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MATH IV, Analyse

(Automne 2010)

Résumé du cours

Avertissement : Strictement parlant, les pages qui suivent ne sont PAS les notes
pour ce cours. Elles sont censées vous servir de guide pendant le semestre. Le cours
enseigné peut dévier, quoique de manière limitée, du développement décrit dans
les pages suivantes ; sur un sujet particulier, d’autres exemples que ceux qui sont
donnés ci-dessous particulier peuvent surgir.

En cours, certains des énoncés ci-dessous seront démontrés, d’autres admis.
Des conclusions plus simples seront laissées comme exercices d’entrâınement. Des
indications sur les liens avec divers points ci-dessous seront faits régulièrement
pendant l’enseignement.

Bref, pour découvrir le cours proprement dit, il faut suivre... le cours. Et avec
assiduité.
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3.6 Le théorème des accroissements finis . . . . . . . . . . . . . . . . . . . . . . . . . 27
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7 Différentiation, intégration : quelques liens 51
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Chapitre 1

Espaces vectoriels normés :
généralités

Ce chapitre est consacré à l’étude des espaces vectoriels normés. Nous aurons tendance à les
appeler des espaces normés, sans quand-même oublier que ce sont des espaces vectoriels munis
d’une fonction particulière.

Vous savez tous ce que c’est qu’un K-espace vectoriel où K est un corps commutatif, le corps
des scalaires. En cas d’oubli ou de trou de mémoire, faites vos révisions. Dans ce cours, le corps
K sera celui des réels, noté R. Sauf mention contraire, quand nous dirons “un espace vectoriel”,
ce sera un R-espace vectoriel.

Rappelons la notation pour les puissances cartésiennes de R. Soit p ∈ N, N étant comme
d’habitude l’ensemble des nombres naturels.

– Si p = 0, alors Rp = {0}.
– Si p ∈ N∗, alors Rp = {(x1, . . . , xp) | tout xi est un nombre réel.}. Dans le cas où p = 1,

nous aurons tendance à omettre les parenthèses et écrire x au lieu de (x).

Il y a divers choix de notation pour noter les éléments d’un espace vectoriel : u, ~u. Nous
n’utiliserons aucune de ces notations ornementées. Nous nous contenterons des lettres, u, v, x...
toujours en précisant les ensembles d’appartenance des objets qu’elles notent.

1.1 Définitions, exemples ; distance

Définition 1.1.1 (Norme) Soit E un R-espace vectoriel. Une fonction

|| || : E −→ R+

u 7−→ ||u||
est dite une norme si elle satisfait les trois conditions suivantes :
(N1) pour tout u ∈ E, u est le vecteur nul si et seulement si ||u|| = 0 ;
(N2) pour tout r ∈ R et u ∈ E, ||ru|| = |r| ||u|| ( | | est la valeur absolue) ;
(N3) pour tous u, v ∈ E, ||u+ v|| ≤ ||u||+ ||v|| (la première somme est la loi interne de l’espace

vectoriel E tandis que la deuxième est celle des nombres réels).

Voici des exemples de normes :
1. La valeur absolue | | d’un nombre réel est une norme dans l’espace vectoriel des nombres

réels. C’est la source intuitive qui a motivé la notion de norme.
2. (La norme euclidienne) Soit p ∈ N∗. La fonction

|| ||2 : Rp −→ R+

x = (x1, . . . , xp) 7−→ ||x||2 =
√∑p

i=1 x2
i
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définit une norme dans l’espace vectoriel Rp.

3. Soit p ∈ N∗. Pour tout x = (x1, . . . , xp) ∈ Rp,

|| ||1 : Rp −→ R+

x = (x1, . . . , xp) 7−→ ||x||1 =
∑p

i=1 |xi|

définit une norme dans l’espace vectoriel Rp.

4. Soit p ∈ N∗. Pour tout x = (x1, . . . , xp) ∈ Rp,

|| ||∞ : Rp −→ R+

x = (x1, . . . , xp) 7−→ ||x||∞ = maxp
i=1 |xi|

définit une norme sur l’espace vectoriel Rp.

5. Soit E l’ensemble des suites réelles bornées. Donc, tout élément x ∈ E est une suite
(xn)n∈N telle que supn∈N |xn| < +∞. C’est un espace vectoriel de dimension infinie dont
la loi interne est la somme usuelle des suites et la loi externe est la multiplication par les
scalaires, “coordonnée par coordonnée”. Pour tout x ∈ E, ||x|| = supn∈N |xn| définit une
norme sur E.

Les normes (2)-(4) sont définies sur des espaces vectoriels de dimensions finies. Dans ce cours,
sauf mention contraire, nous travaillerons en dimension finie.

Définition 1.1.2 (Espace normé) Un espace vectoriel E est un espace vectoriel normé s’il
est muni d’une norme. La notation est (E, || ||).

Tous les espaces vectoriels dans les exemples ci-dessus sont donc des espaces vectoriels normés.
Nous utiliserons l’appellation courte “espace normé”.

On peut construire de nouvelles normes à partir de celles qui sont connues sur un même
espace vectoriel, donc de nouveaux espaces normés :

1.
|| || : R2 −→ R+

(x, y) 7−→ |x + y|+ |x|
définit une norme dans R2.

2.
|| || : R2 −→ R+

(x, y) 7−→ max(|x + 3y|, |x− y|)
définit une norme dans R2.

3. Considérons l’espace vectoriel des applications linéaires L(Rp,Rq) avec p, q ∈ N arbitrai-
rement fixés. Comme Rp et Rq sont des espaces vectoriels de dimensions finies, pour
toute application linéaire u : Rp −→ Rq, il existe une constante Mu ∈ R+ telle que
‖u(x)‖1 ≤ Mu‖x‖1 pour tout x ∈ Rp (pourquoi ?). Ici, sur chacun de Rp et Rq, nous avons
fixé la norme ‖ ‖1. En fait, il découlera de l’équivalence des normes (le théorème 1.3.4
ci-dessous) que l’inégalité, ni d’ailleurs le reste de cet exemple, ne dépend pas du choix de
norme.

On définit pour tout u ∈ L(Rp,Rq)

|||u||| = sup
x6=0

‖u(x)‖1
‖x‖1 .

Notons que cette définition a un sens, en d’autres termes la fraction a une borne supérieure,
grâce à la remarque du paragraphe précédent. Par ailleurs, il est aussi vrai que |||u||| =
sup‖x‖1=1

‖u(x)‖1
‖x‖1 (pourquoi ?). Alors la fonction qui associe |||u||| à chaque u ∈ L(Rp,Rq)

est une norme.
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De la même manière que la valeur absolue, une norme arbitraire permet de définir une notion
de “distance” :

Proposition 1.1.3 Soit (E, || ||) un espace normé. Alors, l’application

d : E × E −→ R+

(x, y) 7−→ ||x− y||

définit une notion de “distance” sur E. Plus précisément, d jouit des propriétes suivantes :

(D1) pour tous u, v ∈ E, u = v si et seulement si d(u, v) = 0 ;

(D2) pour tous u et v ∈ E, d(u, v) = d(v, u) ;

(D3) (Inégalité triangulaire) pour tous u, v, w ∈ E, d(u,w) ≤ d(u, v) + d(v, w).

Remarquablement, sur tout ensemble non vide, il est possible de définir une distance, en
d’autres termes une fonction ayant les propriétés D1, D2 et D3 sans que celle-ci provienne
nécessairement d’une notion de norme. Le cours de topologie en L3 sera consacré à leur étude
détaillée.

1.2 Topologie des espaces normés

La topologie générale est la science des “ouverts” et des “fermés”. Nous introduirons ces deux
notions fondamentales de la topologie générale dans le contexte particulier des espaces normés.

Définition 1.2.1 (Boule ouverte, boule fermée, sphère) Soient (E, || ||) un espace normé,
a ∈ E, r ∈ R+.

1. La boule ouverte de centre a, de rayon r est l’ensemble

B(a, r) = {x ∈ E | ||x− a|| < r} .

2. La boule fermée de centre a, de rayon r est l’ensemble

B(a, r) = {x ∈ E | ||x− a|| ≤ r} .

3. La sphère de centre a, de rayon r est l’ensemble

S(a, r) = {x ∈ E | ||x− a|| = r} .

Définition 1.2.2 (Partie fermée, partie ouverte) Soient (E, || ||) un espace normé, A ⊂ E.

(ouvert) L’ensemble A est un ensemble ouvert de E par rapport à la norme ‖ ‖ si pour tout
a ∈ A, il existe r ∈ R∗+ tel que la boule ouverte B(a, r) soit contenue dans A.

(fermé) L’ensemble A est un ensemble fermé de E par rapport à la norme ‖ ‖ si son complémentaire
est un ouvert de E.

Au lieu de dire longuement “un ensemble ouvert” ou “un ensemble fermé”, il est de coutume de
se contenter de “un ouvert” ou “un fermé” respectivement. La précision “par rapport à la norme
‖ ‖” n’est pas inutile car il n’est pas nécessaire que sur un même espace vectoriel deux normes
induisent les mêmes ouverts et fermés. Nous introduirons les notions liées à ce phénomène dans
la section suivante.

Remarquons qu’il s’ensuit du premier point de la Définition 1.2.2 que l’ensemble vide et E
sont des ouverts. Ensuite, il découle du deuxième point qu’ils sont aussi des fermés. Donc, être
ouvert et fermé ne sont pas deux propriétés qui s’excluent. Par ailleurs, un ensemble peut être
ni ouvert ni fermé.

Les notions d’ensemble fermé et d’ensemble ouvert sont motivées par les notions d’intervalle
fermé et d’intervalle ouvert dans (R, | |). Mais ce ne sont pas les seuls exemples.
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Proposition 1.2.3 Soit (E, || ||) un espace normé. Alors les énoncés suivants sont vrais :
1. Toute boule ouverte dans un espace normé est un ouvert.
2. Toute boule fermée dans un espace normé est fermée.
3. L’union d’une famille arbitraire d’ensembles ouverts est un ouvert. L’intersection d’un

nombre fini d’ensembles fermés est fermée.
4. L’intersection d’une famille arbirtraire d’ensembles fermés est fermée. L’union d’un nombre

fini d’ouverts est ouverte.

Les conditions de finitude dans les points 3 et 4 sont nécessaires. En efffet, l’intersection
d’ouverts

+∞⋂

i=1

]− 1/n, 1/n[

n’est pas ouverte ; l’union de fermés

+∞⋃

i=1

[0, 1− 1/n[

n’est pas fermée.
La proposition 1.2.3 a la conséquence suivante :

Corollaire 1.2.4 Si (E, ‖ ‖) est un espace normé, alors pour tout a ∈ E et r ∈ R+, S(a, r) est
un fermé de E par rapport à la norme ‖ ‖.

Faute de meilleur endroit, nous glissons une définition mi-distancielle, mi-topologique :

Définition 1.2.5 (Partie bornée) Une partie X d’un espace normé (E, || ||) est dite bornée
s’il existe a ∈ E, r ∈ R+ tels que X ⊂ B(a, r).

1.3 Normes équivalentes

Nous avons déjà vu qu’il est possible de définir sur un même espace vectoriel plusieurs
normes différentes. Ceci ne veut pas dire que ces deux normes nous donneront deux familles
distinctes d’ensembles ouverts (resp. fermés) sur ce même espace. En d’autres termes, deux
normes différentes peuvent être “topologiquement équivalente”.

Définition 1.3.1 (Normes équivalentes) Soit E un espace vectoriel muni de deux normes,
|| || et || ||′. Les deux normes sont dites équivalentes s’il existe deux nombres réels r, s
strictement postifs tels que pour tout x ∈ E

r||x|| ≤ ||x||′ ≤ s||x|| .

Nous noterons || || ∼ || ||′. Notons aussi que r et s n’ont aucune raison d’être uniques.

Proposition 1.3.2 Soient E un espace vectoriel et || ||, || ||′, || ||′′ trois normes définies dans
E.

1. Toute norme définie dans E est équivalente à elle-même (relation réflexive).
2. Si || || et || ||′ sont deux normes définies dans E alors || || ∼ || ||′ si et seulement si
|| ||′ ∼ || || (relation symétrique).

3. Si || ||, || ||′ et || ||′′ sont trois normes définies dans E, || || ∼ || ||′ et que || ||′ ∼ || ||′′,
alors || || ∼ || ||′′ (relation transitive).

En résumé, ∼ est une relation d’équivalence.

Voici une raison pour laquelle il est important de savoir si deux normes sont équivalentes :
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Proposition 1.3.3 Soit E un espace vectoriel muni de deux normes || || et || ||′. Si ces deux
normes sont équivalentes, alors les ouverts de E par rapport à || || sont les mêmes que ses ouverts
par rapport à || ||′. Par conséquent, il en est de même pour les fermés.

La preuve du théorème suivant, quoique abordable avec les outils de ce cours, nécessite plus
de connaissances que n’en ont été fournies à ce stade. Néanmoins, nous l’énonçons dès maintenant
et nous l’utiliserons librement.

Théorème 1.3.4 Dans Rp, plus généralement dans un espace vectoriel normé de dimension
finie toutes les normes sont équivalentes.

Nous montrerons le cas particulier suivant en utilisant des méthodes élémentaires :

Proposition 1.3.5 Les trois normes || ||1, || ||2 et || ||∞ dans Rp (p ∈ N∗) sont équivalentes.

1.4 Nouvelles notions topologiques

Les notions d’ouvert et de fermé permettent de définir de nouvelles notions topologiques :

Définition 1.4.1 Soient (E, || ||) un espace normé et X ⊂ E.

1. L’intérieur de X, noté
◦
X est l’ensemble suivant :

{x ∈ X | il existe r ∈ R∗+ tel que B(x, r) ⊂ X} .

En d’autres termes, il existe un ouvert de O de E qui est contenu dans X et auquel
appartient x. Parfois, on dit que X est un voisinage de x si x ∈ ◦

X.

2. L’adhérence de X, notée X est l’ensemble des points x ∈ E tels que tout ouvert contenant
x a une intersection non vide avec X (un tel ouvert “rencontre” X).

3. La frontière de X, notée Fr(X) est l’ensemble X ∩ (E \X).

Proposition 1.4.2 Soient (E, || ||) un espace normé et A ⊂ E.

1. L’intérieur
◦
A de A est l’ouvert le plus large de E contenu dans A. En particulier, A est

ouvert si et seulement si A =
◦
A.

2. L’adhérence A de A est le fermé le plus petit de E qui contient A. En particulier, A est
fermé si et seulement si A = A.

3. Un point x de E appartient à Fr(A) si et seulement tout voisinage de x rencontre à la fois
A et E \A.

4. A = A ∪ Fr(A).

1.5 Suites et convergence dans les espaces normés

La notion de norme généralise celle de valeur absolue et permet de parler de la distance
entre deux points. Par conséquent, on s’attend à ce que cette notion fournisse une notion de
convergence dans un espace normé arbitraire. C’est en effet le cas, la convergence d’une suite de
points d’un espace normé nous servira en étudiant diverses propriétés liées à la topologie telles
que l’adhérence, la continuité.

Définition 1.5.1 Soient (E, || ||) un espace normé, (xn)n∈N une suite de points de E. La suite
(xn)n∈N est dite de converger vers un point l dans E si la condition suivante est satisfaite :

pour tout r ∈ R∗+, il existe N ∈ N tel que n ≥ N implique ||xn − x|| < r ;
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de manière équivalente

pour tout r ∈ R∗+, il existe N ∈ N tel que n ≥ N implique xn ∈ B(x, r) .

Nous noterons ce phénomène par la notation usuelle :

lim
n→∞

xn = l .

Une remarque importante sur la notion de convergence est qu’elle ne change pas si la norme
dans sa définition est remplacée par une norme équivalente. Ceci est particulièrement utile dans
Rp.

Dans ce cours, fréquemment il sera nécessaire de faire le lien entre les aspects à plusieurs
variables d’une notion (donc dans Rp pour p > 1) avec ceux dans R. La proposition suivante en
est un exemple :

Proposition 1.5.2 Soient p ∈ N∗, || || une norme définie dans Rp et (xn)n∈N une suite de
points dans Rp. Notons xn = (xn,1, . . . , xn,p) les coordonnées de chaque élément de la suite.
Alors

lim
n→∞

xn = (l1, . . . , lp)

si et seulement si pour chaque i ∈ {1, . . . , p}

lim
n→∞

xn,i = li .

Notons que dans cette proposition le choix de la norme ne change rien à la conclusion puisque
toutes les normes sont équivalentes dans Rp.

Proposition 1.5.3 (Propriétés élémentaires de la convergence) Soient (E, || ||) un espace
normé et (xn)n∈N et (yn)n∈N deux suites dans E qui convergent vers k et l respectivement. Alors

1. limn7→∞(xn + yn) = k + l ;

2. pour tout scalaire r ∈ R, limn∈N(rxn) = rk ;

3. toute suite extraite d’une suite convergente converge vers la même limite ;

4. toute suite convergente est bornée.

Finalement, voici un usage “topologique” de la convergence.

Proposition 1.5.4 Soient (E, || ||) un espace normé et A ⊂ E. Un point x ∈ A si et seulement
si il existe une suite (an)n∈N convergente vers x telle que tout an ∈ A.



Chapitre 2

Fonctions de plusieurs variables :
limites, continuité

2.1 Qu’est-ce qu’une fonction de plusieurs variables, com-
ment est-elle représentée ?

Une fonction est en général une loi qui associe à chaque élément d’une partie d’un ensemble
de départ un élément et un seul membre d’un ensemble d’arrivée. En voici une :

# : Etres humains −→ N
x 7−→ numéro d’étudiant à l’UCBL en 2010-11

La loi #, sauf erreur administrative, définit une fonction. Son domaine est le sous-ensemble
des étudiants à l’UCBL, une partie bien plus petite que l’ensemble de départ affiché. Bien sûr,
l’ensemble d’arrivée est aussi infiniment plus large que l’image (ou l’image directe) de #. Tout
ça, c’est bien loin des espaces normés, n’est-ce pas ?

Précisons ce que nous entendons par une fonction de plusieurs variables. Soient p, q ∈ N∗
et D ⊂ Rp. Une fonction f définie sur D et d’ensemble d’arrivée est une fonction de plusieurs
variables. Bien evidemment, quand p = 1, la fonction est d’une seule variable, un cas particulier
qui fera néanmoins partie de la discussion générale des fonctions de plusieurs variables. Si ce cas
particulier présente des aspects particuliers non vérifiés en général, ceci sera précisé.

Le cas des fonctions p = q = 1 était systématiquement étudié dans des cours précédents
d’analyse. Dans ce cours, nous essayerons de développer une étude aussi systématique que pos-
sible des fonctions de plusieurs variables en utilisant la notion de norme.

Pour certaines valeurs de p et de q, il existe une terminologie spécifique. Introduisons cette
terminologie aussi quoique ceci ne représente rien d’indispensable pour ce que nous ferons. Ainsi,
une fonction de plusieurs variables avec q = 1 est dite une fonction scalaire et les fonctions avec
q > 1 sont parfois dites vectorielles.

Comment représenter une fonction de plusieurs variables ? En outre de sa définition en tant
que loi entre deux ensembles fixés, il existe des représentations des fonction de plusieurs variables
d’intérêt géométrique.

Définition 2.1.1 (Le graphe d’une fonction) Soient p, q ∈ N∗, D ⊂ Rp et f : D −→ Rq

une fonction. Le graphe de f est l’ensemble suivant :

G(f) = {(x1, . . . , xp, y1, . . . , yq) ∈ Rp+q | f(x1, . . . , xp) = (y1, . . . , yq)} .

Cette notion si bien connue a une valeur géométrique importante pour ce cours. Illustrons ceci
par deux exemples simples et non moins connus.

f : R −→ R
x 7−→ x2

11
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Le graphe de cette fonction
G(f) = {(x, x2) | x ∈ R}

est une courbe dans R2, une parabole. Nous pouvons élaborer notre exemple un peu pour définir

f : R2 −→ R
(x1, x2) 7−→ x2

1 + x2
2

Le graphe de cette fonction

G(f) = {(x1, x2, x
2
1 + x2) | (x1, x2) ∈ R2}

est une surface dans R3, un parabolöıde.
Afin d’être étudiés, ces objets géométriques sont parfois entièrement dessinés... dans les li-

mites du possible. Parfois, on se restreint à des représentations partielles. Des exemples seront
présentés en cours. Ici, nous nous contentons de donner une définition importante qui sera utile
tout au long du cours et qui concerne le cas des fonctions scalaires de deux variables.

Définition 2.1.2 (Lignes de niveau) Soient p = 2, q = 1, D ⊂ R2 et f : D −→ R. Fixons
un réel k. La ligne de niveau k est l’ensemble

Lk(f) = {(x1, x2) ∈ D | f(x1, x2) = k} ,

en d’autres c’est l’image inverse du singleton {k} : f−1({k}).

Intuitivement, il s’agit de la “projection” sur R2 de l’intersection du graphe G(f) avec le “plan”
{(x1, x2, k) ∈ R3 | (x1, x2) ∈ R2}.

Illustrons la notion de ligne de niveau avec un exemple géométrique. Fixons a, b ∈ R∗2+ et
définissons la fonction

f : R× R −→ R
(x1, x2) 7−→ x2

1
a2 + x2

2
b2

Pour tout k ∈ R∗−, Lk(f) = ∅, tandis que L0(f) = {(0, 0)}. Qu’en est-il pour k ∈ R∗+ ? Dans le
cas particulier où a = b, c’est le cercle S(0,

√
k). En général, il s’agit d’une ellipse. Pouvez-vous

voir/dessiner à quoi ressemble une telle ellipse ?

2.2 Limites

Comment étendre la notion de limite aux fonctions de plusieurs variables ? Nous utiliserons
la notion de norme. Notons que les normes sur Rp ni sur Rq ne seront précisées puisque c’est
inutile. En effet, la définition utilise des boules ouvertes autour de certains points fixés. Comme
les normes sont équivalentes en dimension finie (le théorème 1.3.4), les boules ouvertes (resp.
fermées) gardent leurs natures topologiques quand la norme change.

La notion d’adhérence joue un role important dans la définition. En particulier, un point est
dit adhérent à une partie de Rp s’il appartient à l’adhérence de cette partie.

Définition 2.2.1 (Limite d’une fonction de plusieurs variables en un point adhérent
à son domaine) Soient p, q ∈ N∗, f : Rp −→ Rq une fonction de plusieurs variables définie sur
D ⊂ Rp. Soit a ∈ Rp un point adhérent à D. La fonction f est dite d’avoir la limite b au point
a ou de tendre vers b quand x ∈ D tend vers a si pour tout ε ∈ R∗+ il existe δ ∈ R∗+ tel que

||x− a|| < δ ⇒ ||f(x)− b|| < ε .

Ce fait sera noté
lim
x→a

f(x) = b .
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Il est très important de noter que a peut ne pas appartenir à D. Voici un exemple simple où ceci
joue un role :

f : R+ −→ R

x 7−→
{

x2 si x > 0
1 si x = 0

Si nous posons D = R∗+, alors limx→0 f(x) = 0.
Voici deux propriétés de la notion de limite, telle que nous l’avons introduite en plusieurs

variables, qui nous disent que la notion est robuste :

Proposition 2.2.2 Nous gardons la notation de la définition 2.2.1. Soit f : Rp −→ Rq une
fonction de plusieurs variables définie sur D ⊂ Rp.

1. La limite de f en un point a ∈ D est unique si elle existe.

2. La limite de f en un point est indépendante du choix de normes dans Rp et dans Rq

(Plus généralement, des normes équivalentes dans l’ensemble de départ et dans l’ensemble
d’arrivée donnent la même limite).

Comme dans le cas des fonctions d’une seule variable, il est possible de caractériser la notion
de limite en utilisant la notion de convergence :

Proposition 2.2.3 Nous gardons la notation de la définition 2.2.1. Soit D ⊂ Rp (p ∈ N∗). On
considère f : D −→ Rq (q ∈ N∗). Si a ∈ D, alors

lim
x→a

f(x) = l

si et seulement si pour toute suite (xn)n∈N dans D qui converge à a, lim
n→+∞

f(xn) = l .

2.3 Continuité

La notion de continuité s’étend aussi naturellement que celle de limite aux fontions de plu-
sieurs variables.

Définition 2.3.1 (Continuité d’une fonction de plusieurs variables en un point de
son domaine) Soient p, q ∈ N∗, D ⊂ Rp et f : Rp −→ Rq une application définie sur D.
L’application f est dite continue en a ∈ D si limx→a f(x) = f(a).

Cette définition implique les trois points suivants :
1. le point a est dans le domaine de f ;
2. la fonction f a une limite en a ;
3. la limite de f en a est f(a).

Définition 2.3.2 (Continuité d’une fonction de plusieurs variables sur une partie de
son domaine) Soient p, q ∈ N∗, D ⊂ Rp et f : D −→ Rq une application définie sur D.
L’application f est dite f est dite continue sur A si elle est continue à chaque point de A.

Proposition 2.3.3 (Caractérisations de la continuité) Soient f, D, p, q, a comme dans la
définition 2.3.1. Alors les conditions suivantes sont équivalentes :

1. f est continue en a ;

2. pour tout ε ∈ R∗+, il existe δ ∈ R∗+ tel que

||x− a|| < δ entrâıne ||f(x)− f(a)|| < ε ;
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3. pour toute suite (xn)n∈N dans D,

si lim
n→+∞

xn = a alors lim
n→+∞

f(xn) = f(a)
(

f( lim
n→+∞

xn) = lim
n→+∞

f(xn)
)

.

Citons quelques exemples aussi simples qu’utiles de fonctions continues. La proposition
précédente ainsi que les propriétés de la convergence (la proposition 1.5.3) sont clés à la vérification
de leur continuité. Ces exemples et d’autres seront abordés en détail en cours et en travaux di-
rigés. Notons que, sauf mention contraire, p, q sont arbitrairement fixés dans N∗.

1. La fonction identité :
f : Rp −→ Rp

x 7−→ x

2. La fonction constante, c étant un point fixé dans Rq

f : Rp −→ Rq

x 7−→ c

3. La projection sur la ième coordonnée (1 ≤ i ≤ p)

πi : Rp −→ Rq

x = (x1, . . . , xi, . . . , xp) 7−→ xi

4. La somme dans Rp

+ : Rp × Rp −→ Rp

(x, y) 7−→ x + y

5. Le produit dans R
. : R2 −→ R

(x, y) 7−→ xy

2.4 Opérations sur les limites

Les diverses opérations telles que la somme, le produit, le quotientement, la composition des
fonctions ont des effets sur les limites qui sont réminiscentes de ce qui se passe dans le cas des
fonctions d’une seule variable... quitte à prendre soin de certaines subtilités. Comme c’est souvent
fait en mathématiques, elles permettent d’étudier des propriétés des fonctions “compliquées”, qui
sont déjà connues pour celles qui sont plus “simples”. La section suivante suit la même approche
dans l’étude de la continuité.

Proposition 2.4.1 Soient p, q ∈ N∗, D ⊂ Rp, g, f deux fonctions de Rp vers Rq définies sur D
et a un point adhérent à D. S’il existe deux points lf et lg dans Rq telles que

lim
x→a

f(x) = lf et lim
x→a

g(x) = lg ,

alors
1. limx→a(f + g)(x) = limx→a(f(x) + g(x)) = lf + lg ;
2. pour q = 1, limx→a(fg)(x) = limx→a(f(x).g(x)) = lf .lg ;
3. pour q = 1 et à condition qu’il existe un voisinage de a où g(x) 6= 0,

limx→a(f/g)(x) = limx→a(f(x)/g(x)) = lf/lg.

Proposition 2.4.2 Soient m, p, q ∈ N∗, Df ⊂ Rm, Dg ⊂ Rp, f et g deux fonctions de Rm vers
Rp et de Rp vers Rq, définies sur Df et Dg respectivement. Si a ∈ Df , b ∈ Dg , l ∈ Rq ,
limx→a f(x) = b , limy→b g(y) = l et f(Df ) ⊂ Dg (en d’autres termes, la composition g ◦ f est
définie sur Df ), alors

lim
x→a

(g ◦ f)(x) = l .

Les propositions 2.4.1 et 2.4.2 fournissent des règles de calcul pratiques pour le calcul des
limites qui ont des conséquences sur la continuité aussi.
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2.5 Opérations sur les fonctions continues

Les propositions 2.4.1 et 2.4.2 s’adaptent à la discussion de la continuité et permettent de
conclure la continuité des fonctions “compliquées” à partir des fonctions “simples”.

Proposition 2.5.1 Soient p, q ∈ N∗, D ⊂ Rp, g, f deux fonctions de Rp vers Rq définies sur
D, et a ∈ D. Si f et g sont continues en a, alors

1. f + g est continue en a ;

2. pour q = 1, fg est continue en a ;

3. pour q = 1 et à condition qu’il existe un voisinage de g(a) où g(x) 6= 0, f/g est continue
en a.

Proposition 2.5.2 Soient m, p, q ∈ N∗, Df ⊂ Rm, Dg ⊂ Rp, f et g deux fonctions de Rm vers
Rp et de Rp vers Rq, définies sur Df et Dg respectivement. Si a ∈ Df , b ∈ Dg, f(a) = b, f est
continue en a, g est continue en f(a), et f(Df ) ⊂ Dg (en d’autres termes, la composition g ◦ f
est définie sur Df ), alors g ◦ f est continue en a.

Proposition 2.5.3 Soient p, q ∈ N∗, D ⊂ Rp, f1, . . . , fq des fonctions de Rp dans R définies
respectivement sur Di (1 ≤ i ≤ q), et a ∈ D = D1∩ . . .∩Dq. Alors toutes les fonctions f1, . . . , fq

sont continues en a si et seulement si la fonction

f : D −→ Rq

x 7−→ (f1(x), . . . , fq(x))

est continue en a.

Des applications des trois propositions précédentes seront données en cours et en travaux
dirigés. La discussion qui précède ainsi que les exemples somme et produit de la dernière section
permettent de vérifier rigoureusement en utilisant un raisonnement par récurrence sur les degrés
et sur le nombre de monômes que tout polynôme de p variables (p ∈ N∗) définit une fonction
continue sur Rp.

2.6 Fonctions continues et topologie

Dans tout domaine des mathématiques, les notions principales sont liées à des familles par-
ticulières de fonctions. En analyse, les notions topologiques, donc les notions qui sont définies
à partir des notions d’ensemble fermé et d’ensemble ouvert sont étroitement liées aux fonctions
continues. Le théorème suivant très important illustre bien ce lien.

Théorème 2.6.1 (Caractérisation topologique des applications continues) Soient p, q ∈
N∗, et f : Rp −→ Rq une application. Les conditions suivantes sont équivalentes :

1. f est une application continue ;

2. si O est une partie ouverte de Rq, alors il en est de même pour f−1(O) ;

3. si F est une partie fermée de Rq, alors il en est de même pour f−1(F ).

Nous admettrons ce théorème bien que sa preuve soit à la portée de nos connaissances. Ceux
qui s’interessent à la connaitre peuvent s’adresser aux pages des années précédentes. Ce qui est
important est de comprendre bien son énoncé et de pouvoir l’appliquer correctement.

Illustrons l’utilité pratique du théorème 2.6.1 en l’appliquant aux lignes de niveau : toute
ligne de niveau de toute fonction f : R2 −→ R continue sur un domaine fermé (par exemple R2

tout entier) est un fermé de R2.
Le théorème 2.6.1 a beaucoup d’autres applications que nous verrons tout au long de ce

cours. Néanmoins, il faut bien comprendre ses hypothèses et en savoir la portée. Par exemple,
l’énoncé ne dit aucunement que l’image directe d’un ouvert (resp. fermé) est ouverte (resp.
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fermée). Donnons un exemple très simple. Soient p, q ∈ N∗ et c ∈ Rq un point fixé. Considérons
l’application constante

f : Rp −→ Rq

x 7−→ c

L’espace Rp est un ouvert de Rp. Son image directe sous f est le singleton {c} qui n’est pas un
ouvert de Rq.

Pour continuer notre étude, nous introduisons une notion fondamentale, celle d’une partie
compacte de Rp (plus généralement, un espace normé de dimension finie).

Définition 2.6.2 (Parties compactes de Rp) Un ensemble K dans Rp est dit compact si K
est fermé et borné.

Cette définition est un mensonge ! Non, pas tout à fait, c’est un cas particulier de la no-
tion générale d’ensemble compact. Celle-ci sera donnée au cours de topologie, et pour mieux
l’apprécier il est indispensable de comprendre et de retenir toutes les propriétés des ensembles
compacts de notre cas particulier.

Commençons par une caractérisation très utile dont nous admettrons la preuve :

Théorème 2.6.3 Soient p ∈ N∗ et K ⊂ Rp. Alors K est compact si et seulement si, de toute
suite (xn)n∈N∗ dans K (en d’autres termes, pour tout n ∈ N, xn ∈ K), on peut extraire une
suite convergente.

Illustrons ce théorème par un exemple très simple. L’intervalle [0, 1] est à la fois fermé et
borné dans R. Il est donc compact. Voici une suite très simple

xn = 0 si n est pair ; xn = 1 si n est impair .

Les suites constantes de valeur 0 et 1 respectivement sont deux sous-suites convergentes. Dans
ce cas, c’est presque évident. Ce qui est remarquable est que, d’après le théorème 2.6.3, nous
pouvons extraire de telles sous-suites de chaque suite dans [0, 1].

Ce qui n’était pas en général vrai pour les ensembles fermés ou bornés l’est pour les ensembles
compacts :

Proposition 2.6.4 (Parties compactes et fonctions continues) Soient p, q ∈ N∗ et f :
Rp −→ Rq une application continue sur une partie D de Rp. Si K est un compact de Rp contenu
dans D, alors f(K) est aussi compact.

La preuve de cette proposition sera admise. Pour mieux apprécier son importance, il suffit de
se rappeler que l’image par rapport à une fonction continue d’un fermé n’est pas nécessairement
un fermé, et que l’image d’un ensemble borné n’est pas nécessairement bornée. Voici deux
exemples :

1.
f : R −→ R

x 7−→ 1
x2+1

Notez que f est continue en tout point de R mais que f(R) =]0, 1].

2.
g : ]0, 1] −→ R

x 7−→ 1
x

La fonction g est continue sur son domaine qui est une partie bornée de R. Néanmoins,
son image ne l’est pas.

Avant de continuer, soulignons que la proposition 2.6.4 ne dit rien sur les images inverses
des ensembles compacts. En effet, il n’est pas nécessaire que l’image inverse d’un compact soit
compact. L’application constante ci-dessus fournit un exemple.

La proposition 2.6.4 a une conséquence importante et utile en pratique :
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Corollaire 2.6.5 Soient p ∈ N∗, f : Rp −→ R une application continue sur une partie D de Rp.
Si K est une partie compacte de Rp contenue dans D, alors f est bornée sur K et elle atteint
ses bornes sur K. En d’autres termes, il existe a, b ∈ K tels que pour tout x ∈ K,

f(a) ≤ f(x) ≤ f(b) .

Pour mieux apprécier la notion suivante nous retournons au deuxième exemple ci-dessus.
Nous pouvons prolonger l’application g ci-dessus à l’intervalle [0, 1] qui est compact.

g : ]0, 1] −→ R

x 7−→
{

1
x si x ∈]0, 1]
c si x = 0

(c est un réel arbitrairement fixé). Néanmoins, ce prolongement n’est plus continu.

Définition 2.6.6 (Prolongement par continuité) Soient p, q ∈ N∗, D ⊂ Rp, f une fonction
de Rp vers Rq définie sur D. Si a est adhérent à D et que nous pouvons définir

f : D ∪ {a} −→ Rq

x 7−→
{

f(x) si x ∈ D
c si x = a

de telle façon que f soit continue sur D ∪ {a}, alors la fonction f est dite le prolongement par
continuité de f au point a.

La dernière notion topologique de ce chapitre sera importante dans le calcul différentiel et
dans l’intégration. Il s’agit de la connexité par arcs. C’est un cas particulier de la notion de
connexité qui est plus géométrique et suffisant pour notre cours.

Définition 2.6.7 (Arcs dans Rq) Soit [a, b] un intervalle fermé et borné de R. On appelle arc
une fonction γ : [a, b] → Rq (q ∈ N∗) continue sur [a, b]. Les points γ(a) et γ(b) sont dits les
extrémités de l’arc. L’arc γ est dit de joindre γ(a) à γ(b).

La notion d’arc ne vous est pas inconnue :
1.

γ : [0, 1] −→ R2

t 7−→ (cos(2πt), sin(2πt))

Dans cet exemple, les extrémités sont le même point : γ(0) = γ(1) = (1, 0).

2. Le segment de droite joignant deux points x = (x1, . . . , xq) et y = (y1, . . . , yq) dans Rq

(q ∈ N∗).
γ : [0, 1] −→ Rq

t 7−→ x + t(y − x) = ty + (1− t)x

Les extrémités sont γ(0) = x et γ(1) = y.

Définition 2.6.8 (Parties connexes par arcs de Rq) Soit C ⊂ Rq. L’ensemble C est dit
connexe par arcs si toute paire de points sont joignables par un arc dans C. En d’autres termes,
l’ensemble d’arrivée de la fonction qui définit l’arc en question est contenue dans C.

Le deuxième exemple ci-dessus nous fournit immédiatement un exemple d’ensemble connexe
par arcs dans Rq, notamment Rq. Voici quelques exemples et contrexemples :

1. Tout segment de droite dans Rq est connexe par arcs ; en particulier un singleton dans Rq

est connexe par arcs.

2. Si A = {x, y} est une partie de Rp de cardinal 2, alors A n’est pas connexe par arcs. Un
corollaire immédiat de ceci est que la même conclusion est vraie pour un ensemble fini à
au moins deux éléments.
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3. Soit P un point fixé de Rq (q ≥ 2), alors l’ensemble Rq \ {P} est connexe par arcs.

4. L’ensemble R∗ n’est pas connexe par arcs.

5. L’ensemble R2 \B((0, 0), 1) est connexe par arcs.

Comment vérifier tout cela ? Les énoncés suivants sont indispensables dans l’étude de la
connexité par arcs :

Proposition 2.6.9 (Connexité par arcs et fonctions continues) Soient p, q ∈ N∗, f une
application de Rp vers Rq continue sur une partie D de Rp. Si D est connexe par arcs, alors
f(D) est connexe par arcs aussi.

Théorème 2.6.10 (Connexité par arcs dans R) Une partie de R est connexe par arcs si et
seulement si c’est un intervalle.

Théorème 2.6.11 (Le théorème des valeurs intermédiaires) Soient p ∈ N∗, D une partie
de connexe par arcs de Rp. Si f : Rp → R est une fonction continue sur D et x1, x2 ∈ D, alors
pour tout nombre y entre f(x1) et f(x2), il existe x ∈ D tel que f(x) = y.

La preuve du théorème des valeurs intermédiaires découle des deux énoncés précédents. Celle
du théorème 2.6.10 nécessite plus que nous en verrons dans ce cours.



Chapitre 3

Calcul différentiel

Dans ce chapitre, nous étendrons les notions de dérivée et de fonction dérivable aux fonctions
de plusieurs variables. L’approche la plus näıve, qui consiste à dire qu’une fonction de plusieurs
variables est dérivable si elle l’est par rapport à chacune de ses variables, s’avère trop faible.
Néanmoins, elle fournit un outil pratique : les dérivées partielles.

Pour aboutir à une solide notion de différentiabilité, nous aurons recours à un aspect algébrique
de la dérivée. Celle-ci définit une application linéaire. Nous commençons donc en essayant de
motiver ceci sur un exemple simple.

3.1 Dérivabilité des fonctions d’une seule variable et à va-
leurs réelles ; rappels, une nouvelle conception

Voici une fonction très simple d’une seule variable,

f : R −→ R
x 7−→ x3

... si simple que nous savons tous la dériver :

f ′(x) = 3x2 .

Mais qu’est-ce que cela veut dire ? Comment l’interpréter ?
Tout d’abord, il s’agit d’une nouvelle fonction avec sa propre loi, son propre domaine, sa

propre arrivée et ses propriétés. Elle associe à chaque nombre réel a la valeur réelle 3a2. Pour
obtenir cette définition, nous calculons une limite :

lim
x→a ; x 6=a

x3 − a3

x− a
= 3a2 .

Ceci équivaut à

lim
x→a ; x 6=a

f(x)− f(a)− f ′(a)(x− a)
x− a

= 0 ,

soit encore
f(x) = f(a) + f ′(a)(x− a) + o(x− a) .

Les deux premiers termes de l’expression forment l’équation de la tangente au graphe de f au
point (a, f(a)). La pente de cette droite est f ′(a), et à chaque réel a correspond une application
linéaire :

a 7−→ f ′(a) : R −→ R
t 7−→ f ′(a).t

Cette observation souligne l’aspect fondamental de la différentiation. Il s’agit d’associer à chaque
point du domaine, une application linéaire dont les entrées de la matrice représentante seront
déterminées en utilisant les dérivées partielles.
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3.2 Dérivées partielles

Les dérivées partielles essayent d’étendre la notion de différentiation aux fonctions de plu-
sieurs variables. Quoique trop faible pour caractériser la différentiabilité en plusieurs variables,
elles fournissent un outil indispensable pour la détermination de la matrice jacobienne.

Définition 3.2.1 (Dérivées partielles en un point) Soient p ∈ N∗, U un ouvert de Rp et f
une fonction de Rp vers R définie sur U . La fonction f est dite d’avoir une dérivée partielle en
a = (a1, . . . , ap) par rapport la ième variable si la fonction

t 7→ f(a1, . . . , ai−1, t, ai+1, . . . , ap)

est dérivable en ai, en d’autres termes, si la limite

lim
t→ai

f(a1, . . . , ai−1, t, ai+1, . . . , ap)− f(a)
t− ai

existe. On note cette limite
∂f

∂xi
(a) ou ∂if(a) ou Dif(a) .

Cette notion de dérivée utilise de façon essentielle la notion de dérivée des fonctions d’une
seule variable. Elle permet de définir une nouvelle fonction de Rp vers R quand elle existe sur
un ouvert :

∂if : U −→ R
a 7−→ ∂if(a) .

Voici quelques exemples :
1.

f : R3 −→ R
(x1, x2, x3) 7−→ 3x4

1 + x3
2x3 + x2

1x
5
3

.

∂1f : R3 −→ R
(x1, x2, x3) 7−→ 12x3

1 + 2x1x
5
3

;

∂2f : R3 −→ R
(x1, x2, x3) 7−→ 3x2

2x3
; ∂3f : R3 −→ R

(x1, x2, x3) 7−→ x3
2 + 5x2

1x
4
3

.

2.
g : R2 −→ R

(x, y) 7−→
{ xy

x2+y2 si (x, y) 6= (0, 0)
0 sinon

.

∂1g : R2 −→ R

(x, y) 7−→
{

y y2−x2

(x2+y2)2 si (x, y) 6= (0, 0)
0 sinon

.

∂2g : R2 −→ R

(x, y) 7−→
{

x x2−y2

(x2+y2)2 si (x, y) 6= (0, 0)
0 sinon

.

Nous n’avons pas encore défini une notion de “dérivée” pour les fonctions de plusieurs variables,
mais quelle que soit la définition qui sera introduite, la fonction g ne doit pas être “dérivable”
en (0, 0) puisqu’elle n’y est pas continue. Or, remarquablement, les dérivées partielles de g sont
toutes définies en tout point de R2. Observons quand-même que les dérivées partielles de f ne
sont pas continues en (0, 0).

La conclusion que nous tirons du deuxième exemple est que pour être “dérivable” au voisi-
nage d’un point il ne doit pas suffire pas d’avoir toutes les dérivées partielles sur ce voisinage.
Les dérivées partielles dépendent des directions, donc d’un choix de chemins, déterminés en
l’occurrence les axes de coordonnées. Ces remarques seront précisées au long des sections qui
viennent.
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3.3 Différentiabilité, différentielle d’une fonction de plu-
sieurs variables

Nous commençons immédiatement avec la “bonne” définition de la dérivabilité. Dès le début,
les liens avec l’algèbre linéaire seront visibles.

Définition 3.3.1 (Différentiabilité en un point) Soient p, q ∈ N∗, U ⊂ Rp un ouvert, f
une fonction de Rp vers Rq définie sur U , et a ∈ U . La fonction f est dite différentiable en a
s’il existe une application linéaire notée L ∈ L(Rp,Rq) telle que

lim
x7→a

||f(x)− f(a)− L(x− a)||Rq

||x− a||Rp
= 0 ;

En d’autres termes, s’il existe L ∈ L(Rp,Rq) telle que

||f(x)− f(a)− L(x− a)|| = o(||x− a||) .

La fonction f est dite différentiable sur U si elle est différentiable en tout point de U .

Voici quelques remarques immédiates :

1. la différentiabilité ne dépend pas de la norme choisie ;

2. si p = q = 1, alors la notion de différentiabilité équivaut à la dérivabilité usuelle.

3. Nous pouvons introduire la différentiabilité en un point en suivant une exposition légèrement
différente de celle de la définition 3.3.1. En gardant la même notation mais posant h = x−a,
nous arrivons à l’identité

lim
‖h‖7→0

||f(a + h)− f(a)− L(h)||Rq

||h||Rp
= 0 .

Si alors nous posons R(h) = f(a + h) − f(a) − L(h) (la fonction reste), la limite nulle
équivaut à ‖R(h)‖Rq = o(‖h‖Rp), et l’égalité suivante est vraie :

f(a + h) = f(a) + L(h) + R(h) .

4. La notion de différentiabilité en un point ne dépend pas de choix de normes en Rp ni
en Rq. En d’autres termes, si ‖ ‖′Rp

et ‖ ‖′Rq
étaient deux autres normes sur Rp et Rq

respectivement, alors

lim
x 7→a

||f(x)− f(a)− L(x− a)||′Rq

||x− a||′Rp

= 0 ,

équivalemment,

lim
‖h‖7→0

||f(a + h)− f(a)− L(h)||′Rq

||h||′Rp

= 0 .

En effet, l’équivalence des normes (ce qui est toujours le cas sur les espaces normés de
dimension finie) implique l’existence de r, s ∈ R∗+ tels que r||f(x)− f(a)−L(x− a)||′Rq ≤
||f(x)− f(a)− L(x− a)||Rq pour tout x ∈ Rp et ||x− a||Rp ≤ s||x− a||′Rp . Il en découle
que

0 ≤
r||f(x)− f(a)− L(x− a)||′Rq

s‖x− a‖′Rp

≤ ||f(x)− f(a)− L(x− a)||Rq

‖x− a‖Rp
.

Or

lim
x→a

||f(x)− f(a)− L(x− a)||Rq

‖x− a‖Rp
= 0 .
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Les lois de gendarmerie condamne alors
r||f(x)−f(a)−L(x−a)||′Rq

s‖x−a‖′Rp
à tendre vers 0. La même

conclusion s’ensuit pour
||f(x)−f(a)−L(x−a)||′Rq

‖x−a‖′Rp
. Notons que dans ce raisonnement la même

application linéaire L a été utilisée.

La propriété bien connue des fonctions dérivables d’une seule variable et à valeurs réelles
s’étend aux fonctions de plusieurs variables :

Proposition 3.3.2 Si f est différentiable en a, alors elle y est continue.

Voici une autre propriété fondamentale :

Proposition 3.3.3 (Unicité de la différentielle) Nous gardons la même notation dans la
défition 3.3.1. Si la fonction f : U −→ Rq est différentiable en a, alors l’application linéaire
associée à ce point est unique.

Cette unicité permet de définir sans ambigüıté la fonction différentielle.

Définition 3.3.4 (Différentielle d’une fonction en un point) Soient p, q ∈ N∗, U ⊂ Rp

un ouvert, f une fonction de Rp vers Rq définie et différentiable sur U . L’application linéaire
uniquement associée à chaque point a est dite la différentielle de f en a ; l’application qui associe
à a ∈ U la différentielle de f en a est dite la différentielle de f .

Nous utiliserons la notation suivante :

df : U −→ L(Rp,Rq)
a 7−→ df(a)

Les exemples suivants seront détaillés en cours :

1. Soit p ∈ N∗,
f : Rp −→ Rp

x 7−→ x .

La fonction f est différentiable en tout point de Rp. L’application linéaire qui en témoigne
est la matrice identité. Plus précisément, en tout point x ∈ Rp, df(x)(h) = h.

2. L’exemple précédent se généralise à une application linéaire quelconque. En d’autres termes,
si nous considérons la fonction

f : Rp −→ Rq

x 7−→ Ax ,

où A est une matrice q×p, alors elle est différentiable en tout point x ∈ Rp et sa différentielle
en un tel point est elle-même

df(x) : Rp −→ Rq

h 7−→ Ah .

Notons que quand p = q = 1, cette conclusion est un cas particulier que vous connaissez
bien : la dérivée de la fonction x 7→ Ax (A ∈ R) est la fonction constante x 7→ A, et A est
la pente de la droite déterminée par le graphe de la fonction.
On peut se poser la question de ce qui est constant dans le cas général. C’est la fonction
différentielle. En effet,

df : Rp −→ L(Rp,Rq)
x 7−→ df(x) ,

et quel que soit le point x ∈ Rp, df(x) est la même application linéaire.
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3. Puisque nous parlons des constantes, il est bon moment d’étudier la différentiabilité de

f : Rp −→ Rq

x 7−→ c ,

où c est un point fixé de Rq. Quelle est sa différentielle à votre avis ?

4.
g : R2 −→ R

(x1, x2) 7−→ x2
1 + x2

2
.

La fonction g est différentiable en tout point a de R2. Si a = (a1, a2) est un tel point, alors
la différentielle de g en a, dg(a), est représentée dans la base canonique par la matrice
1× 2 (2a1 2a2) = (∂1g(a) ∂2g(a)) :

dg(a) : R2 −→ R

(h1, h2) 7−→ (2a1 2a2)
(

h1

h2

)
.

5. Une fonction d’une seule variable mais à valeurs vectorielles est de la forme

f : R −→ Rp

x 7−→ (f1(x), . . . , fp(x)) ,

avec les fi qui sont des fonctions à valeurs réelles. Si en x ∈ R, chaque fi est dérivable,
alors la fonction f est différentiable en x et

df(x) : R −→ Rp

h 7−→




...
f ′i(x)h

...




1≤i≤p

.
.

6. Cet exemple concerne une généralisation du produit de deux nombres réels. Nous définissons
la fonction suivante :

B : Rp × Rp −→ R
(x, y) 7−→ x.y ,

où . est le produit scalaire. Plus explicitement, si x = (x1, . . . , xp) et y = (y1, . . . , yp) par
rapport à la base canonique, alors x.y =

∑p
i=1 xiyi. Alors

dB : Rp × Rp −→ L(Rp × Rp,R)
(x, y) 7−→ dB(x, y) ,

et en tout point (x, y) ∈ Rp × Rp,

dB(x, y) : Rp × Rp −→ R

(h, k) 7−→ (y x)
(

h
k

)
= y.h + x.k .

3.4 Liens avec dérivées partielles ; matrice jacobienne ; fonc-
tions de classe C1

La proposition 3.3.2 et le deuxième exemple de la section 3.2 montrent clairement qu’il n’est
pas suffisant d’avoir des dérivées partielles en un point pour y être différentiable. Néanmoins,
les liens sont forts :
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Proposition 3.4.1 Soient p ∈ N∗, U un ouvert dans Rp, a ∈ U et f une fonction de Rp

vers R définie sur U . Si f est différentiable au point a, alors ses dérivées partielles en ce point
sont définies. En plus, la matrice représentant l’application linéaire df(a) par rapport à la base
canonique est

(∂1f(a) . . . ∂pf(a)) .

Résumons : si une fonction f est différentiable en un point a, alors sa différentielle est déterminée
par les valeurs des dérivées partielles en ce point. Celles-ci y sont définies. Par contre, la seule
existence des dérivées partielles en un point n’entrâıne pas la différentiabilité en ce point.
D’autres conditions seront nécessaires. Avant d’introduire des conditions supplémentaires, nous
présenterons le cas général de la proposition 3.4.1.

Nous travaillons avec la même notation, le seul changement étant le suivant : la fonction f a
Rq comme ensemble d’arrivée où q est un naturel non nul arbitraire. Elle est toujours supposée
être différentiable en a. Notre fonction est donc de la forme :

f : U −→ Rq

a 7−→ (f1(a), . . . , fq(a)) .

Alors, la différentielle de f est

df : U −→ L(Rp,Rq)
a 7−→ df(a)

avec df(a) représentée par la matrice



∂1f1(a) . . . ∂pf1(a)
...

... . . . ∂jfi(a) . . .
...

...
∂1fq(a) . . . ∂pfq(a)




1≤i≤q ; 1≤j≤p

soit encore 


∂f1
∂x1

(a) . . . ∂f1
∂xp

(a)
...

... . . . ∂fi

∂xj
(a) . . .

...
...

∂fq

∂x1
(a) . . .

∂fq

∂xp
(a)




1≤i≤q ; 1≤j≤p

par rapport à la base canonique. Cette matrice est dite la matrice jacobienne de f au point a.
Il est temps d’introduire une condition suffisante de différentiabilité qui utilise les dérivées

partielles. Une définition d’abord :

Définition 3.4.2 (Fonctions de classe C1 sur un ouvert) Soient p, q ∈ N∗, U un ouvert de
Rp et f une fonction de Rp vers Rq définie sur U . On dira que f est continûment différentiable
sur U , ou de classe C1 sur U , si

df : U −→ L(Rp,Rq)
a 7−→ df(a)

est une application continue sur U . La notation sera f ∈ C1(U).

La continuité de df a un sens puisqu’il s’agit d’une application de Rp vers Rpq, deux espaces
normés. Muni de cet arsenal, nous pouvons énoncer un théorème qui sera de grande valeur
pratique :
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Théorème 3.4.3 Soient p, q ∈ N∗, U un ouvert non vide de Rp, f une fonction dont toutes les
dérivées partielles sont définies sur U . Si ces dérivées partielles sont continues sur U , alors f
est de classe C1 sur U .

Certaines remarques doivent être immédiatement faites :

1. La conclusion du théorème est strictement plus forte que la différentiabilité sur U . Des
exemples de fonctions différentiables sans l’être continûment seront étudiés aux travaux
dirigés.

2. Le théorème 3.4.3 nécessite la continuité des dérivées partielles sur un ouvert non vide,
non seulement à un point.

3. Plus tard, nous introduirons la notion de fonction de classe Ck pour tout k ∈ N∗ en ayant
recours aux dérivées partielles.

Notons aussi que le théorème 3.4.3 est d’une grande valeur pratique. Quand la continuité
des dérivées partielles sur un ensemble ouvert non vide est connu, il n’est plus nécessaire de
vérifier la différentiabilité ni de déterminer la différentielle en appliquant la définition 3.3.1. Il
suffit de calculer la matrice jacobienne. L’exemple suivant sur les coordonnées polaires est une
bonne illustration de cette économie d’énergie.

La différentielle de la fonction

f : R∗+×]0, 2π[ −→ R2

(r, t) 7−→ (r cos t, r sin t)

en un point (r, t) ∈ R∗+×]0, 2π[ est l’application linéaire déterminée par la matrice
(

cos t −r sin t
sin t r cos t

)

C’est un bon exercice d’essayer de démontrer sa différentiabilité à partir de la seule définition
3.3.1.

3.5 Opérations sur les fonctions différentiables ; opérations
sur les fonctions de classe C1

Cette section a une valeur pratique importante pour calculer des différentielles. Elle illustre
aussi les liens forts entre notre cours et l’algèbre linéaire, un phénomène que nous continuerons
de rencontrer.

Proposition 3.5.1 (Sommes et produits par les scalaires) Soient p, q ∈ N∗, U, V deux
ouverts dans Rp, f, g deux fonctions différentiables (de classe C1) sur U et V respectivement.
Alors f + g, définie sur U ∩ V par la loi x 7→ (f + g)(x) = f(x) + g(x) est différentiable (resp.
de classe C1) sur U ∩ V . Sa différentielle est définie comme suit :

d(f + g) : U ∩ V −→ L(Rp,Rq)
x 7−→ (df + dg)(x) = df(x) + dg(x) .

En pratique il s’agit de la somme de deux matrices jacobiennes :



∂1f1(x) . . . ∂pf1(x)
...

... . . . ∂jfi(x) . . .
...

...
∂1fq(x) . . . ∂pfq(x)




+




∂1g1(x) . . . ∂pg1(x)
...

... . . . ∂jgi(x) . . .
...

...
∂1gq(x) . . . ∂pgq(x)




=
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


∂1(f1 + g1)(x) . . . ∂p(f1 + g1)(x)
...

... . . . ∂j(fi + gi)(x) . . .
...

...
∂1(fq + gq)(x) . . . ∂p(fq + gq)(x)




Si λ ∈ R, alors la fonction λf définie sur U par x 7→ λ.f(x) est différentiable (resp. de classe
C1) sur U de différentielle

d(λf) : U −→ L(Rp,Rq)
x 7−→ λdf(x) .

En pratique il s’agit de multiplier la matrice jacobienne par une matrice scalaire :




λ 0 . . . 0 0
. . .
0 λ 0

. . .
0 . . . 0 λ




q×q




∂1f1(x) . . . ∂pf1(x)
...

... . . . ∂jfi(x) . . .
...

...
∂1fq(x) . . . ∂pfq(x)




q×p

=




λ∂1f1(x) . . . λ∂pf1(x)
...

... . . . λ∂jfi(x) . . .
...

...
λ∂1fq(x) . . . λ∂pfq(x)




q×p

=




∂1f1(x) . . . ∂pf1(x)
...

... . . . ∂jfi(x) . . .
...

...
∂1fq(x) . . . ∂pfq(x)




q×p




λ 0 . . . 0 0
. . .
0 λ 0

. . .
0 . . . 0 λ




p×p

Proposition 3.5.2 (Composition) Soient p, q, r ∈ N∗, U et V des ouverts de Rp et Rq respec-
tivement. Si f et g sont deux fonctions différentiables (de classe C1) sur U et V respectivement,
et que f(U) ⊂ V , alors g ◦ f est différentiable (resp. C1) sur U de différentielle

d(g ◦ f) : U −→ L(Rp,Rr)
x 7−→ dg(f(x)) ◦ df(x) .

La deuxième composition est celle de deux applications linéaires, et en pratique, correspond
au produit des matrices jacobiennes :




∂1(g ◦ f)1(x) . . . ∂p(g ◦ f)1(x)
...

... . . . ∂j(g ◦ f)i(x) . . .
...

...
∂1(g ◦ f)r(x) . . . ∂p(g ◦ f)r(x)




r×p

=
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


∂1g1(f(x)) . . . ∂qg1(f(x))
...

... . . . ∂jgi(f(x)) . . .
...

...
∂1gr(f(x)) . . . ∂qgr(f(x))




r×q




∂1f1(x) . . . ∂pf1(x)
...

... . . . ∂jfi(x) . . .
...

...
∂1fq(x) . . . ∂pfq(a)




q×p

Nous rencontrerons souvent deux applications :

1. une formule qui lie la différentielle d’une fonction à valeurs réelles et différentiable sur un
ouvert à ses dérivées partielles ;

2. changement de coordonnées.

3.6 Le théorème des accroissements finis

Rappelons d’abord le théorème des accroissements finis dans le cas particulier des fonctions
d’une seule variable et à valeurs réelles :

Fait 3.6.1 Soit f une fonction de R vers R, définie et continue sur un intervalle [a, b] ⊂ R (
a, b ∈ R et a < b ), et dérivable sur l’intérieur ]a, b[ du même intervalle. Alors il existe c ∈]a, b[
tel que

f ′(c) =
f(b)− f(a)

b− a
.

C’est un résultat simple et fondamental dont une conséquence (parmi d’autres) est souvent
utilisée : une fonction d’une seule variable et à valeurs réelles est constante sur un intervalle ouvert
si et seulement si sa dérivée est nulle sur cet intervalle. La généralisation que nous étudierons est
aussi importante et a des conséquences similaires... quitte à trouver des conditions suffisantes
convenables.

Théorème 3.6.2 (Le théorème des accroissements finis pour les fonctions de plu-
sieurs variables et à valeurs réelles) Soient p ∈ N∗, U un ouvert de Rp, f une application
différentiable sur U . Supposons aussi que U contient deux points P et Q liés par un arc γ dans
U , γ : [a, b] −→ U avec γ différentiable sur l’intervalle ouvert ]a, b[. Alors il existe t0 ∈]a, b[ tel
que

f(γ(b))− f(γ(a)) = df (γ(t0))γ′(t0) (b− a) ,

où

γ′(t) = dγ (t) =




γ′1(t)
...

γ′p(t))


 .

Pour mieux apprécier cet énoncé, c’est un bon exercice de retrouver le cas du fait 3.6.1 comme
cas particulier de la conclusion générale du théorème 3.6.2. D’autres exemples seront étudiés en
cours non seulement pour illustrer le théorème des accroissements finis mais aussi en vue des
conséquences géométriques des notions de ce chapitre.

Maintenant nous citerons deux conséquences de ce théorème liant l’invariance des valeurs
d’une fonction de plusieurs variables à sa différentielle. Nous le ferons en deux étapes dont la
première est l’occasion d’introduire la notion importante de convexité

Définition 3.6.3 (Parties convexes de Rp) Une partie C de Rp est dite convexe si pour toute
paire de points x1 x2 dans C, le segment de droite {(1− t)x1 + tx2|t ∈ [0, 1]} qui joint x1 à x2

est contenu dans C.
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Un exemple de partie convexe est la boule ouverte (resp. fermée) de centre x et de rayon r. En
effet, pour toute paire de points a et b dans B(x, r) (resp. B(x, r)) et toute valeur de t ∈ [0, 1]

‖a(1− t) + bt− x‖ < r (resp. ≤ r) .

Corollaire 3.6.4 Soient p ∈ N∗, U un ensemble convexe et ouvert de Rp, f une application de
différentielle nulle sur U . Alors, f est constante sur U .

Le deuxième corollaire est une généralisation du premier. Néanmoins, sa preuve se réduit en
utilisant la notion générale de compacité, au cas particulier du corollaire 3.6.4

Corollaire 3.6.5 Soient p ∈ N∗, U un ensemble connexe par arcs et ouvert de Rp, f une ap-
plication de différentielle nulle sur U . Alors, f est constante sur U .

3.7 Aspects géométriques ; le gradient

La différentielle d’une fonction de plusieurs variables et à valeur réelles, disons de Rp vers R,
est une fonction qui associe une matrice ligne 1×p à chaque point de Rp où elle est différentiable.
Nous pouvons traiter une telle matrice comme un point ou vecteur, donc un élément de Rp, ce
qui permet de l’interpréter et de l’utiliser de façon plus géométrique.

Définition 3.7.1 (Le vecteur gradient) Soient p ∈ N∗, U un ouvert de Rp, f une fonction
de Rp vers R différentiable U . Pour tout a ∈ U , le vecteur (∂1f(a), . . . , ∂pf(a)) est dit le gradient
de f . Il est noté ∇f(a) ou gradf(a).

De façon similaire à la différentielle, le vecteur gradient permet de définir une fonction :

gradf : U −→ Rp

a 7−→ ∇f(a) = (∂1f(a), . . . , ∂pf(a))

Avec cette notation, la définition de la différentielle d’une fonction à valeurs réelles s’écrit aussi
da la manière suivante :

df : U −→ L(Rp,R)
a 7−→ ∇f(a)

Pour tout élément (h1, . . . , hp) de Rp, nous obtenons l’égalité suivante :

∇f(a)




h1

...
hp


 =

p∑

j=1

∂jf(a)hj .

Remarquablement, l’expression à droite est un produit scalaire, une opération de haute valeur
géométrique qui permet de définir l’angle entre deux éléments de Rp.

Essayons de détailler une illustration des aspects géométriques de la notion de différentiabilité
ainsi que du vecteur gradient. Nous étudierons la notion de plan tangent au graphe d’une fonction
de plusieurs variables et à valeurs réelles.

Rappelons d’abord le cas connu, celui d’une fonction d’une seule variable et à valeurs réelles,
et dérivable en un point. Appelons notre fonction f et le point de dérivabilité a. Nous savons
que l’égalité suivante est vraie :

f(a + h) = f(a) + f ′(a)h + o(h) .

Cette égalité fournit aussi l’approximation linéaire à f au voisinage du point a qui est déterminée
par la droite tangente

{ (h, k) ∈ R2 | k = f(a) + f ′(a)h } .



3.8. DÉRIVÉES DIRECTIONNELLES 29

Si on utilise la terminologie de cette section, le vecteur gradient de f est exactement la pente de
la droite tangente. En d’autres termes, c’est la direction de la droite tangente au point (a, f(a)).

L’observation du paragraphe précédent se généralise sans peine au cas d’une fonction f :
Rp −→ R différentiable en un point a ∈ Rp :

f(a + h) = f(a) + df(a)(h) + o(h)
f(a) + ∇f(a).h + o(h) .

Cette équation nous donne l’approximation linéaire de f au voisinage de a = (a1, . . . , ap)
déterminé par le plan tangent (soit encore l’hyperplan tangent quand p ≥ 3)

{ (h1, . . . , hp, hp+1) ∈ Rp+1 | hp+1 = f(a) +∇f(a).(h1, . . . , hp) } .

Une autre façon décrire l’équation du plan tangent est

{ (h, hp+1) ∈ Rp+1 | (−∇f(a), 1) . (h, hp+1) = f(a) } ,

avec h = (h1, . . . , hp). Si f(a) était 0, alors cette équation serait celle d’une orthogonalité. En
d’autres termes, le vecteur (−∇f(a), 1) est orthogonal au plan tangent au point (a, f(a)). Cette
obervation, appuyée de certains théorèmes, permettra plus tard de parler du vecteur normal à
une surface.

3.8 Dérivées directionnelles

Les dérivées partielles sont des dérivées calculées en suivant une direction particulière le long
d’une droite (ou d’un vecteur à un point). La même idée s’étend à toutes les directions :

Définition 3.8.1 (Dérivées directionnelles à un point) Soient p ∈ N∗, U ⊂ un ouvert de
Rp, f : Rp −→ R définie sur U , et v ∈ Rp \ {(0, . . . , 0)}. La fonction f est dite d’avoir une
dérivée directionnelle au point a ∈ U dans la direction de v si la limite suivante existe :

lim
h→0;h∈R∗

1
h

[f(a + hv)− f(a)] .

Des notations fréquentes sont : f ′v(a), Dvf(a).

Les dérivées directionnelles, comme leur cas particulier qui est celui des dérivées partielles,
sont très utiles dans l’étude des fonctions et de leurs aspects géométriques. Néanmoins, elles
dépendent du choix de direction. En conséquence, leur seule existence est trop faible pour en-
trâıner la différentiabilité.

Voici une proposition qui facilite le calcul des dérivées directionnelles sous des hypothèses
plus fortes :

Proposition 3.8.2 Soient p ∈ N∗, U ⊂ Rp un ouvert de Rp, f : Rp −→ R différentiable sur U .
Alors

Dvf(a) = ∇f(a) . v
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Chapitre 4

Différentielles du second ordre

Dans le chapitre 3, nous avons introduit une bonne notion différentiation pour les fonctions
de plusieurs variables qui ne dépend pas de choix de chemin. Remarquablement, quitte à rai-
sonnablement renforcer les hypothèses, il était possible de trouver des caractérisations de la
différentiabilité en fonction des outils pratiques mais faibles que sont les dérivées partielles : le
théorème 3.4.3.

Une question naturelle qui se pose est si on ne peut pas continuer ce procédé afin de l’étendre
aux “dérivées d’ordres superieurs”, et à la rigueur, introduire une notion de “dérivée partielle
d’ordre supérieur”. C’est ce que nous ferons dans ce chapitre. Encore une fois, les dérivées
partielles seront très utiles.

Il convient de rappeler une subtilité du théorème 3.4.3 et de la notion de fonction de classe
C1. C’est une notion définie sur un ouvert. Sinon, la fonction (x, y) 7→ sin(|xy|) fournit un
contreexemple au théorème 3.4.3.

4.1 Dérivées partielles secondes ; fonctions de classe C2

Définition 4.1.1 (Fonctions de classe C2 sur un ouvert) Soient p, q ∈ N∗, U un ouvert de
Rp. Une fonction f de Rp vers Rq définie sur U est dite de classe C2 sur U , noté f ∈ C2(U), si
la différentielle

df : U −→ L(Rp,Rq)
a 7−→ df(a)

est définie sur U et de classe C1 sur U ; en d’autres termes, si la différentielle seconde

d(df) : U −→ L(Rp,L(Rp,Rq))

est continue en tout point de U .

Comme dans les remarques faites immédiatement après la définition 3.4.2, cette définition a un
sens puisque df est une application de Rp vers Rpq, deux espaces normés.

Telle quelle, la définition 4.1.1 est difficile à appliquer directement dans des cas concrets.
Pour surmonter cette difficulté, comme dans l’étude des fonctions de classe C1, les dérivées
partielles s’avèrent très utiles quitte à leur imposer des hypothèses de continuité. Cette fois-ci
nous utiliserons les dérivées partielles secondes.

Définition 4.1.2 (Dérivées partielles secondes) Soient p, q ∈ N∗, U un ouvert de Rp et f
une fonction de Rp vers Rq définie sur U dont toutes les dérivées partielles

∂jfi : U −→ R (1 ≤ j ≤ p , 1 ≤ i ≤ q)

sont définies sur U .
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Si une telle dérivée partielle admet une dérivée partielle seconde par rapport à sa kième
variable en un point a ∈ U , alors cette dérivée seconde est notée

∂k(∂jfi(a)) = ∂kjfi(a) .

La fonction f est dite d’admettre des dérivées partielles secondes sur U si toutes les dérivées
partielles ∂kjfi sont définies sur U .

Introduisons une autre notation très souvent utilisée pour les dérivées partielles secondes :

∂2fi

∂xj∂xk
(a) = ∂jkfi(a) si j 6= k ;

∂2fi

∂x2
j

(a) = ∂jjfi(a) si j = k ;

Le théorème suivant dont nous admettrons la preuve est analogue au théorème 3.4.3.

Théorème 4.1.3 Soient p, q ∈ N∗, U un ouvert de Rp, f une fonction de Rp vers Rq définie
sur U . Alors f ∈ C2(U) si et seulement si f a des dérivées partielles secondes en tout point de
U et que celles-ci sont continues.

Certaines remarques sont nécessaires :

1. En suivant la même ligne, il est possible d’introduire sur un ouvert U de Rp, les classes
supérieures Ck(U) et les caractériser par les kièmes dérivées partielles. Dans le cas très
particulier des fonctions qui appartiennet à toutes les classes Ck(U), nous parlerons des
fonctions de classe C∞ sur U , noté C∞(U).

2. Notons que C1(U) ) C2(U). La fonction

f : R2 −→ R

(x, y) −→
{

xy x2−y2

x2+y2 si (x, y) 6= (0, 0)
0 si (x, y) = (0, 0)

appartient à C1(R2) \ C2(R2). La vérification de ce phénomène est liée à la différence

∂12f( (0, 0) ) 6= ∂21f( (0, 0) )

C’est en fait le sujet du théorème de Schwarz que nous aborderons sous peu.

4.2 Opérations sur les fonctions de classe C2

Tout se passe comme prévu comme le montre l’énoncé suivant :

Proposition 4.2.1 Soient p, q, r ∈ N∗, U et V des ouverts de Rp et de Rq respectivement.

1. Si f, g ∈ C2(U), alors f + g ∈ C2(U).

2. Si q = 1 et f, g ∈ C2(U), alors f.g ∈ C(U).

3. Si f ∈ C2(U), g ∈ C2(V ) et f(U) ⊂ V , alors g ◦ f ∈ C2(U).

4.3 Le théorème de Schwarz

Dans les remarques après le théorème 4.1.3, nous avons vu que la classe C1 est strictement plus
large que la classe C2. L’outil principal pour détecter des fonctions qui causent cette différence
est le théorème suivant dont la preuve relativement compliquée sera abordée dans le cours de
calcul différentiel en troisième année.
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Théorème 4.3.1 (Le théorème de Schwarz) Soient p, q ∈ N∗, U un ouvert de Rp, f une
fonction de Rp vers Rq de classe C2 sur U . Alors en tout a ∈ U et pour tous 1 ≤ i ≤ q,
1 ≤ j, k ≤ p

∂jkfi(a) = ∂kjfi(a) .

Quelques remarques seront utiles pour apprécier mieux ce théorème fondamental qui nous
sera indispensable dans le développement de la formule de Taylor de plusieurs variables et donc
dans l’étude des extrema.

1. Il existe des fonctions deux fois différentiables mais pas de classe C2 sur un ouvert. L’exemple
de la section 4.1 nous permettra d’observer cette différence aussi.

2. Quand q = 1, la symétrie qui découle du théorème de Schwarz entrâıne la symétrie (au
sens des formes bilinéaires) de la matrice suivante où U est un ouvert de Rp, f ∈ C2(U) et
a ∈ U :

Hf (a) =




∂11f(a) ∂21f(a) . . . ∂p1f(a)
∂12f(a) ∂22f(a) . . . ∂p2f(a)

...
... . . . ∂jkf(a) . . .

...
...

∂p1f(a) . . . ∂ppf(a)




p×p

.

C’est la matrice Hessienne. Elle jouera un rôle important dans la formule de Taylor et tout
ce qui en découle.

4.4 La formule de Taylor du second ordre et la matrice
Hessienne

Dans cette section, nous travaillons avec les données suivantes :

p ∈ N∗, U est un ouvert de Rp et f est une fonction de Rp vers R de classe C2 sur U .

L’hypothèse d’appartenir à la classe C2(U) s’exprime pour f de deux manières différentes
mais équivalentes :

1. la fonction différentielle

df : U −→ L(Rp,R)
a 7−→ df(a) = ( ∂1f(a) . . . ∂pf(a) )

est de classe C1 sur U ;
2. les dérivées partielles secondes de f sont toutes définies et continues sur U .

La représentation matricielle du point (1) qui permet de traiter la différentielle comme une
fonction de U vers Rp et l’usage des dérivées partielles permettent de trouver la matrice Hessienne
comme nous l’avons constaté dans la section précédente :

d(df) : U −→ L(Rp,Rp)
j

a 7−→ d(df)(a) = Hf (a) = i




...
. . . ∂jif(a) . . .

...




p×p

.

Maintenant nous fairons un calcul qui nous permettra de déterminer la formule de Taylor
du second degré de f en un point a = (a1, . . . , ap) ∈ U . Remarquablement, les connaissances
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sur la formule de Taylor pour les fonctions d’une seule variable seront d’importance primordiale
pour déterminer la forme générale de la formule du second ordre. Les termes particuliers seront
ensuite précisés en utilisant les propriétés des matrices jacobienne et Hessienne.

Comme a ∈ U et que U est un ouvert de Rp, a est le centre d’une boule ouverte B(a, r)
contenue entièrement dans U . Par conséquent, nous pouvons fixer un élément non nul h =
(h1, . . . , hp) ∈ Rp, deux réels α, β tels que α < 0 et 1 < β et définir la fonction

γ : [α, β] −→ B(a, r)
t 7−→ a + th .

Nous noterons γi(t) = ai + thi. Cette fonction est différentiable sur ]a, b[, celui-ci contient les
points 0 et 1 auxquels les valeurs de γ sont a et a + h respectivement.

On définit ensuite

F : [α, β] −→ R
t 7−→ f ◦ γ(t) .

Notons que F est une fonction scalaire d’une seule variable, qui de plus est de classe C2 à
l’intérieur de son domaine. Par conséquent, pour tout t ∈]a, b[,

(∗) F (t) = F (0) + F ′(0)t +
1
2!

F ′′(0)t2 + o(t2) .

Nous soulignons comment la formule de Taylor pour les fonctions d’une seule variable détermine
la forme générale de la formule de plusieurs variables. L’étape prochaine sera la détermination
des termes en t et t2 qui sera suivie de l’évaluation de tout en t = 1.

Nous appliquerons dans cette nouvelle étape les règles de composition des différentielles. La
détermination de F ′(t) se fait de la manière suivante :

F ′(t) = df(γ(t)) . dγ(t)

= ( ∂1f(γ(t)) . . . ∂pf(γ(t)) ) .




γ′1(t)
...

γ′p(t)




=
p∑

i=1

∂if(γ(t))γ′i(t)

=
p∑

i=1

∂if(γ(t))hi .

En posant t = 0, nous obtenons F ′(0) =
∑p

i=1 ∂if(a)hi.
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Ensuite, on aborde la détermination de F ′′(t) :

F ′′(t) =
p∑

i=1

[ d(∂if)(γ(t)).dγ(t) ] hi

=
p∑

i=1


 ( ∂1f(∂if)(γ(t)) . . . ∂p(∂if)(γ(t)) ) .




γ′1(t)
...

γ′p(t)





 hi

=
p∑

i=1




p∑

j=1

∂j(∂if)(γ(t))γ′j(t)


hi

=
p∑

i=1




p∑

j=1

∂j(∂if)(γ(t))hj


 hi

=
∑

1≤i,j≤p

∂jif(γ(t))hjhi

= (h1, . . . , hp) Hf (a + th)




h1

...
hp


 .

Par conséquent F ′′(0) = (h1, . . . , hp) Hf (a)




h1

...
hp


.

Finalement, la formule (*), après avoir posé t = 1, fournit les égalités suivantes :

f(a + h) = f(a) + df(a)h +
1
2!

h d(df)(a) h + o(‖h‖2)

= f(a) + df(a)h +
1
2

(h1, . . . , hp) Hf (a)




h1

...
hp


 + o(‖h‖2)

= f(a) +
p∑

i=1

∂if(a)hi +
1
2

p∑

i=1

p∑

j=1

∂jif(a)hihj + o(‖h‖2) .

Les deuxième et troisième termes à droite des égalités correspondent à des produits matriciels.
Le premier représente la différentielle tandis que le deuxième représente une forme bilinéaire et
symétrique correspondant à la matrice Hessienne.

C’est le point de départ d’une nouvelle et fructueuse interaction entre notre cours et l’algèbre
linéaire dont nous cuillerons les fruits dans le chapitre suivant.
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Chapitre 5

Extrema

Ce chapitre est consacré à l’étude des valeurs extrémales d’une fonction de plusieurs variables
et à valeurs réelles. Trois directions principales se distinguent : les extrema locaux, les extrema
globaux et les extrema liés. Comme dans les chapitres précédents, la motivation pour l’étude
qui sera menée sera les résultats sur les fonctions d’une seule variable. Pour mettre en place un
développement rigoureux à partir de cette motivation initiale, les différentielles du second ordre
du chapitre précédent seront indispensables.

5.1 Définitions de base ; rappels sur les fonctions d’une
seule variable

Avant tout, il faut définir précisément les notions de base.

Définition 5.1.1 Soient p ∈ N∗, D ⊂ Rp et f une fonction de Rp vers R définie sur D. La
fonction f est dite d’admettre un maximum (resp. minimum) local en un point a ∈ D s’il existe
un ouvert U de Rp tel que a ∈ U ⊂ D et que pour tout x ∈ U , f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

La fonction f est dite d’admettre un maximum (resp. minimum) global en a ∈ D si pour
tout x ∈ D, f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

Un extremum local (resp. global) est un maximum ou minimum local (resp. global).

Remarquons immédiatement que bien que le point de départ de l’étude des extrema locaux
ou globaux soient le même, les chemins suivis pour aboutir aux conclusions sont susceptibles
de diverger suivant la topologie de D. L’étude locale utilise les techniques du calcul différentiel
développés depuis le troisième chapitre tandis que l’étude globale peut ne pas aboutir du tout si
D ne possède pas certaines propriétés topologiques assurant l’existence d’extrema globaux. Le
cas le plus fréquemment rencontré qui assure cette existence est celui où D est compact grâce
au corollaire 2.6.5.

Afin de motiver la discussion qui suivra dans les sections suivantes, nous rappelons le cas des
fonctions d’une seule variable réelle. Etudions donc la fonction suivante assez simple qui est par
ailleurs de classe C2 sur la totalité de R :

f : R −→ R
x 7−→ x(x− 1)(x + 1)

En particulier, en tout point a ∈ R, la formule de Taylor du second ordre est définie :

f(a + h) = f(a) + f ′(a)h +
1
2
f ′′(a)h2 + o(h2)

= a(a− 1)(a + 1) + (3a2 − 1)h + 3ah2 + o(h2) .

Les extrema locaux sont susceptibles d’être atteintes aux points satisfaisant l’équation différentielle

f ′(a) = 0 .
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Dans notre exemple, les deux candidats sont a = ± 1√
3
.

Il n’est en général pas nécessaire que chaque point candidat (point critique) fournisse une
valeur extrémale. Dans le cas des fonctions d’une seule variable, l’étude rigoureuse consiste à
étudier la concavité de f au voisinage des points candidats, en d’autres termes le signe de f ′′(a).
Dans notre cas, cette valeur est définie par la formule 6a qui est strictement positive quand
a = 1√

3
et strictement négative quand a = − 1√

3
. La première valeur signifie un minimum local,

f
(

1√
3

)
, tandis que la deuxième correspond à un maximum local, f

(
− 1√

3

)
. Ces conclusions sont

naturelles. En effet, dans le premier cas, f ′′
(

1√
3

)
> 0, ce qui signifie qu’autour du point a = 1√

3

il y a un intervalle I sur lequel f(a + h) ≥ f(a) ; dans le deuxième cas, f ′′
(
− 1√

3

)
< 0, ce qui

signifie l’existence d’un intervalle contenant ce point et sur lequel f(a + h) ≤ f(a).
Si f ′′(a) = 0, alors l’étude résumée ci-dessus est inconclusive. En effet, il suffit de comparer

les fonctions x 7→ x2 et x 7→ x3 en 0. La première fonction a un minimum en 0 tandis que la
deuxième fonction n’a ni maximum ni minimum en 0. Ces observations nous guideront dans le
cas des fonctions de plusieurs variables aussi.

Il convient de souligner l’importance de la formule de Taylor : toute l’information dont nous
avons besoin y est contenue à condition que la fonction soit suffisamment dérivable.

5.2 Extrema locaux

La première étape de l’étude des extrema consiste à dresser la liste des points candidats où
une fonction donnée peut atteindre une valeur extrémale. Soulignons que cette liste n’est qu’une
liste de candidats, il est nécessaire d’y être mais pas suffisant comme nous l’avons déjà constaté
dans le cas de la fonction x 7→ x3 définie sur R. La proposition suivante fournit la liste des
candidats pour les extrema locaux.

Proposition 5.2.1 Soient p ∈ N∗, U un ouvert de Rp, f une fonction de Rp vers R différentiable
sur U . Si f atteint un extremum local en a ∈ U , alors df(a) = (0 . . . 0)

La définition suivante découle de cette proposition.

Définition 5.2.2 Soient p ∈ N∗, U un ouvert de Rp, f une fonction de Rp vers R différentiable
sur U . Un point a ∈ U est dit critique si df(a) = 0.

Comme conséquence du point de départ précis que nous venons d’établir, nous concluons
que toute recherche d’extrema locaux commence par la détermination des solutions du système
suivant d’équations différentielles :





∂1f(a) = 0
...

∂pf(a) = 0

Pour pouvoir aller plus loin, nous essayerons de généraliser les méthodes des fonctions d’une
seule variable rappelées dans la section précédente en utilisant la formule de Taylor ainsi que la
matrice hessienne et les symétries de celle-ci. Pour ce faire, nous aurons besoin de supposer que
nos fonctions sont de classe C2 sur les ouverts concernés.

Soit donc f une fonction de classe C2 sur un ouvert U . Les conclusions finales du chapitre 4
montrent qu’en un point critique a ∈ U , la formule de Taylor a la forme suivante :

f(a + h) = f(a) + df(a)h +
1
2
hHf (a)h + o(‖h‖2)

= f(a) + 0 +
1
2
(h1, . . . , hp)Hf (a)(h1, . . . , hp) + o(‖h‖2) .
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D’après le théorème de Schwarz (le théorème 4.3.1), Hf (a) est une matrice symétrique. Si, par
miracle, elle était une matrice diagonale, alors elle aurait la forme suivante :

Hf (a) =




λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 . . . λp




les λi étant les valeurs propres de la matrice. Dans ce cas particulier, la formule de Taylor a la
forme suivante très réminiscente du cas des fonctions d’une seule variable :

f(a + h) = f(a) +
1
2

p∑

i=1

h2
i λi + o(‖h‖2) .

Les cas suivants se présentent :
Minimum local Chaque λi ∈ R∗+. Le point a appartient à une boule ouverte B dans U

qui a la propriété suivante : pour tout h ∈ Rp tel que a + h ∈ B, f(a + h) ≥ f(a). La
fonction atteint un minimum local, f(a), en a.

Maximum local Chaque λi ∈ R∗−. Le point a appartient à une boule ouverte B dans U
qui a la propriété suivante : pour tout h ∈ Rp tel que a + h ∈ B, f(a + h) ≤ f(a). La
fonction atteint un maximum local, f(a), en a.

Point selle Il existe des valeurs propres strictement négatives ainsi que d’autres strictement
positives. La fonction n’a pas d’extremum en a, c’est un point selle.

Inconclusif Certaine (éventuellement toues les) valeurs propres sont nulles, et les autres
sont toutes de même signe ; il n’est pas possible de conclure.

Dans le cas général, Hf (a) n’est pas nécessairement une matrice diagonale. Néanmoins, le
miracle n’est pas hors de portée. En effet, le théorème suivant fait un nouveau lien avec l’algèbre
linéaire :

Théorème 5.2.3 Toute matrice symétrique à entrées réelles se diagonalise avec des valeurs
propres réelles.

Alors, il suffira de faire un changement de base dans Rp pour diagonaliser la matrice hessienne.
On peut se demander pourquoi la nouvelle base est aussi légitime que l’ancienne. Un changement
de base correspond à de nouvelles directions pour la détermination des dérivées partielles. Or,
f est de classe C2 au voisinage de a. Par conséquent, les dérivées directionnelles sont définies et
continues dans toutes les directions possibles.

5.3 Extrema globaux ; ensembles compacts

Un extremum local n’est pas nécessairement un extremum global. En général, il n’est pas
clair si une fonction, même quand elle admet des extrema locaux, admet des extrema globaux.
Néanmoins, dans un cas particulier mais très important, il est possible d’arriver à des conclusions
satisfaisantes en suivant une recette bien établie. Nous supposons que K soit un compact de Rp

et que f ∈ C2(
◦
K). Alors, le corollaire 2.6.5 assure qu’il existe un point où f atteint son maximum

global et un autre point où elle atteint son minimum global.
Pour déterminer les points où les extrema sont atteints, on dresse la liste suivante de candi-

dats :

1. les points a ∈ ◦
K où df(a) = (0 . . . 0) ;

2. les points a ∈ Fr(K) ; plus précisément, dans ce deuxième cas, nous étudions la restriction
de f à Fr(K). Ceci revient à dire que nous étudierons une nouvelle fonction dont le nombre
de variables libres aura diminué.
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Une fois la liste déterminée, la tâche est simple : on évalue f en chacun des points candidats et
n’en retient que ceux où f atteint ses valeurs extrémales.

Il faut bien noter que la notion d’extremum global a un aspect relatif. Si K varie, la même
loi de fonction est susceptible de fournir de nouveaux extrema atteints à de nouveaux points.
Pensez à la fonction x 7→ x2 restreinte aux intervalles [−1, 1], [0, 3] et [1, 4] par exemple. Des
exemples seront étudiés en détail pendant les travaux dirigés.

5.4 Quelques outils pratiques pour les extrema locaux

Appuyée par la force de l’algèbre linéaire, la discussion de la section 5.2 est robuste. Néanmoins,
la détermination des signes des valeurs propres peut s’avérer compliquée. Dans le cas particulier
p = 2, la tâche est plus simple et une méthode particulière peut être développée.

Une matrice 2× 2 symétrique a la forme générale suivante :

H =
(

R S
S T

)
.

La détermination de ses valeurs propres équivaut à la détermination des racines du déterminant
de la matrice suivante :

λI −H =
(

λ−R −S
−S λ− T

)
.

Ce déterminant est le polynôme caractéristique

λ2 − (R + T )λ + RT − S2 .

Ce n’est pas une cöıncidence, et vous devez savoir pourquoi, que le coefficient de λ est la trace
de H (la somme des valeurs propres) tandis que RT − S2 est son déterminant (le produit des
valeurs propres).

Le théorème 5.2.3 se vérifie rapidement pour H. En effet, le discriminant ∆ du polynôme
caractéristique de H est (R−T )2 +S2, un nombre positif. Les racines sont donc réelles, et leurs
valeurs sont

λ1 =
R + T +

√
(R− T )2 + 4S2

2
; λ2 =

R + T −
√

(R− T )2 + 4S2

2
.

Par conséquent, si ∆ > 0, alors les deux racines sont réelles et distinctes, ce qui implique que H
est diagonalisable avec des valeurs propres réelles. Si ∆ = 0, alors R = T et S = 0 : une seule
valeur propre, toujours réelle, et la matrice est déjà diagonale.

En utilisant aussi le fait que le déterminant d’une matrice reste invariant quand on change
de base, nous constatons alors que la division en quatre cas de la section précédente prend alors
une nouvelle forme :

Minimum local Chaque λi ∈ R∗+ ; de manière équivalente RT − S2 > 0 et R + T > 0.
Maximum local Chaque λi ∈ R∗− ; de manière équivalente RT − S2 > 0 et R + T < 0.
Point selle Chaque λi ∈ R∗ mais il existe des valeurs propres négatives ainsi que d’autres

positives ; de manière équivalente RT − S2 < 0.
Inconclusif Au moins une valeur propre est nulle ; ceci équivaut à RT − S2 = 0.

Si p > 2, alors le théorème suivant de l’algèbre linéaire est pratique :

Théorème 5.4.1 Soit

A =




a11 a12 . . . a1p

a12 a22

...
. . .

a1p . . . . . . app




une matrice symétrique à entrées réelles.
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1. Les valeurs propres de A sont toutes strictement positives (resp. négatives) s’il en est de
même pour toute matrice

Ak =




a11 a12 . . . a1k

a12 a22

...
. . .

a1k . . . . . . akk


 (1 ≤ k ≤ p) .

2. Les valeurs propres incluent 0 si une des matrices Ak est de déterminant 0.

Notons qu’aucune des connaissances de cette section n’est indispensable pour l’étude des
extrema.

5.5 Extrema liés, multiplicateurs de Lagrange

Parfois, il faut étudier les extrema avec “contraintes”. Voici un exemple simple mais concret :
maximiser le produit de deux nombres réels dont la somme est 2. En fait, nous avons deux
fonctions, ou encore une fonction produit à maximiser contrainte par une équation qui utilise la
fonction somme :

f : R2 −→ R
(x, y) 7−→ xy

φ : R2 −→ R
(x, y) 7−→ x + y − 2 .

La condition est φ(x, y) = 0, équivalemment, x + y = 2. Dans ce cas simple, nous pouvons
résoudre le problème à la main : si φ(x, y) = 0, alors f(x, y) = f(x, 2 − x) = (2 − x)x. Par
conséquent l’étude de f se réduit à celle d’une seule variable fφ(x) = (2 − x)x sur l’ensemble
{(x, y) ∈ R2 | φ(x, y) = 0 }. La maximisation de cette fonction d’une seule variable, certes très
bien connue par tous nos lecteurs, donne x = 1.

Néanmoins, un peu d’attention permet de trouver une solution générale qui peut résoudre des
problèmes de même forme mais plus compliquée. En effet, au point (1, 1) les gradients ∇f(1, 1)
et ∇φ(1, 1) sont parallèles. Tracer les lignes de niveau correspondantes montre que ce n’est pas
une cöıncidence puisque les graphes de f et de φ sont tangents au point (1, 1). La proposition
suivante montre que sous certaines hypothèses, cela est un phénomène tout à fait naturel.

Proposition 5.5.1 Soient p ∈ N∗, U un ouvert de Rp, f et φ deux fonctions de Rp vers R de
classes C1 sur U . Notons fφ, la restriction de f aux points de l’ensemble { x ∈ U | φ(x) = 0 }.
Si a ∈ U est tel que

1. φ(a) = 0 ;

2. la restriction fφ admette un extremum en a ;

3. ∇φ(a) 6= 0 ;

alors il existe λ ∈ R tel que df(a) = λ dφ(a).

Le coefficient λ de la proposition 5.5.1 est un multiplicateur de Lagrange. En fait, l’exis-
tence d’un tel multiplicateur équivaut au parallélisme des gradients de f et de φ aux points
concernés. Les “surfaces de niveau” (donc les lignes de niveau si p = 2), sont tangentes à la
surface déterminée par la contrainte φ. Par conséquent, dresser la liste des candidats d’extrema,
revient à résoudre le système d’équations différentielles :

∇f(a) = λ∇φ(a) .
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Chapitre 6

Intégration ; intégrales multiples

Voici quelques questions et réponses dans lesquelles l’usage du mot “volume” peut parâıtre
un peu déroutant dans un premier temps.

0. Quel est le volume d’un point de Rp ?
Pauvre singleton, il n’est que de dimension 0. Son volume est donc négligeable, disons 0. Il

en est de même pour toute partie finie de Rp.

1. Quel est le volume d’un intervalle compact de R ?
La tendance serait de parler de la “longueur” de l’intervalle [a, b] (a, b ∈ R, a ≤ b), mais il

est clair que l’objectif est de mesurer la “quantité de matière” contenue dans une partie de R.
Dans ce cas particulier, cette quantité est effectivement b− a.

2. Quel est le volume d’un rectangle

[a1, b1]× [a2, b2] = { (x1, x2) ∈ R2 | a1 ≤ x1 ≤ b1 , a2 ≤ x2 ≤ b2 }

de R2 ?
Nous semblons parler de l’aire plutôt que du volume, mais encore une fois, il s’agit de mesurer

la quantité de matière, contenue cette fois-ci dans un certain endroit de R2. Et cette quantité
est (b1 − a1)× (b2 − a2).

3. Quel est le volume d’un parallélépipède rectangle

[a1, b1]× [a2, b2]× [a3, b3] = { (x1, x2, x3) ∈ R3 | a1 ≤ x1 ≤ b1 , a2 ≤ x2 ≤ b2 , a3 ≤ x3 ≤ b3 }

de R3 ?
Ça, on le connâıt : (b1 − a1)× (b2 − a2)× (b3 − a3).

4. Quel est le volume d’un “rectangle généralisé”

[a1, b1]× . . .× [ap, bp] = { (x1, . . . , xp) ∈ Rp | ai ≤ xi ≤ bi i ∈ {1, . . . , p} }

de Rp ?
Les rectangles généralisés ont pour volume

∏p
i=1(bi − ai).

Ce que nous avons appelé un “volume” est donc une longueur dans R, une aire R2, un volume
dans R3, . . . une mesure de quantité de matière contenue dans une région de Rp. L’intégration est
l’activité de mesurer cette quantité sur des régions qui ont suffisamment de propriétés communes
avec les régions rectangulaires dont nous savons déterminer les volumes.

43
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6.1 Pavés dans Rp ; parties pavables de Rp

Définition 6.1.1 (Pavés dans Rp ; parties pavables de Rp)

1. Un pavé de Rp est une partie de Rp de la forme

p∏

i=1

[ai, bi] = { (x1, . . . , xp) ∈ Rp | ai ≤ xi ≤ bi i ∈ {1, . . . , p} } .

2. Une partie de Rp est dite pavable si elle est union finie de pavés.

Les remarques suivantes sur ces notions clés sont simples, intuitives mais importantes pour
mieux comprendre la discussion en cours :

1. Toute partie pavable de Rp est fermée et bornée, donc compacte.
2. Une partie pavable P de Rp a un volume, ou une “mesure”, que l’on peut déterminer

facilement. Si P est un pavé
∏p

i=1[ai, bi], alors sa mesure est

µ(P ) =
p∏

i=1

(bi − ai) .

Si P =
⋃m

i=1 Pi et que
◦
Pi ∩

◦
Pj= ∅ si et seulement si i 6= j, alors

µ(P ) =
m∑

i=1

µ(Pi) .

Plus généralement, il faut enlever de cette somme la mesure de l’adhérence des intersections
des intérieurs.

Intuitivement, toute partie de Rp a une mesure “calculable” si et seulement si elle est “ap-
proximable” par des pavés. La définition suivante clarifie ce procédé d’approximation de manière
rigoureuse :

Définition 6.1.2 (Parties quarrables de Rp) Soit A une partie bornée de Rp. Alors A est
dite quarrable si pour tout ε ∈ R∗+, il existe deux parties pavables de Rp, R et R′, telles que
R ⊂ A ⊂ R′ et que µ(R′ \R) < ε.

Afin d’illustrer comment la définition 6.1.2 marche en pratique, nous étudierons le cas d’une
partie bornée de R2. Nous ne préciserons pas la forme géométrique de A puisque la seule condition
est que A soit bornée. Néanmoins, tout lecteur qui préfère un exemple concret peut prendre A
comme la boule euclidienne (fermée ou ouverte) de rayon 1.

Comme A est borné, il existe a1, a2, b1, b2 ∈ R tels que a1 ≤ b1, a2 ≤ b2 et que A ⊂
[a1, b1]× [a2, b2]. En d’autres termes, A est contenu dans un pavé. Si a1 = b1 ou a2 = b2, alors il
n’y a rien à faire, le volume de A sera 0. Sinon, pour chaque choix de m,n ∈ N, on effectue des
subdivisions des intervalles [a1, b1] et [a2, b2] :

x0 = a1 < x1 . . . < xm = b1

et
y0 = a2 < y1 . . . < yn = b2 .

Il s’agit donc des segments sur les intervalles [a1, b1] et [a2, b2]. Ensuite, sont définies deux
sommes :

s(σ) =
∑

[xi,xi+1]×[yj ,yj+1]⊂A

(yj+1 − yj)(xi+1 − xi)

et
S(σ) =

∑

[xi,xi+1]×[yj ,yj+1]∩A 6=∅
(yj+1 − yj)(xi+1 − xi) .
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Comme l’union des pavés qui contribuent à s(σ) est contenue dans celle des pavés qui contribuent
à S(σ), s(σ) ≤ S(σ). Notons que ces sommes sont toujours des nombres positifs.

Il faut bien constater que la construction ci-dessus peut se faire avec n’importe quel pavé
contenant l’ensemble A et avec n’importe quel subdivision d’un choix particulier de pavé. Par
ailleurs, des choix de subdivisions plus fines augmentent la valeur de s(σ) et diminuent celle
de S(σ). L’ensemble A est quarrable précisément quand ces augmentations et diminutions
convergent vers une même mesure :

Proposition 6.1.3 (Caractérisation d’une partie quarrable de Rp) Soit A une partie
bornée de Rp. Alors les conditions suivantes sont équivalentes :

1. A est quarrable ;

2. supσ(s(σ)) = infσ(S(σ)) ;

3. Fr(A) est de mesure 0.

A ce stade, une question naturelle se pose : comment déterminer si une partie bornée de Rp

est quarrable ? A priori, c’est difficile à déterminer. Intuitivement, toute partie dont nous savons
calculer le volume est quarrable, et il en est de même de sa frontière. Voici quelques exemples :

– les pavés ;
– les frontières des pavés (de mesure 0) ;
– un disque dans R2 de rayon r : la mesure est πr2 ;
– la frontière d’un disque dans R2 : la mesure est 0.

Evidemment, ces réponses sont loin d’être satisfaisantes. Non seulement, quoique intuitivement
claires, elles ne sont pas justifiées, mais elles n’offrent pas de méthode générale. L’intégration
fournira la méthode.

6.2 Fonctions intégrables

Dans cette section, nous introduirons la notion de fonction intégrable. Cette notion n’est pas
moins facile à remanier que celle d’un ensemble quarrable. Néanmoins, le théorème de Fubini
changera le paysage pratique complètement et fera le lien entre l’approche utilisant les sommes,
les volumes, les mesures, et l’approche analytique des techniques d’intégration des fonctions
d’une seule variable qui consiste principalement à déterminer les primitives.

Nous commençons en fixant une partie quarrable A de Rp. Soit f une fonction de Rp vers
R, définie et bornée sur A. Cette deuxième hypothèse équivaut à dire qu’il exsite M ∈ R+ tel
que pour tout x ∈ A, |f(x)| ≤ M . Un exemple fréquent est le cas d’une fonction continue sur
un ensemble compact.

Comme A est quarrable, nous pouvons définir des subdivisions comme dans la section
précédente. Comme A est en particulier borné, il existe a1, . . . , ap, b1, . . . bp ∈ R tels que a1 ≤
b1, a2 ≤ b2, . . . , ap ≤ bp et que

A ⊂
p∏

i=1

[ai, bi] .

Pour chaque coordonnée, les subdivisions auront la forme suivante :

xi,0 = ai ≤ xi,1 ≤ . . . ≤ xi,ki = bi (1 ≤ i ≤ p, ki ∈ N) .

Notons que les seules contributions seront apportées par les subdivisions où chaque intervalle
est de longueur non nulle. Alors, un pavé est de la forme suivante :

R(j1,...,jp) =
p∏

i=1

[xi,ji , xi,ji+1] ( pour tout i, 0 ≤ ji ≤ ki) .
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Cette fois-ci, les subdivisions serviront à calculer des sommes pondérées par la fonction f .
En utilisant cette notation, nous définissons

sf (σ) =
∑

R(j1,...,jp)∩A 6=∅
inf

R(j1,...,jp)∩A
f(x)

p∏

i=1

(xi,ji+1 − xi,ji
)

Sf (σ) =
∑

R(j1,...,jp)∩A 6=∅
sup

R(j1,...,jp)∩A
f(x)

p∏

i=1

(xi,ji+1 − xi,ji) .

Ces deux sommes sont réminiscentes des sommes de Riemann. Ce n’est pas une cöıncidence, en
effet la somme suivante est une somme de Riemann généralisée :

R
(σ)
f =

∑

R(j1,...,jp)∩A 6=∅
f(a(j1,...,jp))

p∏

i=1

(xi,ji+1 − xi,ji
) ,

le point a(j1,...,jp) étant arbitrairement choisi dans R(j1,...,jp) ∩A.
Après toute cette préparation, nous pouvons définir l’intégrabilité d’une fonction.

Définition 6.2.1 (Fonctions intégrables) La fonction f est dite intégrable sur A si et seule-
ment si l’une des deux conditions équivalentes suivantes est vraie :

1. supσ sf (σ) = infσ Sf (σ) ;

2. limµ(R(j1,...,jp))→0 R
(σ)
f existe.

Remarquons immédiatement que si les conditions de la définition 6.2.1 sont satisfaites, alors

sup
σ

(sf ) = inf
σ

Sf = lim
σ

Rf .

Cette valeur, l’intégrale de f sur A est notée
∫

. . .
∫

f(x1, . . . , xp)dx1 . . . dxp .
A

Dans le cas particulier d’une fonction f dont la restriction à A est la fonction constante de valeur
1, l’intégrale est exactement µ(A).

ATTENTION ! ! ! Avertissons nos lecteurs. A ce stade du développement de l’intégration
des fonctions de plusieurs variables, l’écriture

∫
. . .

∫
f(x1, . . . , xp)dx1 . . . dxp .

A

n’est qu’un choix particulier de notation. Il ne faut pas penser qu’elle veut dire qu’on a droit à
faire “intégration partielle”, c’est à dire, intégrer par rapport à une variable, puis à une autre,
ainsi de suite. Ceci sera possible suite au théorème de Fubini. Avant d’aborder ce théorème indis-
pensable dans le calcul d’une intégrale sur un ensemble quarrable, nous précisons des conditions
suffisantes afin de décider de l’intégrabilité d’une fonction.

Théorème 6.2.2 (Conditions suffisantes d’intégrabilité) Soient A une partie quarrable de
Rp, f une fonction de Rp vers R définie et bornée sur A. Si l’ensemble de points de discontinuité
de f sur A est de mesure 0, alors f est intégrable sur A.

Vous étudierez la preuve de ce théorème fondamental en L3. Le corollaire suivant est très
utile :

Corollaire 6.2.3 Soient A une partie quarrable de Rp, f une fonction de Rp vers R définie et
bornée sur A. Si f a un nombre fini de discontinuités sur A, alors f est intégrable sur A. En
particulier, une fonction continue sur A est intégrable sur A.

Ce corollaire nous permet de décider dans les cas les plus fréquents dans ce cours si une
certaine partie bornée de Rp est quarrable. Il suffit que sa frontière soit décrite par des fonctions
continues.
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6.3 Propriétés des fonctions intégrables

Toute notion de fonction intégrable digne de cette appellation vérifie certaines conditions.
La proposition suivante en donne l’aperçu nécessaire pour notre cours.

Notation efficace pour les discussions théoriques : Afin d’éviter l’usage, pour le
moment inutile, d’une multitude de symboles d’intégration, nous écrirons

∫

A

f(x) dx

au lieu de ∫
. . .

∫
f(x1, . . . , xp)dx1 . . . dxp .

A

pour noter l’intégrale d’une fonction f de p variables sur une partie quarrable A de Rp.

Proposition 6.3.1 Soient A une partie quarrable de Rp et f, g deux fonctions de Rp vers R
définies et intégrables sur A.
Linéarité Si λf , λg ∈ R sont deux scalaires, alors

∫

A

(λff + λgg)(x) dx = λf

∫

A

f(x) dx + λg

∫

A

g(x) dx .

Croissance Si pour tout a ∈ A, f(a) ≤ g(a), alors
∫

A

f(x) dx ≤
∫

A

g(x) dx .

Additivité Si A = A1 ∪ . . . ∪Am tel que
◦

Ai ∩
◦

Aj= ∅ si et seulement si i 6= j, alors

∫

A

f(x) dx =
m∑

i=1

∫

Ai

f(x) dx

Preuve. Vous pouvez démontrer ces résultats vous-même en appliquant directement les sommes
généralisées de Riemann introduites dans la section précédente pour définir l’intégrabilité d’une
fonction. ¤

6.4 Théorème de Fubini

Le théorème de Fubini est réminiscent de la proposition 3.4.1 qui énoncent que sous certaines
conditions la détermination de la différentielle se réduit à celle des dérivées partielles. Ci-dessous
nous en donnons un énoncé, son étude approfondie sera développée sur des exemples détaillés
en cours et aux travaux dirigés.

Théorème 6.4.1 (Théorème de Fubini) Soient A une partie quarrable de Rp et f une fonc-
tion de Rp vers R intégrable sur A. Alors,

∫

A

f(x) dx =

∫ b

a

(
. . .

(∫ xi2=ψ2(x1,...,x̂i1 ,...,x̂i2 ,...,xp)

xi2=φ2(x1,...,x̂i1 ,...,x̂i2 ,...,xp)

(∫ xi1=ψ1(x1,...,x̂i1 ,...,xp)

xi1=φ1(x1,...,x̂i1 ,...,xp)

f(x1, . . . , xp) dxi1

)
dxi2

)
. . .

)
dxip

où a, b ∈ R et les ˆ symbolisent les variables omises, et les paires de fonctions (φj , ψj) déterminent
les limites de la variable xij .

Le choix de l’ordre suivant lequel les variables sont éliminées est libre.
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Notons que le théorème de Fubini est d’une valeur pratique importante puisque, sous des hy-
pothèses assez générales, il permet de remplacer le calcul de limites de sommes par la détermination
de primitives et éventuellement, par des intégrales définies.

Il reste une question : qu’en est-il du calcul de volumes évoqué à la fin de la section 6.1 ? La
promesse était que le théorème de Fubini fournirait la bonne méthode de détermination. En effet,
il suffit d’intégrer la fonction constante f = 1 sur la région dont il est question de déterminer le
volume. Si la frontière de cette partie de Rp est déterminée par des fonctions intégrables, alors
le résultat obtenu sera le volume de la région en question. Illustrons ceci avec deux exemples, un
simple et un autre légèrement compliqué, laissant un dernier un tout petit peu plus exigeant à
la section suivante. D’autres exemples, en quantité suffisante pour digérer toutes les techniques
indispensables seront abordés en cours et en TD.

1. le volume d’un “rectangle généralisé” de Rp, A = [a1, b1]× . . .× [ap, bp] avec ai ≤ bi pour
tout i ∈ {1, . . . , p} :

µ(A) =
∫

A

1 dx =
∫

A

dx =
∫ b1

a1

dx1

∫ b2

a2

dx2 . . .

∫ bp

ap

dxp =
p∏

i=1

(bi − ai) ;

2. l’aire du disque D = {(x, y) ∈ R2|x2 + y2 ≤ r2} de rayon r ∈ R+ :

µ(D) =
∫

A

d(x, y) =
∫ r

−r

(∫ √
r2−x2

−√r2−x2
dy

)
dx = πr2 .

6.5 Changement de variables et intégration

Une question d’intégration comme la suivante est conceptuellement claire et simple, donc
facile à aborder, sans pour autant être aussi simple au niveau calculatoire qui est indispensable
pour aboutir à une solution finale :

Calculer le volume de la boule unité fermée par rapport à la norme euclidienne dans R3.

Il s’agit du calcul du volume de la région

A = { (x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 ≤ 1 } ,

le théorème de Fubini permet d’écrire

∫

A

1 dx =
∫ 1

−1

(∫ √
1−x2

3

−
√

1−x2
3

(∫ √
1−x2

3−x2
2

−
√

1−x2
3−x2

2

dx1

)
dx2

)
dx3 .

La complication est causée par les bornes de l’intégration, donc par la frontière de A, qui
sont plutôt sphériques et qui s’expriment avec des équations faisant intervenir des polynômes du
second degré en coordonnées cartésiennes. Or, dans les coordonnées sphériques, A s’exprime de
façon très simple en fonction des trois variables (ρ, φ, θ) : pour un point P , ces variables expriment
respectivement, la distance euclidienne à (0, 0, 0), l’angle entre l’axe des x3 et le segment liant
(0, 0, 0) à P , l’angle entre l’axe des x1 et la projection dans le plan x1x2 du segment liant (0, 0, 0)
à P . Dans ce système de coordonnées A est plutôt une parallélépipède rectangle dont les bornes
fournissent une intégrale simple à déterminer

A = { (ρ, φ, θ) | 0 ≤ ρ ≤ 1 , 0 ≤ φ ≤ π , 0 ≤ θ < 2π } .

Le théorème suivant nous permet de profiter de cette simplification

Théorème 6.5.1 Soient D ⊂ Rp un ensemble quarrable, f : D −→ R une fonction intégrable
sur D, U et V deux ouverts dans Rp. On suppose D ⊂ V et qu’il existe un difféomorphisme de Φ :
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U −→ V : la notation sera Φ(u) = Φ(u1, . . . , up) = (v1, . . . , vp) = Φ(v) avec vi = Φi(u1, . . . , up)
pour tout i ∈ {1, . . . , p}. Alors,

∫

D

f(v) dv =
∫

Φ−1(D)

(f ◦ Φ)(u1, . . . , up)|dΦ(u1, . . . , up)| du.

|dΦ(u1, . . . , up)| est la valeur absolue du déterminant du jacobien.

Une fonction bijective Φ : U −→ V entre deux ouverts respectivement de Rp et Rp est dite
un difféomorphisme si elle est de classe C1 et son inverse aussi est de classe C1. En utilisant vos
connaissances sur le calcul différentiel, vous pouvez vérifier que ceci équivaut à ce que le jacobien
de Φ se représente par des matrices inversibles aux points de U .

Illustrons ce changement dans l’exemple que nous venons de donner. Nous pouvons supposer
D = V =

◦
A, U = R∗+×]0, π[×]0, 2π[ et

Φ : R∗+×]0, π[×]0, 2π[ −→ ◦
A

(ρ, φ, θ) 7−→ (ρ sin φ cos θ, ρ sinφ sin θ, ρ cos φ) .

La condition sur U et V d’être ouverts nous fait perdre la frontière de la boule unité fermée.
Néanmoins, cette perte ne cause aucune variation dans la valeur de l’intégrale. Nous savons que
les frontières d’un ensemble quarrable sont de mesure négligeable.

Dans un premier temps, la formule de changement de variables peut parâıtre difficile à saisir,
même à motiver. Il est très utile de penser au cas particulier où p = 1 que vous connaissez déjà
à une valeur absolue près :

∫ b

a

f(x) dx =
∫ t2

t1

(f ◦ γ)(t)γ′(t) dt

si x = γ(t) et γ(t) ∈ C1(I) avec I un intervalle ouvert contenant [t1, t2].
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Chapitre 7

Différentiation, intégration :
quelques liens

Dans ce chapitre nous étudierons certains liens entre la différentiation et l’intégration en
plusieurs variables. Cette étude généralise les liens entre les primitives et les dérivées dans le cas
des fonctions d’une seule variable.

7.1 Longueur d’arc, intégration le long d’une courbe

Nous nous posons la question suivante : nous avons introduit une notion d’intégration bien
établie qui marche, sous des conditions raisonnables, dans tout Rp, nous pouvons par conséquent
intégrer des fonctions sur diverses régions dans Rp et calculer des volumes ; ne pouvons-nous pas
mesurer la longueur des arcs qui ne sont pas nécessairement des segments de droite dans R ?
Cette question qui peut être généralisée est pertinente en mathématiques et ses applications.
Nous l’étudierons dans le cas des courbes dans Rp.

Pour nos objectifs, le cadre le mieux établi est fourni par la version paramétrique de la
définition d’un courbe :

Définition 7.1.1 Soient p ∈ N∗, γ : R −→ Rp une fonction de la forme γ(t) = (γ1(t), . . . , γp(t))
(“arc généralisé”). On définit la courbe C comme l’image de γ :

C = { (x1, . . . , xp) ∈ R2 | xi = γi(t), i ∈ {1, . . . , p} , t ∈ R } .

La courbe sera dite de classe Ck sur un ouvert si la fonction γ l’est.

Pour ne pas compliquer la notation, nous préférerons ne mentionner que γ comme courbe, en
n’oubliant pas qu’il s’agit de son image.

Voici deux exemples :

1. (Une droite dans Rp) On fixe a = (a1, . . . , ap) ∈ Rp et u = (u1, . . . , up) ∈ Rp \ (0, . . . , 0) et
on définit :

γ : R −→ Rp

t 7−→ a + tu

2. Une version “rallongée” d’une courbe bien connue dans R2 :

γ : R −→ R3

t 7−→ (cos t, sin t, t)

Maintenant, retournons à la discussion générale. Nous introduirons une méthode pour me-
surer la longueur d’une courbe γ dans Rp dans le cas où γ définit une fonction différentiable. A
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tout point a = (a1, . . . , ap) ∈ Rp qui se trouve sur γ, en d’autres termes, qui satisfait pour au
moins une valeur ta ∈ R le système d’équations





a1 = γ1(ta)
...

ap = γp(ta)
,

nous pouvons associer une droite tangente en utilisant la différentielle :

{ u ∈ Rp | u = a + (γ′1(ta)t, . . . , γ′p(ta)t) , t ∈ R } ,

soit encore 



u1 = a1 + γ′1(ta)t
...

up = ap + γ′p(ta)t
(t ∈ R)

Nous utiliserons ces données pour calculer la longueur de l’arc γ pour t ∈ [a, b] quand γ est
de classe C1 sur un ouvert U ∈ R contenant [a, b]. Si nous étions dans le cas de l’intégration
comme dans le chapitre précédent, alors on s’attendrait à une intégrale de la forme

∫

γ

1 dt

avec une expression pour qui s’obtient en ajoutant les “valeurs” de γ sur des subdivisions de
[a, b]. Or, cette notion de valeur a peu de sens. Néanmoins, une courbe est un objet de “dimension
1” dont les morceaux ressemblent à des segments de droites d’autant plus que les subdivisions
de [a, b] deviennent fines. En effet, sur un intervalle d’une telle subdivision γ est presque une
droite tangente en un point arbitraire de l’intervalle en question.

Plus précisément, on fixe d’abord une subdivision de [a, b] :

t0 = a ≤ t1 . . . ≤ tm = b .

Plus cette division est fine, plus le vecteur tangent en ti (i ∈ {1, . . . ,m})
(γ′1(ti), . . . , γ

′
p(ti))

est identique au vecteur qui lie γ(ti) au point γ(ti+1). Ainsi les valeurs ||γ′(ti)||2 et ||γ(ti+1) −
γ(ti)||2 se convergent quand les longueurs des intrevalles des subdivisions converent vers 0. En
fait, ce n’est qu’une application du théorème des accroissements finis. Ceci motive la définition
de la longueur d’un arc de courbe de t = a à t = b qui est la suivante :

Lγ(a, b) =
∫ b

a

‖dγ(t)‖2 dt .

Pour concrétiser nous n’utiliserons que la métrique euclidenne même si ce n’est pas nécessaire.
Ainsi,

Lγ(a, b) =
∫ b

a

√
γ′1(t)2 + . . . + γ′p(t)2 dt .

Une question naturelle se pose. Est-ce bien défini ? En effet, s’il était possible de déterminer
la même courbe en utilisant une fontion θ avec les mêmes propriétés de différentiation, comment
saurait-on que la même longueur est obtenue ? Un tel changement correspond à un nouveau choix
de paramétrage Φ : [c, d] → [a, b] qui est de classe C1. Il s’agit d’un changement de variables du
type θ = γ ◦ Φ avec Φ un difféomorphisme. On obtient alors en tout u ∈ [c, d]

∫ d

c

‖dθ(u)‖2 du =
∫ d

c

‖dγ(φ(u)) φ′(u)‖2 du

=
∫ b

a

‖dγ(t)‖2 dt
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Une fois que nous avons la définition de la longueur d’arc dans Rp, l’intégration d’une fonction
le long de cet arc n’est que le calcul d’une somme pondérée de façon réminiscente de l’intégration
d’une fonction dans le chapitre précédent. Soit donc une fonction f de Rp vers R définie sur
γ([a, b]). Son intégrale curviligne est

∫ b

a

f(γ1(t), . . . , γp(t))
√

γ′1(t)2 + . . . + γ′p(t)2 dt .

7.2 Formes différentielles : recherche d’une primitive en
dimension supérieure

Cette section est consacrée à un autre lien entre l’intégration et la différentiation des fonctions
de plusieurs variables : la recherche d’une primitive. Cette étude nécessite l’introduction des
formes différentielles qui est un vaste sujet. Nous nous contenterons de très peu ce qui néanmoins
suffira de découvrir un univers géométrique très riche.

Soient U ⊂ Rp un ouvert et f : Rp −→ R une fonction différentiable sur U . Nous savons bien
que la différentielle est la fonction

df : U −→ L(Rp,R)
a 7−→ df(a) = (∂1f(a) . . . ∂pf(a))

Comme L(Rp,R) est un espace vectoriel, nous pouvons distinguer une base canonique et exprimer
une df comme une combinaison linéaire des éléments de cette base. La base canonique (e1, . . . , ep)
de Rp nous guidera dans la détermination d’une base canonique pour L(Rp,R).

Si nous voyons df(a) plutôt comme un point dans Rp (un “vecteur”), en d’autres termes, si
nous considérons ∇f(a), alors celui-ci s’écrit

∇f(a) = ( ∂f1(a), . . . , ∂fp(a) ) = ∂f1(a)e1 + . . . + ∂fp(a)ep .

Chaque élément ei de la base canonique projette ∇f(a) sur la iième coordonnée correspondante.
Les différentielles de ces projections, que nous avons notées πi au deuxième chapitre, forment
la base canonique de L(Rp,R). Elles sont notées dxi et nous permettent d’écrire la combinaison
linéaire suivante :

df(a) = ∂1f(a)dx1 + . . . + ∂pf(a)dxp .

On rencontre souvent l’une des deux écritures suivantes utilisées pour noter la fonction df :

df =
p∑

i=1

∂f dxi ; df =
p∑

i=1

∂if

∂xi
dxi .

Pour motiver cette écriture, il est utile de penser à l’identité d’une seule variable tant rencontrée
en techniques d’intégration : df = f ′(x)dx.

On introduit alors la forme générale suivante :

p∑

i=1

Qi(x) dxi (pour tout i ∈ {1, . . . , p}, Qi : Rp −→ R) .

Il s’agit d’une fonction de Rp vers L(Rp,R) définie sur et peut-être plus sur l’ouvert concerné.

Définition 7.2.1 (Forme différentielle de degré 1) Une fonction de la forme

ω(x) =
p∑

i=1

Qi(x) dxi (pour tout i ∈ {1, . . . , p}, Qi : Rp −→ R)

est dite une forme différentielle de degré 1. Elle est dite de classe Ck(U) s’il existe un ouvert U
de Rp sur lequel chaque “coeffificient” Qi est de classe Ck(U).
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Il est clair que chaque fonction f différentiable sur un ouvert U de Rp y définit une forme
différentielle de degré 1, qui n’est rien d’autre que sa différentielle df . Mais est-ce que ce sont les
seules possibilités ? Ou encore, si ω est une forme différentielle de degré 1 arbitrairement définie,
existe-t-il une fonction f : Rp −→ R telle que df = ω sur un ouvert de Rp ? Cette question
est la recherche de primitive évoquée au début de cette section. Effectivement, dans le cas des
fonctions d’une seule variable, comme c’était illustré ci-dessus par l’identité df = f ′(x)dx, elle
se réduit à la recherche d’une primitive.

Comme dans le cas des fonctions d’une seule variable, cette recherche n’est ni évidente ni
facile. La réponse générale est négative, et quand elle est positive, elle est très liée à l’intégration.
Notons que si une “primitive” f telle que df = ω existe, alors Qi = ∂if pour tout i ∈ {1, . . . , p}.
Les dérivées partielles seront utiles.

Nous traitons d’abord un cas particulier mais fréquemment rencontré : p = 2. Dans ce
contexte très particulier, nous utiliserons une notation tratidionnelle pour les formes différentielles :

ω = Pdx + Qdy .

Bien évidemment, ce n’est qu’une notation. De manière plus détaillée, ω est une fonction de
R2 vers L(R2,R) (nous pouvons voir ce dernier espace comme R2), qui associe à chaque point
a ∈ R2, le point (ou encore le vecteur, ou l’application linéaire de R2 vers R) dont les coordonnées
par rapport à la base canonique sont

(P (a), Q(a)) .

Ce type de fonction porte un autre nom particulier : un champ de vecteurs.
Dans ce cas, on peut démontrer la proposition suivante qui fournit une condition nécessaire

d’existence de primitive :

Proposition 7.2.2 Soit ω = Pdx+Qdy une forme différentielle de degré 1 de classe C1(U) sur
un ouvert de U . S’il existe f ∈ C2(U) telle que df = ω sur U , alors ∂2P = ∂1Q.

En effet, si une telle f existe, alors ∂1f = P et ∂2f = Q. Il s’ensuit, en utilisant le théorème de
Schwarz que

∂2P = ∂21f = ∂12f = ∂1Q .

Cette proposition simple se généralise à p arbitraire :

Proposition 7.2.3 On fixe un naturel p ≥ 2. Soit ω =
∑p

i=1 Qi(x)dxi une forme différentielle
de degré 1 de classe C1(U) sur un ouvert de U . S’il existe f ∈ C2(U) telle que df = ω sur U ,
alors ∂iQj = ∂jQi pour tout 1 ≤ i 6= j ≤ p.

Pour exprimer nos notions de manière plus claire, nous introduisons la terminologie suivante très
importante sans aucune restriction sur la valeur de p :

Définition 7.2.4 (Formes exactes/fermées) Soit U un ouvert de Rp.

1. Une forme ω de classe C1(U) est dite exacte sur U s’il existe une fonction f de classe
C2(U) telle que df = ω. La fonction f est dite une primitive de ω.

2. Une forme différentielle ω =
∑p

i=1 Qi(x)dxi de classe C1(U) est dite fermée si ∂iQj = ∂jQi

pour tout 1 ≤ i < j ≤ p.

En utilisant la définition 7.2.4, nous pouvons énoncer la conclusion de la proposition 7.2.2
de la manière suivante : si une forme différentielle est exacte, alors elle est fermée. L’inverse est
faux, et pour déterminer des cas où il est vrai il nous faudra utiliser certains théorèmes. Ces
résultats forment les fondements de la recherche des primitives pour les fonctions de plusieurs
variables. C’est la théorie de l’intégration des formes différentielles.
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7.3 Formes différentielles : intégration

La définition 7.2.4 a fourni la terminologie et les notions pour développer une théorie de
l’intégration des formes différentielles dont les rudiments seront introduits dans cette section.
Ce qui reste à faire est d’introduire une notion solide d’intégration d’une forme différentielle de
degré 1 qui permettra en outre de déterminer les primitives quand elles existent. L’intégration
d’une forme différentielle suit une ligne différente de celle des intégrales curvilignes malgré des
points communs.

Soient U un ouvert de Rp, pour tout x = (x1, . . . , xp) ∈ U

ω(x) = Q1 dx1 + . . . + Qp dxp

une forme continue sur U (les coefficients Qi sont des fonctions continues sur U), γ une courbe
donnée paramétriquement

γ : R −→ Rp

t 7−→ (γ1(t), . . . , γp(t))

telle que l’image d’un intervalle fermé [a, b] tombe dans U où la courbe est de classe C1. Nous
posons alors

∫

γ

ω =
∫

γ

Q1(x)dx1 + . . . + Qp(x)dxp

=
∫

γ

[
Q1(x(t))x′1(t) + . . . + Qp(x)x′p(t)

]
dt

Plus généralement, γ peut être l’union d’un nombre fini de courbes de classe C1 qui sont les images
des parties d’une subdivision de γ, disons γ1, . . . , γk. Nous appellerons une telle courbe C1 par
morceaux. Dans le cas d’une courbe C1 par morceaux, l’intégrale est la somme des intégrales sur
les morceaux C1 de γ : ∫

γ

ω =
k∑

i=1

∫

γi

ω.

Les intégrales curvilignes peuvent être vues comme un cas très particulier de cette définition
définies par “une forme de longueur”. Nous ne détaillerons pas ces liens. Voici un premier
théorème qui illustre la force de l’hypothèse d’exactitude pour les formes différentielles :

Théorème 7.3.1 Soient U un ouvert de Rp, ω une forme exacte de classe C2 sur U , γ une
courbe paramétrée de classe C1 par morceaux qui joint un point A ∈ U à un point B ∈ U sur
l’intervalle fermé [a, b] dont l’image γ([a, b]) est incluse dans U . Alors

∫

γ

ω = f(B)− f(A) ,

où f est une primitive de ω : df = ω.

Vous pouvez comparer ce théorème à celui sur l’intégration des fonctions d’une seule variable
qui énonce que pour toute fonction g

∫ b

a

g(x)dx = G(b)−G(a)

quand G′ = g sur un intervalle ouvert contenant [a, b] ; G est donc une primitive de g. Ceci est en
fait un phénomène qui se produit naturellement : l’intégration se fait sur l’intervalle [a, b] tandis
que le calcul de différence se fait sur la frontière de cet intervalle.

Le théorème 7.3.1 montre que le même phénomène de “passage à la frontière” a lieu quand
nous intégrons sur une courbe puisque Fr(γ([a, b])) = {A,B}. En particulier, si le point de départ
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cöıncide avec le point d’arrivée, il n’y a pas de contribution à la valeur de l’intégrale. Comparer
par exemple les valeurs de l’intégrale

∫

γ

ydx + xdy

où γ(t) = (cos t, sin t) sur les intervalles [0, π
4 ], [0, 2π], [0, 9π

4 ], [0, 4π] pour les valeurs de t.
Les dernières remarques illustrent qu’éventuellement les conditions topologiques et géométriques

liées aux courbes qui entrent dans les calculs peuvent avoir des effets dans le développement de
l’intégration des formes différentielles. Nous aurons besoin de la définition suivante :

Définition 7.3.2 (Ensemble étoilé dans Rp) Une partie E de Rp est dite étoilée si elle
contient un point C tel que si P est un point arbitrairement choisi dans E, alors le segment de
droite qui joint C à P soit contenu dans E.

Donnons quelques exemples pour motiver cette définition.

1. Un ensemble convexe est étoilé. Ceci découle immédiatement de la définition d’un ensemble
convexe. En effet, tout point peut jouer le role du point C de la définition 7.3.2. Comme
le montre l’exemple suivant, un ensemble étoilé n’est pas nécessairement convexe.

2. Dans R2, l’union des deux axes {(x, y) ∈ R2|xy = 0} est étoilé mais pas convexe. Pour le
point C il y a un candidat et un seul : (0, 0).

3. La boule euclidienne ouverte D = {(x, y) ∈ R2|x2 + y2 < 1} est convexe et donc étoilée,
mais quand privée d’un point, elle n’est ni convexe ni étoilée. Essayez de voir pourquoi,
vous constaterez vite qu’il s’agit d’un “trou” dans la boule qui l’empêche d’être étoilée.

La notion d’ensemble étoilé joue un role fondamental dans la détermination des formes
exactes. Nous avons vu dans la proposition 7.2.3 qu’une forme exacte est nécessairement fermée.
Comme nous le verrons à travers des exemples en cours et aux travaux dirigés, l’inverse est faux
en général. Or, tant il est facile de vérifier qu’une forme est fermée puisqu’il suffit de dériver,
et tant il est difficile de vérifier qu’une forme fermée a aussi une primitive car il faut intégrer.
Le théorème suivant montre que sous certaines hypothèses nous pouvons profiter de la notion
d’ensemble étoilé.

Théorème 7.3.3 (Théorème de Poincaré) Soient U un ouvert étoilé de Rp et ω une forme
de classe C1 sur U . Alors ω est exacte si et seulement si elle est fermée.

Comme nous l’avons indiqué dans le point (3) des exemples ci-dessus, le fait d’être étoilé est
lié à l’absence de “trous” dans une partie de Rp. En effet, le théorème de Poincaré est valable
sur tout ouvert “sans trous”. Néanmoins, rendre rigoureux notre intuition de “avec/sans trous”
nécessite une préparation qui sera faite dans des cours plus avancés.

Voici un exemple pertinent des limites de l’applicabilité du théorème de Poincaré :

ω = P (x, y)dx + Q(x, y)dy

avec
P (x, y) =

−y

x2 + y2
et Q(x, y) =

x

x2 + y2

et U = R \ {(0, 0)}. Nous pouvons remplacer R2 par tout ouvert contenant (0, 0) sans changer la
conclusion : la forme ω, quoique fermée, n’est exacte sur aucun ouvert contenant (0, 0). Nénmoins,
sur tout ouvert ne contenant pas (0, 0), le théorème de Poincaré s’applique.

Le théorème de Poincaré règle le problème de l’existence d’une primitive efficacement. Nous
finirons ce chapitre avec un théorème qui permet de faire de l’intégration en utilisant les formes
différentielles. C’est un cas particulier pour p = 2 d’un résultat général. En effet, il est possible
de développer la théorie générale des formes différentielles et leur intégration de telle façon à
obtenir une version plus différentielle de ce que nous avons fait au septième chapitre.
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Théorème 7.3.4 (Formule de Green-Riemann) Soit U un ouvert de R2 sur lequel est
définie une forme différentielle ω = Pdx + Qdy de classe C1. Soit E une région dans R2 li-
mitée par une courbe que l’on notera ∂E et que l’on supposera C1 par morceaux. Alors

∫

∂E

ω =
∫

E

(∂1Q− ∂2P ) d(x, y) .

Nous ferons plusieurs remarques sur ce théorème important.

1. Le membre de droite de la formule de Green-Riemann est l’intégrale double
∫ ∫

E

(∂1Q− ∂2P ) dxdy .

Tout cela signifie que l’on doit pouvoir utiliser cette égalité pour déterminer des aires
en profitant de la marge de manoeuvre offerte par deux intégrales différentes ayant la
même valeur. En effet, l’égalité suivante est vraie pour toute partie E ⊂ R2 satisfaisant les
hypothèses de la formule de Green-Riemann :

∫

∂E

xdy =
∫∫

E

dxdy .

Il suffit de poser Q(x, y) = x et P (x, y) = 0. Cette égalité permet de déterminer l’aire de E
si sa frontière est décrite par une courbe dont nous connaissons les équations paramétriques.
Une autre égalité de ce genre est la suivante :

∫

∂E

1
2
(xdy − ydx) =

∫∫

E

dxdy .

Le membre gauche devient en coordonnées polaires (r, t)

1
2

∫

∂E

(x(t)y′(t)− y(t)x′(t)) dt =
1
2

∫ b

a

r2 dt

où a et b sont des bornes à déterminer suivant la forme de la frontière. Cette dernière forme
est utile pour les frontières données par des équations polaires où il y a un lien entre r et
t, par exemple si r est une fonction de t.

2. L’endroit déterminé par la courbe ∂E est la frontière Fr(E). Néanmoins, comme les pa-
ramétrisations peuvent varier, Fr(E) peut correspondre à plusieurs courbes paramétrées.


