
Applications linéaires
Exercice 1 On se place dans les R-espaces vectoriels R2 et R3. Pour chacune des
applications suivantes, déterminer si elle est linéaire ou non :
f : R2 −→ R3

(x, y) 7−→ (x+ y, x− 2y, x+ 4y + 1)
g : R3 −→ R2

(x, y, z) 7−→
(
x+ sin(y + z), ln(x2 + 1)

)
h : R2 −→ R3

(x, y) 7−→ (x+ y2, ex − 2y − 1, x+ 4y)
k : R3 −→ R2

(x, y, z) 7−→ (x+ y − z, 2x+ y + z)

Exercice 2 Dans les cas ci-dessous, l’application f : E → F est-elle une application
linéaire entre les espaces vectoriels E et F ? Une forme linéaire ?
1. E = F = R[X] et f(P ) = X2P ′(X).
2. E = F = R[X] et g(P ) = P ′(X) +X2.
3. E = {fonctions continues de R vers R}, F = R et h(ϕ) =

∫ 1
0 etϕ(t) dt.

4. E = {suites réelles}, F = R et k
(
(un)n∈N

)
= u0 + 4u5.

Exercice 3 Dans chacun des cas ci-dessous, existe-t-il une application linéaire de R3

dans R3 vérifiant les conditions suivantes ? Si oui, est-elle unique ?
1. f(1, 0, 0) =

(
(2, 3,−1)

)
, f

(
(0, 1, 0)

)
= (1, 0, 2), f(0, 0, 1) =

(
(2,−3, 1)

)
.

2. g(1, 0, 0) =
(
(2, 3,−1)

)
, g

(
(0, 1, 0)

)
= (1, 0, 2), g(1, 1, 0) =

(
(3, 3, 0)

)
.

3. h(1, 0, 0) =
(
(2, 3,−1)

)
, h

(
(0, 1, 0)

)
= (1, 0, 2), h(1, 1, 0) =

(
(3, 3, 1)

)
.

Exercice 4 On fixe a, b, c ∈ R et (x0, y0, z0) ∈ R3. Soit f : R3 −→ R et g : R3 −→ R
les applications définies par

∀(x, y, z) ∈ R3, f(x, y, z) = ax+ by + cz et g(x, y, z) = ax2 + by2 + cz2

Déterminer les différentielles de f et g au point (x0, y0, z0).

Exercice 5 On se place dans les R-espaces vectoriels R2 et R3. Pour chacune des
applications linéaires suivantes, indiquer sans calcul si elle est injective, surjective :
f : R2 −→ R3

(x, y) 7−→ (x, y, 0)
g : R3 −→ R2

(x, y, z) 7−→ (x, y)
h : R2 −→ R2

(x, y) 7−→ (x+ y,−x− y)
k : R2 −→ R3

(x, y) 7−→ (x+ y, 2x+ 2y, 3x+ 3y)
` : R3 −→ R2

(x, y, z) 7−→ (x− 2y − 3z, 2x− 4y − 6z)

Exercice 6 Soit a ∈ R. On considère l’application f : R2 −→ R2 définie, pour tout
(x, y) ∈ R2 par f

(
(x, y)

)
= (x− y, ax+ y).

1. Montrer que f est une application linéaire.
2. On suppose a 6= −1. Déterminer les noyaux et images de f . Que peut-on en déduire ?
3. On suppose que a = −1. Déterminer les noyaux et images de f . Que peut-on en

déduire ? Calculer f ◦ f dans ce cas, puis exprimer le résultat en fonction de f .

Exercice 7 On considère l’application linéaire f : C3 −→ C3

(x, y, z) 7−→ (iz, 2x− (1 + i)z,−3y)
.

Montrer que f est bijective et déterminer son application réciproque.

Exercice 8 Soit f l’endomorphisme de R2 qui envoie le vecteur bleu ~a de gauche sur
le vecteur bleu f(~a) de droite, et le vecteur rouge ~b de gauche sur le vecteur rouge f(~b)
de droite.
1. Dessiner sur le graphique de droite l’image par f du vecteur noir ~v, notée f(~v) (on

ne fera aucun calcul).
2. Déterminer si f est bijective (on attend une justification en une phrase).
3. Déterminer à l’aide du graphique de droite l’image et le noyau de f .
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Exercice 9 Dans les R-espaces vectoriels E = R2 et F = R3 rapportés à leurs bases ca-
noniques respectives B =

(
~i,~j
)
et B′ = (~e1, ~e2, ~e3), on considère les applications linéaires

f : E → F et g : F → E définies par
f
(
(x, y)

)
= (2x+ y, x− y, x+ 2y) et g

(
(x, y, z)

)
= (x+ y + z, x− y − z).

1. Écrire les matrices de f et g relativement aux bases B et B′.
2. Déterminer les noyaux et images de f et g.
3. Calculer f ◦ g et g ◦ f , puis déterminer leurs matrices relativement aux bases B et
B′, ainsi que leurs noyaux et images que l’on comparera (au sens de l’inclusion) à
ceux de f et g (cf. exercice 15, question 1a).

Exercice 10 Dans les R-espaces vectoriels E = R3 et F = R4 rapportés à leurs bases
canoniques respectives BE =

(
~i,~j,~k

)
et BF = (~e1, ~e2, ~e3, ~e4), on considère l’application

linéaire f : E → F telle que
f(~i) = ~e1 + ~e2 + ~e3 + ~e4, f(~j) = ~e1 − ~e2 + ~e3 − ~e4, f(~k) = ~e1 + ~e3.

1. Donner l’expression analytique de f .
2. Déterminer les noyau et image de f en précisant pour chacun une base et la dimen-

sion.



Exercice 11 Soit ϕ : R3 −→ R3[X] l’application définie par

ϕ
(
(a, b, c)

)
= aX3 + (b− a)X2 + cX + b.

1. Vérifier que ϕ est linéaire. Sans aucun calcul, dire si ϕ est surjective.
2. Déterminer Ker(ϕ) et Im(ϕ).
3. Peut-on trouver une application linéaire ψ1 : R3[X] −→ R3 telle que ϕ ◦ ψ1 =

IdR3[X] ?
4. Peut-on trouver une application linéaire ψ2 : R3[X] −→ R3 telle que ψ2 ◦ϕ = IdR3 ?

Exercice 12 Dans R2[X] soit l’ensemble P1,2 des polynômes ayant 1 et 2 pour racines.
Soit l’isomorphisme ϕ de R2[X] dans R3 défini par ϕ(aX2 + bX + c) = (a, b, c).
1. Montrer que ϕ(P1,2) est un sous-espace vectoriel de R3. En donner une base.
2. Reprendre la démarche en définissant maintenant P1,2 et ϕ de R3[X] dans R4.

Exercice 13 On se place dans le R-espace vectoriel E = R4[X] des polynômes à coef-
ficients réels de degré au plus 4.
1. Montrer que la famille de vecteurs Ba =

(
1, X − a, (X − a)2, (X − a)3, (X − a)4)

est une base de E, a étant un réel fixé.
2. Calculer les coordonnées de Xk dans la base Ba pour 0 6 k 6 4 (on pourra utiliser

la formule du binôme de Newton, ou celle de Taylor).
3. Montrer que l’application f définie sur E par f

(
P (X)

)
= P (X + a) est un auto-

morphisme de E dont on déterminera l’automorphisme réciproque.
4. Écrire les matrices M(f ;Ba,B0), M(f ;B0) et M(f ;Ba).

Exercice 14 Dans le R-espace vectoriel E des fonctions définies sur R à valeurs réelles,
on considère les fonctions f1 et f2 définies par

f1(x) = eax cos(bx) et f2(x) = eax sin(bx)
où a et b sont des réels fixés, b non nul. Soit F le sous-espace vectoriel de E engendré
par les vecteurs f1 et f2, puis ϕ l’application définie sur F par ϕ(f) = f ′.
1. Montrer que le système de vecteurs B = (f1, f2) est une base de F .
2. Montrer que ϕ est un automorphisme de F dont on calculera la matrice dans la

base B ainsi que l’automorphisme réciproque ϕ−1.
3. Donner une primitive de la fonction x 7→ eax cos(bx− θ) sans calcul d’intégrale.

Exercice 15
1. Soit E,F,G trois espaces vectoriels et f : E −→ F et g : F −→ G deux applications

linéaires.
(a) Comparer (au sens de l’inclusion) Ker(f) et Ker(g◦f), puis Im(g) et Im(g◦f).
(b) Montrer que si g est injective, alors Ker(g ◦ f) = Ker(f), et que si f est

surjective, alors Im(g ◦ f) = Im(g).
(c) Montrer que g ◦ f = 0 si et seulement si Im(f) ⊂ Ker(g).

2. Soit f un endomorphisme d’un espace vectoriel E de dimension 3 tel que f ◦ f = 0.
(a) En discutant selon les valeurs possibles du rang de f , en déduire les dimensions

de Ker(f) et Im(f).
(b) Construire une application f vérifiant les hypothèses de l’exercice.

Exercice 16 Soit n > 1 et ϕ la fonction définie sur E = Rn[X] par ϕ(P ) = P −XP ′.
1. Montrer que ϕ est définit un endomorphisme de E.
2. Déterminer une base de Ker(ϕ) et une base de Im(ϕ).

L’endomorphisme ϕ est-il bijectif ?

Exercice 17 On considère l’application u : Rn[X] −→ R
P 7−→

∫ 1
0 P (t) dt

.

1. Montrer que u est une forme linéaire non nulle.
2. En déduire la dimension de Ker(u), puis déterminer une base de Ker(u).

Exercice 18 Pour tout P ∈ R[X], on note D(P ) = P ′ et I(P ) la primitive de P
s’annulant en 0.
1. Vérifier que D et I sont des endomorphismes du R-espace vectoriel R[X].
2. Déterminer leur noyau et leur image. Sont-ils injectifs ? surjectifs ? bijectifs ?
3. Déterminer I ◦D et D ◦ I.

Exercice 19
1. Soit V un K-espace vectoriel de dimension finie et soit u, v deux endomorphismes

de V tels que u ◦ v = idV . Montrer que u et v sont bijectifs et u = v−1.
2. Montrer que le résultat est faux en dimension infinie à l’aide de V l’espace des

suites dans K et de I (resp. D) l’application qui envoie toute suite (un)n∈N sur
(0, u0, u1, u2, . . . ) resp. (u1, u2, u3, . . . ).

Pour les insatiables...
Exercice 20 (Polynôme d’interpolation de Lagrange)

Soit n ∈ N∗ et α1, α2, . . . , αn des réels distincts deux à deux. On considère l’application

f : Rn−1[X] −→ Rn
P 7−→

(
P (α1), P (α2), . . . , P (αn)

)
1. Montrer que f est linéaire et injective. En déduire que f est bijective.
2. Soit (e1, e2, . . . , en) la base canonique de Rn. Déterminer, pour i ∈ {1, . . . , n},
f−1(ei).

3. Que fait l’application f−1 ?



Exercice 21 On considère dans R2 les trois vecteurs ~u = (1, 1), ~v = (2,−1), ~w = (1, 4).
1. Démontrer que (~u,~v) est une base de R2.
2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire f : R2 −→ R2

telle que f(~u) = (2, 1), f(~v) = (1,−1) et f(~w) = (5, a) ?

Exercice 22 Soit E un plan vectoriel de base (~u,~v) et m ∈ R. On définit l’endomor-
phisme f de E par {

f(~u) = m~u+ (m+ 2)~v
f(~v) = (m− 2)~u+ (m− 1)~v

1. Pour quelles valeurs de m l’endomorphisme f est-il un isomorphisme ?
2. Déterminer les noyaux et images de f en fonction des valeurs de m.

Exercice 23 Soit E et F deux espaces vectoriels et f : E −→ F et g : F −→ E deux
applications linéaires. Montrer que Ker(g) ∩ Im(f) = f

(
Ker(g ◦ f)

)
.

Exercice 24 Soit E un espace vectoriel de dimension 4 et f : E −→ E une application
linéaire telle que Im(f) = Ker(f).
1. Donner les dimensions de Ker(f) et de Im(f).
2. Montrer que pour tout vecteur ~v ∈ E, on a (f ◦ f)(~v) = ~0E .
3. Soit (~v1, ~v2) une base de Ker(f) et soit (~u3, ~u4) ∈ E2 des vecteurs tels que f(~u3) = ~v1

et f(~u4) = ~v2. Montrer que B = (~v1, ~v2, ~u3, ~u4) est une base de E.
4. Donner la matrice de f par rapport à la base B.

Exercice 25 Soit E un espace vectoriel sur K et f ∈ L(E).
Pour λ ∈ K, on définit l’ensemble Eλ = {~u ∈ E : f(~u) = λ~u}.
1. Montrer que Eλ est un sous-espace vectoriel de E.

Si Eλ 6=
{
~0E
}
, on dit que λ est une valeur propre de l’endomorphisme f et que Eλ

est le sous-espace propre associé à λ.
2. À quel sous-espace vectoriel l’ensemble E0 est-il égal ?
3. Soit λ et µ deux réels distincts. Montrer que Eλ ∩ Eµ =

{
~0E
}
.

4. (a) Exemple 1 : soit f ∈L(R2) définie par ∀(x, y)∈R2, f
(
(x, y)

)
=(x+2y,−x+4y).

À l’aide de systèmes linéaires, déterminer l’ensemble Eλ pour tout réel λ ∈ R
(on distinguera trois cas).

(b) Exemple 2 : soit E l’espace vectoriel des suites à valeurs dans R, et soit
f ∈ L(E) définie par ∀(un)n∈N ∈ E, f

(
(un)n∈N

)
= (un+1)n∈N.

Déterminer l’ensemble Eλ pour tout λ ∈ R.
(c) Exemple 3 : soit E l’espace vectoriel des fonctions de R dans R dérivables

une infinité de fois, et soit f ∈ L(E) définie par ∀ϕ ∈ E, f(ϕ) = ϕ′.
Déterminer l’ensemble Eλ pour tout λ ∈ R.

Exercice 26 Soit E un R-espace vectoriel et f : E −→ E une application linéaire telle
que pour tout ~v ∈ E, les vecteurs ~v et f(~v) soient colinéaires.
1. Justifier que pour tout ~v ∈ E, il existe λ~v ∈ R tel que f(~v) = λ~v~v.
2. Soit (~u,~v) ∈ E2 deux vecteurs non nuls.

(a) Montrer que si (~u,~v) est une famille liée alors λ~u = λ~v.
(b) Montrer que si (~u,~v) est une famille libre alors λ~u = λ~v (on pourra écrire

f(~u+ ~v) de deux manières différentes).
3. En déduire que f est une homothétie vectorielle, c’est-à-dire que le coefficient λ~u

est indépendant du vecteur de E considéré : il existe un réel λ tel que pour tout
~u ∈ E, λ~u = λ et l’on a alors pour tout ~u ∈ E, f(~u) = λ~u.

Exercice 27 Soit a et b deux nombres complexes. On considère le C-espace vectoriel E
des suites complexes vérifiant la relation de récurrence : ∀n ∈ N, un+2 = aun+1 + bun.
En considérant l’application f : E −→ C2 définie par f

(
(un)

)
n∈N = (u0, u1), déter-

miner dim(E).
Exercice 28 Soit S le R-espace vectoriel des suites réelles. On fixe un entier p > 1.
1. Montrer que l’application f : S −→ Rp

(un)n∈N 7−→ (u0, u1, . . . , up−1)
est linéaire.

2. Est-elle surjective ? injective ? Déterminer son noyau.
Exercice 29 Soit S le R-espace vectoriel des suites réelles (un)n∈N.
Soit T : S −→ S l’« opérateur de décalage », qui envoie toute suite u = (u0, u1, u2, . . . )
sur la suite T (u) définie par T (u)n = un+1, c’est-à-dire T (u) = (u1, u2, u3, . . . ).
1. Montrer que T est un endomorphisme de S.
2. T est-il surjectif ? injectif ? Déterminer son noyau.

Exercice 30 On se place dans le R-espace vectoriel E = R3.
1. Soit p l’endomorphisme de E défini par

p
(
(x, y, z)

)
= (x, x+ 1

2y −
1
2z, x−

1
2y + 1

2z).
Montrer que p est une projection vectorielle dont on précisera les sous-espaces vec-
toriels caractéristiques.

2. Soit s l’endomorphisme de E défini par
s
(
(x, y, z)

)
=
( 1

3 (5x+ 2y − 4z), y, 1
3 (4x+ 4y − 5z)

)
.

Montrer que s est une symétrie vectorielle dont on précisera les sous-espaces vecto-
riels caractéristiques.

Exercice 31 On se place dans le R-espace vectoriel E = R3.
1. Soit P le plan vectoriel de E d’équation x− 2y + 3z = 0 et D la droite vectorielle

de E engendrée par le vecteur ~i + ~j + ~k. Déterminer la représentation analytique
de la projection vectorielle p de E sur P parallèlement à D. En déduire celle de la
symétrie vectorielle s par rapport à P parallèlement à D.

2. Soit P le plan vectoriel de E d’équation x+ 2y + 3z = 0 et D la droite vectorielle
de E engendrée par le vecteur~i−~j−~k. Déterminer la représentation analytique de
la symétrie vectorielle s par rapport à P parallèlement à D. En déduire celle de la
projection vectorielle s de E sur P parallèlement à D.


