INSA 1er cycle

Analyse

Intégrales généralisées

Exercice 1 Montrer la convergence puis calculer la valeur des intégrales suivantes:

a)
$$\int_{0}^{+\infty} x^{7} e^{-x^{2}} dx$$

b)
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{1+x^2}} dx$$

c)
$$\int_0^{+\infty} \frac{x^3 \ln x}{(x^4 + 1)^3} dx$$

d)
$$\int_{\ln 2}^{+\infty} \frac{e^x + 1}{e^{2x} - 2e^x + 1} dx$$

e)
$$\int_{-2}^{+\infty} \left[2 + (x+3) \ln \frac{x+2}{x+4} \right] dx$$
 f) $\int_{0}^{1} \frac{1}{x^2} \ln(1-x^2) dx$

f)
$$\int_0^1 \frac{1}{x^2} \ln(1-x^2) dx$$

g)
$$\int_{-1}^{1} \frac{x^3}{\sqrt{1-x^2}} \ln \frac{1+x}{1-x} dx$$
 h) $\int_{-1}^{2} \arctan \frac{x+1}{x-2} dx$

h)
$$\int_{-1}^{2} \arctan \frac{x+1}{x-2} \, dx$$

Exercice 2 Soit $\alpha \in \mathbb{R}$.

- 1. Montrer que si $\alpha < 0$, l'intégrale $\int_{1}^{+\infty} x^{\alpha-1} \cos x \, dx$ est absolument convergente.
- 2. En déduire la convergence de l'intégrale $\int_{1}^{+\infty} x^{\alpha} \sin x \, dx$ pour $\alpha < 0$.
- 3. Application : prouver la convergence des intégrales $\int_{1}^{+\infty} \cos x^2 dx$ et $\int_{-\infty}^{+\infty} \sqrt{x} \sin x^2 \, dx.$

Exercice 3 Soit $\alpha \in \mathbb{R}$.

- 1. Étudier selon les valeurs de α l'existence de l'intégrale $\int_{1}^{+\infty} \frac{\ln x}{r^{\alpha}} dx$, puis, en cas de convergence, calculer sa valeur.
- 2. Étudier selon les valeurs de α l'existence de l'intégrale $\int_{x}^{+\infty} \frac{1}{x^{\alpha} \ln x} dx$.

Exercice 4

1. Prouver l'existence des intégrales $\int_0^{\pi/2} \ln(\sin x) dx$ et $\int_0^{\pi/2} \ln(\cos x) dx$. On pose alors $I = \int_{0}^{\pi/2} \ln(\sin x) dx$ et $J = \int_{0}^{\pi/2} \ln(\cos x) dx$.

- 2. Montrer que I = J.
- 3. Calculer I + J (qui est égal à 2I) en fonction de I.
- 4. En déduire la valeur commune de I et J.

Exercice 5

- 1. Soit $F(x) = \int_{-\infty}^{x^{-}} \frac{dt}{\ln t}$ pour $x \in]0,1[$. Calculer les limites $\lim_{x\to 0^{+}} F(x)$ et $\lim_{x\to 1^-} F(x) \text{ (pour la limite en 1, comparer } F(x) \text{ à l'intégrale } \int_{-t}^{t} \frac{dt}{t-1}).$
- 2. Calculer la dérivée de F.
- 3. En déduire la valeur de l'intégrale $\int_{0}^{1} \frac{t-1}{\ln t} dt$.

Exercice 6 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction localement intégrable sur \mathbb{R} . On suppose qu'elle admet des limites finies en $\pm \infty$ notées $a = \lim_{x \to -\infty} f(x)$ et $b = \lim_{x \to +\infty} f(x).$

Montrer la convergence de l'intégrale $\int_{-\infty}^{+\infty} [f(x+1) - f(x)] dx$ puis calculer sa valeur.

Exercice 7 Soient f et $g:[1,+\infty[\to\mathbb{R}]$ les fonctions définies pour $x\geqslant 1$ par $f(x) = \frac{(-1)^{E(x)}}{\sqrt{x}} \text{ et } g(x) = f(x) + \frac{1}{x}.$ 1. Montrer que $f(x) \underset{x \to +\infty}{\sim} g(x)$.

- 2. Étudier la convergence des intégrales $\int_{1}^{+\infty} f(x) dx$ et $\int_{1}^{+\infty} g(x) dx$ (on commencera par regarder $\int_{1}^{N} f(x) dx = \sum_{k=1}^{N-1} \int_{k}^{k+1} f(x) dx$ pour $N \in \mathbb{N}$).

Exercice 8

- 1. Calculer les intégrales $\int_1^a \frac{dx}{\sqrt{(x-1)(a-x)}}$, a>1 et $\int_a^{a} \frac{1}{x} dx$, a>0.
- 2. Déterminer, lorsqu'elles existent, les limites suivantes :

$$\lim_{a \to 1^+} \int_1^a \frac{dx}{\sqrt{x(x-1)(a-x)}} \quad \text{et} \quad \lim_{a \to 0^+} \int_a^{3a} \frac{\cos x}{x} \, dx.$$