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(
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)n

• 1D-polyharmonic operator (d = 1):

d2n

d2nx1

↗ temporal operator
d2n

d2nt
−→ Gaussian processes

↘ spatial operator
d2n

d2nx
−→ “pseudo”-diffusion processes
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1 The Laplacian ∆ 1.1 Temporal operator d2/dt2

• Related processes: linear Brownian motion, Brownian bridge . . .
(viewed as Gaussian processes)

• Connection: the covariance functions (on [0, 1])

c(s, t)= E[W (s)W (t)]= s ∧ t or E[B(s)B(t)]= s ∧ t− st

are Green functions of the equation (φ is given)

d2f

dt2
(t) = −φ(t)

with various boundary values at t = 0 and t = 1:

f(0) =
df

dt
(1) = 0 or f(0) = f(1) = 0

−→ Solution: f(t) =

∫ 1

0
c(s, t)φ(s) ds

• Example of use: prediction, construction of bridges . . .
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• Related processes: linear Brownian motion (with possible absorp-
tion, reflection, elasticity or killing . . . viewed as diffusion processes)

• Connection: the density p(t;x, y) = Px{W (t) ∈ dy} is a solution
of the Kolmogorov and Fokker-Planck equations

∂p

∂t
(t;x, y) =

1

2

∂2p

∂x2
(t;x, y) =

1

2

∂2p

∂y2
(t;x, y)

• Example of use: computation of the expectation of various func-
tionals of the processes when it starts at x (first hitting times, sojourn
times . . . )
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• Related processes: iterated integrals of Brownian motion or Brow-
nian bridge, bridges of iterated integrals of Brownian motion . . .

X(t) =

∫ t

0

(t− s)n−1

(n− 1)!
dW (s) or

∫ t

0

(t− s)n−1

(n− 1)!
dB(s) . . .

• Connection: the covariance functions c(s, t) = E[X(s)X(t)] (on
[0, 1]) are Green functions of the equation

d2nf

dt2n
(t) = (−1)nφ(t)

with various boundary values at t = 0 and t = 1: for certain i’s,

dif

dti
(0) = 0 or/and

dif

dti
(1) = 0
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• Related processes: a) integrated Brownian motion (the so-called
Langevin process)

X(t) =

∫ t

0
W (s) ds

Historical context: Langevin equation (1908)

−→ Modelling the displacements of a harmonic oscillator excited
by a white noise Ẇ

m
d2X

dt2
(t) − f

dX

dt
(t) +mω2X(t) = (kTβ)Ẇ (t)
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Y (t) =
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0
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• Connection: the covariance function (on [0, 1])

cY (s, t) =
1

6
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U(t)=

(∫ t

0
W(s)ds

∣∣∣∣∫ 1

0
W(s)ds= 0

)
= (X(t) |X(1) = 0)

• Connection: the covariance function (on [0, 1])

cU (s, t) =
1

6
[s ∧ t]2 [3(s ∨ t) − s ∧ t] −

1

12
s2t2(3 − s)(3 − t)

is the Green function of the equation

d4f

dt4
(t) = φ(t)

with boundary values

f(0) =
df

dt
(0) = 0 and f(1) =

d2f

dt2
(1) = 0



2 The iterated Laplacian ∆2 2.2 Temporal operator d4/dt4

• Related processes: d) another bridge of integrated Brownian motion

Z(t)=

(∫ t

0
W(s)ds

∣∣∣∣∫ 1

0
W(s)ds=W(1)=0

)
= (X(t)|X(1)=W(1)=0)



2 The iterated Laplacian ∆2 2.2 Temporal operator d4/dt4

• Related processes: d) another bridge of integrated Brownian motion

Z(t)=

(∫ t

0
W(s)ds

∣∣∣∣∫ 1

0
W(s)ds=W(1)=0

)
= (X(t)|X(1)=W(1)=0)

• Connection: the covariance function (on [0, 1])

cZ(s, t) = E[Z(s)Z(t)] =
1

6
[s∧ t]2 [1− s∨ t]2 [3(s∨ t)− s∧ t− 2st]

is the Green function of the equation

d4f

dt4
(t) = φ(t)

with boundary values

f(0) = f(1) = 0 and
df

dt
(0) =

df

dt
(1) = 0



2 The iterated Laplacian ∆2 2.2 Temporal operator d4/dt4

Motivation

A problem in elasticity : deformations of embedded beams, plates ...

−→ Lauricella problem

∆2f = φ on D

f = ψ on ∂D
∂f

∂n
= χ on ∂D

−→ Aim: find a probabilistic representation for the solution f
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Z(t) = X(t) −H(t)X(1) −K(t)W (1)
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Bridges and polynomial drift Z(t)=(
∫ t
0 W (s)ds|∫ 1

0 W (s)ds=W (1)=0)
=(X(t)|X(1)=W (1)=0)

For 0 ≤ t ≤ 1:

Z(t) = X(t) −H(t)X(1) −K(t)W (1)

where the functions H and K are the interpolation Hermite polyno-
mials which are solutions of

d4H

dt4
(t) =

d4K

dt4
(t) = 0

with boundary values
H(0) =

dH

dt
(0) = 0

H(1) = 1,
dH

dt
(1) = 0

and


K(0) =

dK

dt
(0) = 0

K(1) = 0,
dK

dt
(1) = 1
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Prediction Z(t)=(
∫ t
0 W (s)ds|∫ 1

0 W (s)ds=W (1)=0)
=(X(t)|X(1)=W (1)=0)

For t0 ≤ t ≤ 1:

Z(t) = Z̃t0(t− t0) +Ht0(t)Z(t0) +Kt0(t)
dZ

dt
(t0)

where Z̃t0 is a bridge of length 1 − t0 and the functions Ht0 and Kt0

are the interpolation Hermite polynomials which are solutions of

d4Ht0

dt4
(t) =

d4Kt0

dt4
(t) = 0

with boundary values
Ht0(t0) = 1,

dHt0

dt
(t0) = 0

Ht0(1) =
dHt0

dt
(1) = 0

and


Kt0(t0) = 0,

dKt0

dt
(t0) = 1

Kt0(1) =
dKt0

dt
(1) = 0
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2 The iterated Laplacian ∆n 2.3 Spatial operator d2n/dx2n

• Connection: let us introduce the pseudo-Markov kernel p(t;x)
which is a solution of the heat-type equation of high order 2n > 2

∂p

∂t
(t;x) = (−1)n+1∂

2np

∂x2n
(t;x) and p(0;x) = δ(x)

• Related processes: pseudo-Brownian motions driven by a signed
measure (which is NOT a probability measure)

• Other related processes: iterated Brownian motions

X(t) = B1
B2

B3

. . .
Bn(t)

where B1, . . . , Bn are independent reflected BMs

The probability density p(t;x) = P{X(t) ∈ dx}/dx is a solution of

∂p

∂t
(t;x) =

1

22n−1

∂2n
p

∂x2n (t;x)
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3 The pseudo-Brownian motion 3.1 Construction

Properties of the heat-type kernel p(t;x)

• It is characterized by
∫ +∞

−∞
eiuxp(t;x) dx = e−tu2n

• It satisfies
∫ +∞

−∞
p(t;x) dx = 1 and

∫ +∞

−∞
x2p(t;x) dx = 0

• It defines a pseudo-Markov process (X(t))t≥0 by

Px{X(t) ∈ dy} def
= p(t;x− y) dy

and for 0 = t0 < t1 < · · · < tm and x0 = x:

Px{X(t1) ∈ dx1, . . . , X(tm) ∈ dxm}def
=

m∏
i=1

p(ti − ti−1;xi−1− xi)dxi
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3 The pseudo-Brownian motion 3.2 Some functionals

• Sojourn time in an interval

Ta(t) = measure{s ∈ [0, t] : X(s)>
< a} =

∫ t
0 1l{X(s)>

< a} ds

Tab(t) = measure{s ∈ [0, t] : X(s) ∈ [a, b]} =
∫ t
0 1l{X(s)∈[a,b]} ds

• Maximum/minimum functionals

M(t) = max
0≤s≤t

X(s), m(t) = min
0≤s≤t

X(s)

• First hitting/exit time of an interval

τa = inf{t ≥ 0 : X(t)>
< a}

τab = inf{t ≥ 0 : X(t) /∈ [a, b]}

−→ Problems: determine the pseudo-distributions of Ta(t), Tab(t),
M(t), m(t), τa, τab . . .



3 The pseudo-Brownian motion 3.3 Some results

a) Pseudo-distribution of the sojourn time Ta(t) Ta(t)=
∫ t
0 1l{X(s)>a} ds

Set φ(t;x) = Ex

[
e−µTa(t)f(X(t))

]
(Feynman-Kac functional)

def
= lim

m→∞
Ex

[
e−

t
m

∑m
k=0 1l{X(kt/m)>a}f(X(t))

]
The function φ is a solution of the PDE

∂φ

∂t
= (−1)n+1∂

2nφ

∂x2n
− fφ



3 The pseudo-Brownian motion 3.3 Some results

a) Pseudo-distribution of the sojourn time Ta(t) Ta(t)=
∫ t
0 1l{X(s)>a} ds

Set φ(t;x) = Ex

[
e−µTa(t)f(X(t))

]
(Feynman-Kac functional)

def
= lim

m→∞
Ex

[
e−

t
m

∑m
k=0 1l{X(kt/m)>a}f(X(t))

]
The function φ is a solution of the PDE

∂φ

∂t
= (−1)n+1∂

2nφ

∂x2n
− fφ

Set Φ(x) =

∫ +∞

0
e−λt Ex

[
e−µTa(t)f(X(t))

]
dt

The function Φ is a solution of the differential equation

(−1)n+1d
2nΦ

dx2n
=

 (λ+ µ)Φ − f on (a,+∞)

λΦ − f on (−∞, a)



3 The pseudo-Brownian motion 3.3 Some results

−→ Solution Ta(t)=
∫ t
0 1l{X(s)>a} ds

• The equation can be explicitly solved
(involving Vandemonde algebra)

• The iterated Laplace transform can be inverted
(involving the Mittag-Leffler function)

−→ Pseudo-distribution of (Ta(t), X(t)) under Px

(V. Cammarota & A. L., EJP 2010 and SPA 2011)



3 The pseudo-Brownian motion 3.3 Some results

−→ Solution Ta(t)=
∫ t
0 1l{X(s)>a} ds

• The equation can be explicitly solved
(involving Vandemonde algebra)

• The iterated Laplace transform can be inverted
(involving the Mittag-Leffler function)

−→ Pseudo-distribution of (Ta(t), X(t)) under Px

(V. Cammarota & A. L., EJP 2010 and SPA 2011)

• A historical result (Krylov, 1960)

The distribution of T0(t) is the Paul Lévy’s arcsine law:

P0{T0(t) ∈ ds}/ds =
1l(0,t)(s)

π
√
s(t− s)

• An unsolved problem: compute the distribution of Tab(t) . . .
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b) Pseudo-distribution of the first overshooting time τa

• Example n = 1 Px{W (τa) ∈ dz}/dz = δa(z)
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b) Pseudo-distribution of the first overshooting time τa

• Example n = 1 Px{W (τa) ∈ dz}/dz = δa(z)

• Example n = 2 (Nishioka 1997)

Px{X(τa) ∈ dz}/dz = δa(z) − (x− a)δ′a(z) with < δ′a, φ>= −φ′(a)

Ex[f(X(τa))] = f(a) + (x− a)f ′(a)



3 The pseudo-Brownian motion 3.3 Some results

b) Pseudo-distribution of the first overshooting time τa

• Example n = 1 Px{W (τa) ∈ dz}/dz = δa(z)

• Example n = 2 (Nishioka 1997)

Px{X(τa) ∈ dz}/dz = δa(z) − (x− a)δ′a(z) with < δ′a, φ>= −φ′(a)

Ex[f(X(τa))] = f(a) + (x− a)f ′(a)

• General result (A. L., EJP 2007)

Px{X(τa) ∈ dz}/dz =

n−1∑
p=0

(a− x)p

p!
δ(p)a (z)

with < δ(p)a , φ>= (−1)pφ(p)(a)

x 7→ Px{X(τa) ∈ dz}/dz is a n-harmonic function



3 The pseudo-Brownian motion 3.3 Some results

c) Distribution of the first exit time τab (A. L., work in progress)

Px{X(τab) ∈ dz}/dz =

n−1∑
p=0

H−
p (x) δ(p)a (z) +

n−1∑
p=0

H+
p (x) δ

(p)
b (z)

where the functionsH−
p andH+

p , 0 ≤ p ≤ n−1, are the interpolation

Hermite polynomials such that dqH
−
p

dxq (a) = δpq, dqH
−
p

dxq (b) = 0 and
dqH

+
p

dxq (a) = 0, dqH
+
p

dxq (b) = δpq for 0 ≤ q ≤ n− 1.

x 7→ Px{X(τab) ∈ dz}/dz is a n-harmonic function



3 The pseudo-Brownian motion 3.3 Some results

c) Distribution of the first exit time τab (A. L., work in progress)

Px{X(τab) ∈ dz}/dz =

n−1∑
p=0

H−
p (x) δ(p)a (z) +

n−1∑
p=0

H+
p (x) δ

(p)
b (z)

where the functionsH−
p andH+

p , 0 ≤ p ≤ n−1, are the interpolation

Hermite polynomials such that dqH
−
p

dxq (a) = δpq, dqH
−
p

dxq (b) = 0 and
dqH

+
p

dxq (a) = 0, dqH
+
p

dxq (b) = δpq for 0 ≤ q ≤ n− 1.

x 7→ Px{X(τab) ∈ dz}/dz is a n-harmonic function

• “Ruin pseudo-probabilities”

Set

τ
+
b = inf{t ≥ 0 : X(t) > b}

τ−
a = inf{t ≥ 0 : X(t) < a}

Px{τ−
a < τ+

b } = H−
0 (x) and Px{τ+

b < τ−
a } = H+

0 (x)
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Discrete Laplacian

∆discrete f(x) =
1

2
[f(x+ 1) − 2f(x) + f(x− 1)]

=⇒ ∆n
discrete f(x) =

1

2n

n∑
k=−n

(−1)k−1

(
2n

n+ k

)
f(x+ k)



4 The pseudo-random walk An introduction

Discrete Laplacian

∆discrete f(x) =
1

2
[f(x+ 1) − 2f(x) + f(x− 1)]

=⇒ ∆n
discrete f(x) =

1

2n

n∑
k=−n

(−1)k−1

(
2n

n+ k

)
f(x+ k)

−→ viewed as a generator:

Gf(x) def
= ∆n

discrete f(x) = Ex[f(X1)] − f(x)

where X1 is the pseudo-random variable defined by
P{X1 = k} =

(−1)k−1

2n

(
2n

n+ k

)
for 1 ≤ |k| ≤ n

P{X1 = 0} = 1 −
1

2n

(
2n

n

)
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Let (ξk)k≥1 be a sequence of independent identically distributed
pseudo-random variables with the pseudo-distribution of X1 and set
for any k ≥ 1

Xk = ξ1 + · · · + ξk

−→ (Xk)k≥1 is a pseudo-random walk



4 The pseudo-random walk An introduction

Let (ξk)k≥1 be a sequence of independent identically distributed
pseudo-random variables with the pseudo-distribution of X1 and set
for any k ≥ 1

Xk = ξ1 + · · · + ξk

−→ (Xk)k≥1 is a pseudo-random walk

Set

BN(t) =
1

N1/(2n)
X[Nt]

Limiting continuous pseudo-process:

BN(t) −→
N→+∞

B(t)

−→ (B(t))t≥0 is a pseudo-Brownian motion
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