high order $2 n>2$

$$
\frac{\partial p}{\partial t}(t ; x)=(-1)^{n+1} \frac{\partial^{2 n} p}{\partial x^{2 n}}(t ; x) \quad \text { and } p(0 ; x)=\delta(x)
$$

- Related processes: pseudo-Brownian motions driven by a signed measure (which is NOT a probability measure)

2 The iterated Laplacian Δ^{n} 2.3 Spatial operator $d^{2 n} / d x^{2 n}$

- Connection: let us introduce the pseudo-Markov kernel $p(t ; x)$ which is a solution of the heat-type equation of high order $2 n>2$

$$
\frac{\partial p}{\partial t}(t ; x)=(-1)^{n+1} \frac{\partial^{2 n} p}{\partial x^{2 n}}(t ; x) \quad \text { and } p(0 ; x)=\delta(x)
$$

- Related processes: pseudo-Brownian motions driven by a signed measure (which is NOT a probability measure)
- Other related processes: iterated Brownian motions

$$
X(t)=B_{B_{B^{3}}^{2}}^{1} \quad \text { where } B^{1}, \ldots, B_{B^{n}(t)}^{n} \text { are independent reflected } B M s
$$

The probability density $p(t ; x)=\mathbb{P}\{X(t) \in d x\} / d x$ is a solution of

$$
\frac{\partial p}{\partial t}(t ; x)=\frac{1}{2^{2^{n}-1}} \frac{\partial^{2^{n}} p}{\partial x^{2^{n}}}(t ; x)
$$

3 The pseudo-Brownian motion

3.1 Construction

3 The pseudo-Brownian motion

Properties of the heat-type kernel $p(t ; x)$

- It is characterized by $\int_{-\infty}^{+\infty} e^{i u x} p(t ; x) d x=e^{-t u^{2 n}}$
- It satisfies $\int_{-\infty}^{+\infty} p(t ; x) d x=1$ and $\int_{-\infty}^{+\infty} x^{2} p(t ; x) d x=0$

3 The pseudo-Brownian motion

Properties of the heat-type kernel $p(t ; x)$

- It is characterized by $\int_{-\infty}^{+\infty} e^{i u x} p(t ; x) d x=e^{-t u^{2 n}}$
- It satisfies $\int_{-\infty}^{+\infty} p(t ; x) d x=1$ and $\int_{-\infty}^{+\infty} x^{2} p(t ; x) d x=0$
- It defines a pseudo-Markov process $(X(t))_{t \geq 0}$ by

$$
\mathbb{P}_{x}\{X(t) \in d y\} \stackrel{\text { def }}{=} p(t ; x-y) d y
$$

and for $0=t_{0}<t_{1}<\cdots<t_{m}$ and $x_{0}=x$:

$$
\mathbb{P}_{x}\left\{X\left(t_{1}\right) \in d x_{1}, \ldots, X\left(t_{m}\right) \in d x_{m}\right\} \stackrel{\text { def }}{=} \prod_{i=1}^{m} p\left(t_{i}-t_{i-1} ; x_{i-1}-x_{i}\right) d x_{i}
$$

3.2 Some functionals

3 The pseudo-Brownian motion

3.2 Some functionals

- Sojourn time in an interval

$$
\begin{gathered}
T_{a}(t)=\text { measure }\{s \in[0, t]: X(s) \gtrless a\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \gtrless a\}} d s \\
T_{a b}(t)=\text { measure }\{s \in[0, t]: X(s) \in[a, b]\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \in[a, b]\}} d s
\end{gathered}
$$

3 The pseudo-Brownian motion

3.2 Some functionals

- Sojourn time in an interval

$$
\begin{gathered}
T_{a}(t)=\text { measure }\{s \in[0, t]: X(s) \gtrless a\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \gtrless a\}} d s \\
T_{a b}(t)=\text { measure }\{s \in[0, t]: X(s) \in[a, b]\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \in[a, b]\}} d s
\end{gathered}
$$

- Maximum/minimum functionals

$$
M(t)=\max _{0 \leq s \leq t} X(s), \quad m(t)=\min _{0 \leq s \leq t} X(s)
$$

3 The pseudo-Brownian motion

- Sojourn time in an interval

$$
\begin{gathered}
T_{a}(t)=\text { measure }\{s \in[0, t]: X(s) \gtrless a\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \gtrless a\}} d s \\
T_{a b}(t)=\text { measure }\{s \in[0, t]: X(s) \in[a, b]\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \in[a, b]\}} d s
\end{gathered}
$$

- Maximum/minimum functionals

$$
M(t)=\max _{0 \leq s \leq t} X(s), \quad m(t)=\min _{0 \leq s \leq t} X(s)
$$

- First hitting/exit time of an interval

$$
\begin{gathered}
\tau_{a}=\inf \{t \geq 0: X(t)<a\} \\
\tau_{a b}=\inf \{t \geq 0: X(t) \notin[a, b]\}
\end{gathered}
$$

3 The pseudo-Brownian motion

- Sojourn time in an interval

$$
\begin{gathered}
T_{a}(t)=\text { measure }\{s \in[0, t]: X(s) \gtrless a\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \gtrless a\}} d s \\
T_{a b}(t)=\text { measure }\{s \in[0, t]: X(s) \in[a, b]\}=\int_{0}^{t} \mathbb{1}_{\{X(s) \in[a, b]\}} d s
\end{gathered}
$$

- Maximum/minimum functionals

$$
M(t)=\max _{0 \leq s \leq t} X(s), \quad m(t)=\min _{0 \leq s \leq t} X(s)
$$

- First hitting/exit time of an interval

$$
\begin{gathered}
\tau_{a}=\inf \{t \geq 0: X(t) \geq a\} \\
\tau_{a b}=\inf \{t \geq 0: X(t) \notin[a, b]\}
\end{gathered}
$$

\longrightarrow Problems: determine the pseudo-distributions of $T_{a}(t), T_{a b}(t)$, $M(t), m(t), \tau_{a}, \tau_{a b} \ldots$

3 The pseudo-Brownian motion

a) Pseudo-distribution of the sojourn time $T_{a}(t) \quad T_{a}(t)=\int_{0}^{t} \mathbb{1}_{\{X(s)>a\}} d s$

Set $\varphi(t ; x)=\mathbb{E}_{x}\left[e^{-\mu T_{a}(t)} f(X(t))\right] \quad$ (Feynman-Kac functional)

$$
\stackrel{\text { def }}{=} \lim _{m \rightarrow \infty} \mathbb{E}_{x}\left[e^{-\frac{t}{m} \sum_{k=0}^{m} \mathbb{1}_{\{X(k t / m)>a\}}} f(X(t))\right]
$$

The function φ is a solution of the PDE

$$
\frac{\partial \varphi}{\partial t}=(-1)^{n+1} \frac{\partial^{2 n} \varphi}{\partial x^{2 n}}-f \varphi
$$

3 The pseudo-Brownian motion

a) Pseudo-distribution of the sojourn time $T_{a}(t) \quad T_{a}(t)=\int_{0}^{t} \mathbb{1}_{\{X(s)>a\}} d s$

Set $\varphi(t ; x)=\mathbb{E}_{x}\left[e^{-\mu T_{a}(t)} f(X(t))\right] \quad$ (Feynman-Kac functional)

$$
\stackrel{\text { def }}{=} \lim _{m \rightarrow \infty} \mathbb{E}_{x}\left[e^{-\frac{t}{m} \sum_{k=0}^{m} \mathbb{1}_{\{X(k t / m)>a\}}} f(X(t))\right]
$$

The function φ is a solution of the PDE

$$
\frac{\partial \varphi}{\partial t}=(-1)^{n+1} \frac{\partial^{2 n} \varphi}{\partial x^{2 n}}-f \varphi
$$

Set $\quad \Phi(x)=\int_{0}^{+\infty} e^{-\lambda t} \mathbb{E}_{x}\left[e^{-\mu T_{a}(t)} f(X(t))\right] d t$
The function Φ is a solution of the differential equation

$$
(-1)^{n+1} \frac{d^{2 n} \Phi}{d x^{2 n}}= \begin{cases}(\lambda+\mu) \Phi-f & \text { on }(a,+\infty) \\ \lambda \Phi-f & \text { on }(-\infty, a)\end{cases}
$$

3 The pseudo-Brownian motion

\longrightarrow Solution
$T_{a}(t)=\int_{0}^{t} \mathbb{1}_{\{X(s)>a\}} d s$

- The equation can be explicitly solved (involving Vandemonde algebra)
- The iterated Laplace transform can be inverted (involving the Mittag-Leffler function)
\longrightarrow Pseudo-distribution of $\left(T_{a}(t), X(t)\right)$ under \mathbb{P}_{x}
(V. Cammarota \& A. L., EJP 2010 and SPA 2011)

3 The pseudo-Brownian motion

\longrightarrow Solution

$T_{a}(t)=\int_{0}^{t} \mathbb{1}_{\{X(s)>a\}} d s$

- The equation can be explicitly solved (involving Vandemonde algebra)
- The iterated Laplace transform can be inverted (involving the Mittag-Leffler function)
\longrightarrow Pseudo-distribution of $\left(T_{a}(t), X(t)\right)$ under \mathbb{P}_{x}
(V. Cammarota \& A. L., EJP 2010 and SPA 2011)
- A historical result (Krylov, 1960)

The distribution of $T_{0}(t)$ is the Paul Lévy's arcsine law:

$$
\mathbb{P}_{0}\left\{T_{0}(t) \in d s\right\} / d s=\frac{\mathbb{1}_{(0, t)}(s)}{\pi \sqrt{s(t-s)}}
$$

- An unsolved problem: compute the distribution of $T_{a b}(t) \ldots$

3 The pseudo-Brownian motion

b) Pseudo-distribution of the first overshooting time τ_{a}

- Example $n=1 \quad \mathbb{P}_{x}\left\{W\left(\tau_{a}\right) \in d z\right\} / d z=\delta_{a}(z)$

3 The pseudo-Brownian motion

b) Pseudo-distribution of the first overshooting time τ_{a}

- Example $n=1 \quad \mathbb{P}_{x}\left\{W\left(\tau_{a}\right) \in d z\right\} / d z=\delta_{a}(z)$
- Example $n=2$ (Nishioka 1997)

$$
\begin{gathered}
\mathbb{P}_{x}\left\{X\left(\tau_{a}\right) \in d z\right\} / d z=\delta_{a}(z)-(x-a) \delta_{a}^{\prime}(z) \text { with }<\delta_{a}^{\prime}, \varphi>=-\varphi^{\prime}(a) \\
\mathbb{E}_{x}\left[f\left(X\left(\tau_{a}\right)\right)\right]=f(a)+(x-a) f^{\prime}(a)
\end{gathered}
$$

3 The pseudo-Brownian motion

b) Pseudo-distribution of the first overshooting time τ_{a}

- Example $n=1 \quad \mathbb{P}_{x}\left\{W\left(\tau_{a}\right) \in d z\right\} / d z=\delta_{a}(z)$
- Example $n=2$ (Nishioka 1997)

$$
\begin{gathered}
\mathbb{P}_{x}\left\{X\left(\tau_{a}\right) \in d z\right\} / d z=\delta_{a}(z)-(x-a) \delta_{a}^{\prime}(z) \text { with }<\delta_{a}^{\prime}, \varphi>=-\varphi^{\prime}(a) \\
\mathbb{E}_{x}\left[f\left(X\left(\tau_{a}\right)\right)\right]=f(a)+(x-a) f^{\prime}(a)
\end{gathered}
$$

- General result (A. L., EJP 2007)

$$
\mathbb{P}_{x}\left\{X\left(\tau_{a}\right) \in d z\right\} / d z=\sum_{p=0}^{n-1} \frac{(a-x)^{p}}{p!} \delta_{a}^{(p)}(z)
$$

with $\left\langle\delta_{a}^{(p)}, \varphi\right\rangle=(-1)^{p} \varphi^{(p)}(a)$

$$
x \mapsto \mathbb{P}_{x}\left\{X\left(\tau_{a}\right) \in d z\right\} / d z \text { is a } n \text {-harmonic function }
$$

3 The pseudo-Brownian motion

c) Distribution of the first exit time $\tau_{a b}$ (A. L., work in progress)

$$
\mathbb{P}_{x}\left\{X\left(\tau_{a b}\right) \in d z\right\} / d z=\sum_{p=0}^{n-1} H_{p}^{-}(x) \delta_{a}^{(p)}(z)+\sum_{p=0}^{n-1} H_{p}^{+}(x) \delta_{b}^{(p)}(z)
$$

where the functions H_{p}^{-}and $H_{p}^{+}, 0 \leq p \leq n-1$, are the interpolation Hermite polynomials such that $\frac{d^{q} H_{p}^{-}}{d x^{q}}(a)=\delta_{p q}, \frac{d^{q} H_{p}^{-}}{d x^{q}}(b)=0$ and $\frac{d^{q} H_{p}^{+}}{d x^{q}}(a)=0, \frac{d^{q} H_{p}^{+}}{d x^{q}}(b)=\delta_{p q}$ for $0 \leq q \leq n-1$.

$$
x \mapsto \mathbb{P}_{x}\left\{X\left(\tau_{a b}\right) \in d z\right\} / d z \text { is a } n \text {-harmonic function }
$$

3 The pseudo-Brownian motion

c) Distribution of the first exit time $\tau_{a b}$ (A. L., work in progress)

$$
\mathbb{P}_{x}\left\{X\left(\tau_{a b}\right) \in d z\right\} / d z=\sum_{p=0}^{n-1} H_{p}^{-}(x) \delta_{a}^{(p)}(z)+\sum_{p=0}^{n-1} H_{p}^{+}(x) \delta_{b}^{(p)}(z)
$$

where the functions H_{p}^{-}and $H_{p}^{+}, 0 \leq p \leq n-1$, are the interpolation Hermite polynomials such that $\frac{d^{q} H_{p}^{-}}{d x^{q}}(a)=\delta_{p q}, \frac{d^{q} H_{p}^{-}}{d x^{q}}(b)=0$ and $\frac{d^{q} H_{p}^{+}}{d x^{q}}(a)=0, \frac{d^{q} H_{p}^{+}}{d x^{q}}(b)=\delta_{p q}$ for $0 \leq q \leq n-1$.

$$
x \mapsto \mathbb{P}_{x}\left\{X\left(\tau_{a b}\right) \in d z\right\} / d z \text { is a } n \text {-harmonic function }
$$

- "Ruin pseudo-probabilities"

Set $\left\{\begin{array}{l}\tau_{b}^{+}=\inf \{t \geq 0: X(t)>b\} \\ \tau_{a}^{-}=\inf \{t \geq 0: X(t)<a\}\end{array}\right.$

$$
\mathbb{P}_{x}\left\{\tau_{a}^{-}<\tau_{b}^{+}\right\}=H_{0}^{-}(x) \text { and } \mathbb{P}_{x}\left\{\tau_{b}^{+}<\tau_{a}^{-}\right\}=H_{0}^{+}(x)
$$

4 The pseudo-random walk

An introduction

4 The pseudo-random walk
An introduction

Discrete Laplacian

$$
\begin{aligned}
\Delta_{\text {discrete }} f(x) & =\frac{1}{2}[f(x+1)-2 f(x)+f(x-1)] \\
\Longrightarrow \quad \Delta_{\text {discrete }}^{n} f(x) & =\frac{1}{2^{n}} \sum_{k=-n}^{n}(-1)^{k-1}\binom{2 n}{n+k} f(x+k)
\end{aligned}
$$

4 The pseudo-random walk
An introduction

Discrete Laplacian

$$
\begin{aligned}
\Delta_{\text {discrete }} f(x) & =\frac{1}{2}[f(x+1)-2 f(x)+f(x-1)] \\
\Longrightarrow \quad \Delta_{\text {discrete }}^{n} f(x) & =\frac{1}{2^{n}} \sum_{k=-n}^{n}(-1)^{k-1}\binom{2 n}{n+k} f(x+k)
\end{aligned}
$$

\longrightarrow viewed as a generator:

$$
\mathcal{G} f(x) \stackrel{\text { def }}{=} \Delta_{\text {discrete }}^{n} f(x)=\mathbb{E}_{x}\left[f\left(X_{1}\right)\right]-f(x)
$$

where X_{1} is the pseudo-random variable defined by

$$
\left\{\begin{array}{l}
\mathbb{P}\left\{X_{1}=k\right\}=\frac{(-1)^{k-1}}{2^{n}}\binom{2 n}{n+k} \text { for } 1 \leq|k| \leq n \\
\mathbb{P}\left\{X_{1}=0\right\}=1-\frac{1}{2^{n}}\binom{2 n}{n}
\end{array}\right.
$$

4 The pseudo-random walk An introduction

Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of independent identically distributed pseudo-random variables with the pseudo-distribution of X_{1} and set for any $k \geq 1$

$$
X_{k}=\xi_{1}+\cdots+\xi_{k}
$$

$\longrightarrow\left(X_{k}\right)_{k \geq 1}$ is a pseudo-random walk

4 The pseudo-random walk
Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of independent identically distributed pseudo-random variables with the pseudo-distribution of X_{1} and set for any $k \geq 1$

$$
\boldsymbol{X}_{k}=\xi_{1}+\cdots+\xi_{k}
$$

$\longrightarrow\left(X_{k}\right)_{k \geq 1}$ is a pseudo-random walk

Set

$$
B_{N}(t)=\frac{1}{N^{1 /(2 n)}} X_{[N t]}
$$

Limiting continuous pseudo-process:

$$
B_{N}(t) \underset{N \rightarrow+\infty}{\longrightarrow} B(t)
$$

$\longrightarrow(B(t))_{t \geq 0}$ is a pseudo-Brownian motion

THANK YOU

FOR YOUR ATTENTION!

$\mathcal{T H E} \mathcal{E N} \mathcal{D}$

