
TD A – Symbole ∑,
factorielle et binôme de Newton

1 Le symbole Sigma Σ

Notation (Le symbole
∑
) Si m et n sont deux entiers tels que m 6 n et si ak est

une expression qui dépend de k pour m 6 k 6 n, on note
n∑

k=m

ak = am + am+1 + · · ·+ an−1 + an.

Par exemple,
n∑

k=m

k = m+ (m+ 1) + · · ·+ (n−1) +n = (n−m+ 1)(m+ n)
2

= nb de termes× (1er terme+dernier terme)
2

n∑
k=m

rk = rm + rm+1 + · · ·+ rn−1 + rn = rm − rn+1

1− r =
rm
(
1− rn−m+1)

1− r pour r 6= 1

= 1er terme× 1− raisonnb de termes

1− raison

N.B. Les dernières formules restent valables pour toute somme arithmétique ou géo-
métrique.

En particulier, on rappelle que (à savoir par cœur)
n∑

k=1
k = n(n+ 1)

2 et
n∑

k=0
rk = 1− rn+1

1− r pour r 6= 1.

Exercice 1

1. Écrire les sommes suivantes en utilisant le symbole
∑

:

1 + 23 + 33 + · · ·+ 1503 ; 1
6 + 1

8 + 1
10 + · · ·+ 1

66 ; 1− 1
3 + 1

5 −
1
7 + · · ·+ 1

29.

2. Soit n ∈ N∗. Les égalités suivantes sont-elles vraies ?
n∑

p=1
p.n =

n∑
k=1

k.n =
(

n∑
k=1

k

)
n = k

(
n∑

k=1
n

)
;

n∑
k=1

ak × bk =
n∑

k=1
ak ×

n∑
k=1

bk.

3. Soit n ∈ N∗. Calculer les sommes suivantes :

a)
30∑

k=0
(−1)k b)

n∑
k=0

5 c)
n∑

k=10
(2k − 4) d)

n∑
k=0

3
2k

e)
n∑

k=0

25k−31

72k+1 f)
n∑

p=1

p

n
g)

n∑
k=3

(
√
k −
√
k + 1) h)

n∑
j=1

n∑
k=1

jk

4. Soit n ∈ N et f : N −→ R une fonction. Compléter les sommes suivantes :
n∑

j=0
f(2 + j) =

?∑
?
f(k)

n∑
i=1

f(n− i) =
?∑
?
f(j)

n∑
k=1

1
n+ k

=
?∑

k=0
? =

?∑
?

1
p

Exercice 2

1. (a) Vérifier que pour tout k ∈ N∗, 2
k(k + 2) = 1

k
− 1
k + 2.

(b) Soit n ∈ N∗. En déduire une expression simplifiée (sans symbole
∑

) de la

somme Un =
n∑

k=1

1
k(k + 2) .

2. De même simplifier l’expression de Vn =
n∑

k=1

k

(k + 1)! .

(Voir la définition 1 pour la signification du symbole « ! ».)

Exercice 3

1. Montrer par récurrence que pour tout n ∈ N∗,
n∑

k=1
(k × k!) = (n+ 1)!− 1.

2. Montrer par récurrence que pour tout n ∈ N∗,
n∑

k=1
k2 = n(n+ 1)(2n+ 1)

6 .



2 Factorielle et binôme de Newton
Définition 1 (Factorielle) On note pour tout n ∈ N∗,

n ! = 1× 2× 3× · · · × (n− 1)× n (« factorielle n »)

et l’on pose 0 ! = 1. On peut définir n ! par récurrence selon (n+ 1)! = n !× (n+ 1).

Définition 2 (Coefficients binomiaux) Soit A un ensemble fini à n éléments et
soit k ∈ {0, 1, . . . , n}. On appelle combinaison de k éléments de A un sous-ensemble

de A de cardinal k. On note
(
n

k

)
(« k parmi n ») le nombre de combinaisons de k

éléments parmi n. On peut démontrer que :(
n

k

)
= n !
k ! (n− k)! = n(n− 1) . . . (n− k + 1)

k !

Les nombres
(
n

k

)
sont appelés « coefficients binomiaux », car on peut établir la

formule du binôme de Newton suivante : pour tout n ∈ N et pour tous x, y ∈ R,

(x+y)n =
(
n

0

)
xn +

(
n

1

)
xn−1y+ · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn =

n∑
k=0

(
n

k

)
xn−kyk

=
(
n

0

)
yn +

(
n

1

)
xyn−1 + · · ·+

(
n

n− 1

)
xn−1y+

(
n

n

)
xn =

n∑
k=0

(
n

k

)
xkyn−k

Remarque : cette formule peut être démontrée par récurrence sur n.
On peut aussi la montrer par dénombrement : pour k ∈ {0, 1, . . . , n} fixé, quand on
développe (x + y)n = (x+ y)(x+ y) . . . (x+ y)︸ ︷︷ ︸

n termes

, les termes xkyn−k s’obtiennent en

choisissant k fois le terme x dans les parenthèses (et donc n− k fois le terme y).
Il y a exactement

(
n
k

)
choix possibles, et donc le coefficient de xkyn−k est égal à

(
n
k

)
.

Par exemple, pour les valeurs 2, 3, 4 de n :

(x+ y)2 =
(

2
0

)
x2 +

(
2
1

)
xy +

(
2
2

)
y2

= x2 + 2xy + y2

(x+ y)3 =
(

3
0

)
x3 +

(
3
1

)
x2y +

(
3
2

)
xy2 +

(
3
3

)
y3

= x3 + 3x2y + 3xy2 + y3

(x+ y)4 =
(

4
0

)
x4 +

(
4
1

)
x3y +

(
4
2

)
x2y2 +

(
4
3

)
xy3 +

(
4
4

)
y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

Les coefficients binomiaux vérifient les propriétés suivantes :
a) symétrie des coefficients :

pour tous k, n ∈ N tels que k 6 n,
(

n

n− k

)
=
(
n

k

)
;

b)
(
n

0

)
=
(
n

n

)
= 1,

(
n

1

)
=
(

n

n− 1

)
= n,

(
n

2

)
=
(

n

n− 2

)
= n(n− 1)

2 ;

c) formule du triangle de Pascal :

pour tous k, n ∈ N tels que k 6 n− 1,
(
n

k

)
+
(

n

k + 1

)
=
(
n+ 1
k + 1

)
.

Pour calculer
(
n

k

)
pour de petites valeurs de k et n, on peut utiliser le triangle de

Pascal :
aaa

kn 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

Notation (Le symbole
∏
) Soit p, q ∈ N tels que p 6 q et up, up+1, . . . , uq−1, uq

des nombres. On note
q∏

i=p

ui = up × up+1 × · · · × uq−1 × uq

Par exemple, n ! =
n∏

i=1
i, eΣn

i=1ui =
n∏

i=1
eui et si u1, . . . , un > 0, ln

(
n∏

i=1
ui

)
=

n∑
i=1

ln ui.

Exercice 1 (Factorielle)

1. Calculer 101 !
99 ! sans calculatrice.

2. Simplifier (2n+ 3)!
(2n+ 1)! ,

(n+ 1)!
(n− 2)! + n !

(n− 1)! ,
(n− 1)!
n ! − n !

(n+ 1)! .

3. Montrer que (2n)!
n ! est un entier pour tout n ∈ N et le calculer pour n ∈ {1, 2, 3, 4}.

4. Montrer que pour tout n ∈ N∗,
n∏

k=1
(2k) = 2n n ! et

n∏
k=0

(2k + 1) = (2n+ 1)!
2n n ! .



5. Soit n ∈ N∗. Simplifier l’expression de Wn =
n∏

k=2

(
1− 1

k2

)
.

6. (a) Montrer que pour n > 10, n ! > 9 !× 10n−9.

(b) En déduire la limite de n!
9n

lorsque n→ +∞.

(c) Établir en utilisant la même méthode une minoration similaire de n ! pour
n > 100.

7. Montrer, à l’aide de k ! > 2k−1 valable pour tout k ∈ N∗, que pour tout n ∈ N∗,
n∑

k=1

1
k ! 6

n∑
k=1

1
2k−1 < 2.

Exercice 2 (Formule du binôme de Newton)
1. Soit a, b, x des réels. Développer (a+ b)6, (2x− 1)5 et (x+ a+ b)3.
2. Soit P la fonction définie sur R par P (x) = x4 + 2x3 − 1. Calculer P (x+ 1).
3. Déterminer les coefficients de a4b2c3 et a4b3c3 dans le développement de (a−b+2c)9.
4. (∗) En considérant la fonction f : x 7→ (1 + x)n (n ∈ N), calculer les sommes

suivantes :

S1 =
n∑

k=0

(
n

k

)
, S2 =

n∑
k=0

(−1)k

(
n

k

)
, S3 =

n∑
k=0

k

(
n

k

)
, S4 =

n∑
k=0

1
k + 1

(
n

k

)
.

5. (∗) Utiliser la formule du binôme de Newton pour montrer que 1.0110 ≈ 1.105.
Trouver de même une valeur approchée de 0.998 à 10−3 près.

*Exercice 3 (Étude d’un binôme)
On s’intéresse dans cet exercice au développement de (2 + 3)59. Pour tout k ∈ J0, 59K

on note αk =
(

59
k

)
3k259−k. On a (2+3)59 =

59∑
k=0

αk. L’exercice se propose de déterminer

quel est le plus grand des termes αk.
1. Dans cette question on fixe k ∈ J0, 29K un entier compris entre 0 et 29.

(a) Montrer qu’alors on a 30 6 59−k 6 59. Que représente le nombre 59−k pour
le nombre k ?

(b) Démontrer que αk

α59−k
=
(2

3

)59−2k

.

(c) Expliquer alors pourquoi pour chaque coefficient αk, k ∈ J0, 29K, il y a toujours
un autre coefficient αk, k ∈ J30, 59K, qui lui est supérieur.

2. On peut donc affirmer qu’en trouvant le plus grand des αk pour les seules valeurs
de k comprises entre 30 et 59 on détermine en fait le plus grand de tous les termes
αk. Soit k ∈ J30, 58K un entier compris entre 30 et 58.

(a) Démontrer que αk+1

αk
= 3

2 ×
59− k
k + 1 .

(b) Calculer α36

α35
, puis comparer les nombres α30, α31, α32, α33, α34, α35.

(c) À partir de l’ensemble des questions précédentes, déterminer quel est le plus

grand des termes de la somme
59∑

k=0

(
59
k

)
3k259−k.

En complément...
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