MATH IV, Analyse
(Automne 2010)

Résumé du cours

Avertissement : Strictement parlant, les pages qui suivent ne sont PAS les notes
pour ce cours. Elles sont censées vous servir de guide pendant le semestre. Le cours
enseigné peut dévier, quoique de maniere limitée, du développement décrit dans
les pages suivantes; sur un sujet particulier, d’autres exemples que ceux qui sont
donnés ci-dessous particulier peuvent surgir.

En cours, certains des énoncés ci-dessous seront démontrés, d’autres admis.
Des conclusions plus simples seront laissées comme exercices d’entrainement. Des
indications sur les liens avec divers points ci-dessous seront faits régulierement

pendant ’enseignement.
Bref, pour découvrir le cours proprement dit, il faut suivre... le cours. Et avec
assiduité.
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Chapitre 1

Espaces vectoriels normés :
généralités

Ce chapitre est consacré a 1’étude des espaces vectoriels normés. Nous aurons tendance a les
appeler des espaces normés, sans quand-méme oublier que ce sont des espaces vectoriels munis
d’une fonction particuliere.

Vous savez tous ce que c’est qu'un K-espace vectoriel ou K est un corps commutatif, le corps
des scalaires. En cas d’oubli ou de trou de mémoire, faites vos révisions. Dans ce cours, le corps
K sera celui des réels, noté R. Sauf mention contraire, quand nous dirons “un espace vectoriel”,
ce sera un R-espace vectoriel.

Rappelons la notation pour les puissances cartésiennes de R. Soit p € N, N étant comme
d’habitude I’ensemble des nombres naturels.

— Sip =0, alors R? = {0}.

— Sipe N alors R? = {(z1,...,2,) | tout z; est un nombre réel.}. Dans le cas ot p = 1,

nous aurons tendance a omettre les parentheéses et écrire x au lieu de (z).

Il y a divers choix de notation pour noter les éléments d’un espace vectoriel : w, u. Nous
n’utiliserons aucune de ces notations ornementées. Nous nous contenterons des lettres, u, v, x...
toujours en précisant les ensembles d’appartenance des objets qu’elles notent.

1.1 Définitions, exemples ; distance

Définition 1.1.1 (Norme) Soit E un R-espace vectoriel. Une fonction

= B — Ry
u [yl

est dite une norme si elle satisfait les trois conditions suivantes :
(N1) pour tout u € E, u est le vecteur nul si et seulement si ||u|| =0;
(N2) pour tout r e R et u € E, ||rul| = |r| [|u|]] (|| est la valeur absolue) ;

(N3) pour tous u,v € E, ||[u+v|| <|ul|+]|v|| (la premiére somme est la loi interne de l’espace
vectoriel E tandis que la deuziéme est celle des nombres réels).

Voici des exemples de normes :

1. La valeur absolue | | d’'un nombre réel est une norme dans l’espace vectoriel des nombres
réels. C’est la source intuitive qui a motivé la notion de norme.

2. (La norme euclidienne) Soit p € N*. La fonction

I[fl2 : R” — Ry
r=(T1,...,2p) — |lzl]2 = lex?
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6 CHAPITRE 1. ESPACES VECTORIELS NORMES : GENERALITES

définit une norme dans ’espace vectoriel RP.

3. Soit p € N*. Pour tout = = (x1,...,2,) € R?,

[l : RP — Ry
r=(21,...,2p) — 2| =21 |l

définit une norme dans ’espace vectoriel R?.

4. Soit p € N*. Pour tout © = (z1,...,x,) € R,

[Mlo : R? — Ry
x=(21,...,2p) — ||2|/lcc = maxl_; |a;]

définit une norme sur ’espace vectoriel RP.

5. Soit E V’ensemble des suites réelles bornées. Donc, tout élément x € E est une suite
(Tn),,eN telle que sup, N |2n| < +00. C'est un espace vectoriel de dimension infinie dont
la loi interne est la somme usuelle des suites et la loi externe est la multiplication par les
scalaires, “coordonnée par coordonnée”. Pour tout z € F, [|z[| = sup,, . |[z»| définit une
norme sur F.

Les normes (2)-(4) sont définies sur des espaces vectoriels de dimensions finies. Dans ce cours,
sauf mention contraire, nous travaillerons en dimension finie.

Définition 1.1.2 (Espace normé) Un espace vectoriel E est un espace vectoriel normé s’l
est muni d’une norme. La notation est (E,|| ||)-

Tous les espaces vectoriels dans les exemples ci-dessus sont donc des espaces vectoriels normés.
Nous utiliserons 'appellation courte “espace normé”.
On peut construire de nouvelles normes a partir de celles qui sont connues sur un méme
espace vectoriel, donc de nouveaux espaces normés :
1.
i : rR — Ry
(z,y) — |o+y[+|z|

o 2
définit une norme dans R”.

= r — Ry
(z,y) — max(jz+3yl, |z —y|)

o 2
définit une norme dans R~.

3. Considérons espace vectoriel des applications linéaires L(RP,R?) avec p,q € N arbitrai-
rement fixés. Comme RP et R? sont des espaces vectoriels de dimensions finies, pour
toute application linéaire u : R — R? il existe une constante M, € R, telle que
llu(z)]|1 < Myllz||1 pour tout z € R? (pourquoi ?). Ici, sur chacun de R, et Ry, nous avons

fixé la norme || ||;. En fait, il découlera de I’équivalence des normes (le théoreme 1.3.4
ci-dessous) que I'inégalité, ni d’ailleurs le reste de cet exemple, ne dépend pas du choix de
norme.

On définit pour tout u € L(RP,RY)

Jue)ls

[[ul[| = sup
z#0 |71

Notons que cette définition a un sens, en d’autres termes la fraction a une borne supérieure,
grace a la remarque du paragraphe précédent. Par ailleurs, il est aussi vrai que |||u]|] =

llu()lls
SUP|jz)li=1 "z,

est une norme.

(pourquoi 7). Alors la fonction qui associe |||ul|| & chaque v € L(RP,R?)
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De la méme maniere que la valeur absolue, une norme arbitraire permet de définir une notion
de “distance” :

Proposition 1.1.3 Soit (E, || ||) un espace normé. Alors, Uapplication

d : ExE — R4
(z,y) — |z —yll

définit une notion de “distance” sur E. Plus précisément, d jouit des propriétes suivantes :
(D1) pour tous u,v € E, u=v si et seulement si d(u,v) =0;

(D2) pour tousu et v € E, d(u,v) = d(v,u);

(D3) (Inégalité triangulaire) pour tous u,v,w € E, d(u,w) < d(u,v) + d(v,w).

Remarquablement, sur tout ensemble non vide, il est possible de définir une distance, en
d’autres termes une fonction ayant les propriétés D1, D2 et D3 sans que celle-ci provienne
nécessairement d’une notion de norme. Le cours de topologie en L3 sera consacré a leur étude
détaillée.

1.2 Topologie des espaces normés

La topologie générale est la science des “ouverts” et des “fermés”. Nous introduirons ces deux
notions fondamentales de la topologie générale dans le contexte particulier des espaces normés.

Définition 1.2.1 (Boule ouverte, boule fermée, sphere) Soient (E, || ||) un espace normé,
ac€ E, reR,.

1. La boule ouverte de centre a, de rayon r est I’ensemble
B(a,r)={z € E | ||lz—a|]| <r}.

2. La boule fermée de centre a, de rayon r est l’ensemble

Bla,r)={z € E |||z —a|| <r}.
3. La sphere de centre a, de rayon r est l’ensemble
S(a,r)={x€E||lx—all=r}.

Définition 1.2.2 (Partie fermée, partie ouverte) Soient (E,|| ||) un espace normé, A C E.

(ouvert) L’ensemble A est un ensemble ouvert de E par rapport d la norme || || si pour tout
a € A, il existe r € RY, tel que la boule ouwverte B(a,r) soit contenue dans A.

(fermé) L’ensemble A est un ensemble fermé de E par rapport & la norme || || si son complémentaire
est un ouvert de E.

Au lieu de dire longuement “un ensemble ouvert” ou “un ensemble fermé”, il est de coutume de
se contenter de “un ouvert” ou “un fermé” respectivement. La précision “par rapport & la norme
|| ||” n’est pas inutile car il n’est pas nécessaire que sur un méme espace vectoriel deux normes
induisent les mémes ouverts et fermés. Nous introduirons les notions liées & ce phénomene dans
la section suivante.

Remarquons qu’il s’ensuit du premier point de la Définition 1.2.2 que ’ensemble vide et F
sont des ouverts. Ensuite, il découle du deuxieme point qu’ils sont aussi des fermés. Donc, étre
ouvert et fermé ne sont pas deux propriétés qui s’excluent. Par ailleurs, un ensemble peut étre
ni ouvert ni fermé.

Les notions d’ensemble fermé et d’ensemble ouvert sont motivées par les notions d’intervalle
fermé et d’intervalle ouvert dans (R, | |). Mais ce ne sont pas les seuls exemples.
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Proposition 1.2.3 Soit (E,|| ||) un espace normé. Alors les énoncés suivants sont vrais :
1. Toute boule ouverte dans un espace normé est un ouvert.
2. Toute boule fermée dans un espace normé est fermée.
8. L’union d’une famille arbitraire d’ensembles ouverts est un ouvert. L’intersection d’un
nombre fini d’ensembles fermés est fermée.
4. L’intersection d’une famille arbirtraire d’ensembles fermés est fermée. L union d’un nombre
fini d’ouverts est ouverte.

Les conditions de finitude dans les points 3 et 4 sont nécessaires. En efffet, I'intersection
d’ouverts

+oo
() 1-1/n1/n]
i=1
n’est pas ouverte ; I'union de fermés
—+o0
U 0,11/
i=1

n’est pas fermée.
La proposition 1.2.3 a la conséquence suivante :

Corollaire 1.2.4 Si (E,| ||) est un espace normé, alors pour tout a € E et r € Ry, S(a,r) est
un fermé de E par rapport & la norme || ||.

Faute de meilleur endroit, nous glissons une définition mi-distancielle, mi-topologique :

Définition 1.2.5 (Partie bornée) Une partie X d’'un espace normé (E, || ||) est dite bornée
s’il existe a € E, r € Ry tels que X C B(a,r).

1.3 Normes équivalentes

Nous avons déja vu qu’il est possible de définir sur un méme espace vectoriel plusieurs
normes différentes. Ceci ne veut pas dire que ces deux normes nous donneront deux familles
distinctes d’ensembles ouverts (resp. fermés) sur ce méme espace. En d’autres termes, deux
normes différentes peuvent étre “topologiquement équivalente”.

Définition 1.3.1 (Normes équivalentes) Soit E un espace vectoriel muni de deux normes,
[| || et || |I. Les deux normes sont dites équivalentes s’il existe deur mombres réels r, s
strictement postifs tels que pour tout v € E

rllzl] < fl]” < sll]] -

Nous noterons || || ~ || ||. Notons aussi que r et s n’ont aucune raison d’étre uniques.
Proposition 1.3.2 Soient E un espace vectoriel et || ||, || ||y || || trois normes définies dans
E.
1. Toute norme définie dans E est équivalente a elle-méme (relation réflexive).
2. Si|| || et || || sont deuz normes définies dans E alors || || ~ || || si et seulement si
[| I/ ~ ]| || (relation symétrique).
3 S, I et ]l || sont trois normes définies dans E, || || ~ || ||" et que || ||" ~ || ||,
alors || || ~ || || (relation transitive).

En résumé, ~ est une relation d’équivalence.

Voici une raison pour laquelle il est important de savoir si deux normes sont équivalentes :
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Proposition 1.3.3 Soit E un espace vectoriel muni de deux normes || || et || ||'. Si ces deux
normes sont équivalentes, alors les ouverts de E par rapport a || || sont les mémes que ses ouverts
par rapport a || ||'. Par conséquent, il en est de méme pour les fermés.

La preuve du théoreme suivant, quoique abordable avec les outils de ce cours, nécessite plus
de connaissances que n’en ont été fournies a ce stade. Néanmoins, nous 1’énongons dés maintenant
et nous l'utiliserons librement.

Théoréme 1.3.4 Dans RP, plus généralement dans un espace vectoriel normé de dimension
finie toutes les normes sont équivalentes.

Nous montrerons le cas particulier suivant en utilisant des méthodes élémentaires :

Proposition 1.3.5 Les trois normes || ||1, || ||2 €t || ||oo dans RP (p € N*) sont équivalentes.

1.4 Nouvelles notions topologiques
Les notions d’ouvert et de fermé permettent de définir de nouvelles notions topologiques :

Définition 1.4.1 Soient (E,|| ||) un espace normé et X C E.

1. L’intérieur de X, noté )% est l’ensemble suivant :
{z € X | il existe r € RY, tel que B(x,r) C X} .

En d’autres termes, il existe un ouwvert de O de E qui est contenu dans X et auquel
[e]
appartient x. Parfois, on dit que X est un voisinage de = si x €X.

2. L’adhérence de X, notée X est l’ensemble des points x € E tels que tout ouvert contenant
x a une intersection non vide avec X (un tel ouvert “rencontre” X).

3. La frontiére de X, notée Fr(X) est l'ensemble X N (E\ X).

Proposition 1.4.2 Soient (E,|| ||) un espace normé et A C E.

[e]
1. L’intérieur A de A est louvert le plus large de E contenu dans A. En particulier, A est
o]
ouvert si et seulement si A =A.

2. L’adhérence A de A est le fermé le plus petit de E qui contient A. En particulier, A est
fermé si et seulement si A = A.

3. Un point x de E appartient a Fr(A) si et seulement tout voisinage de x rencontre & la fois
Aet E\ A.

4. A= AUFr(A).

1.5 Suites et convergence dans les espaces normés

La notion de norme généralise celle de valeur absolue et permet de parler de la distance
entre deux points. Par conséquent, on s’attend a ce que cette notion fournisse une notion de
convergence dans un espace normé arbitraire. C’est en effet le cas, la convergence d’une suite de
points d’un espace normé nous servira en étudiant diverses propriétés lies a la topologie telles
que 'adhérence, la continuité.

Définition 1.5.1 Soient (E,|| [|) un espace normé, (x,), .N une suite de points de E. La suite
(xn)neN est dite de converger vers un point | dans E si la condition suivante est satisfaite :

*

pour tout r € R, il existe N € N tel que n > N implique ||z, — || <1 ;
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de maniéere équivalente
pour tout r € R’y , il existe N € N tel que n > N implique x, € B(z,r) .
Nous noterons ce phénomene par la notation usuelle :

lim z, =1.

n—oo
Une remarque importante sur la notion de convergence est qu’elle ne change pas si la norme
dans sa définition est remplacée par une norme équivalente. Ceci est particulierement utile dans
RP

Dans ce cours, fréquemment il sera nécessaire de faire le lien entre les aspects a plusieurs

variables d’une notion (donc dans R? pour p > 1) avec ceux dans R. La proposition suivante en
est un exemple :

Proposition 1.5.2 Soient p € N*, || || une norme définie dans R” et (z,), N une suite de
points dans RP. Notons x, = (Tpa1,---,Tnp) les coordonnées de chaque élément de la suite.
Alors

lim z, = (l1,...,0p)

n—oo
si et seulement si pour chaque i € {1,...,p}

lim z,; =1; .
el n,i i

Notons que dans cette proposition le choix de la norme ne change rien a la conclusion puisque
toutes les normes sont équivalentes dans R?.

Proposition 1.5.3 (Propriétés élémentaires de la convergence) Soient (E, || ||) un espace
normé et (), N €t (Yn),cN deuz suites dans E qui convergent vers k et | respectivement. Alors

1 limy oo (zp +yn) =k +1;
2. pour tout scalaire r € R, limneN(rxn) =rk;
3. toute suite extraite d’une suite convergente converge vers la méme limite ;

4. toute suite convergente est bornée.
Finalement, voici un usage “topologique” de la convergence.

Proposition 1.5.4 Soient (E,|| ||) un espace normé et A C E. Un point x € A si et seulement
si il existe une suite (an), N convergente vers x telle que tout a, € A.



Chapitre 2

Fonctions de plusieurs variables :
limites, continuité

2.1 Qu’est-ce qu’une fonction de plusieurs variables, com-
ment est-elle représentée ?

Une fonction est en général une loi qui associe a chaque élément d’une partie d’'un ensemble
de départ un élément et un seul membre d’un ensemble d’arrivée. En voici une :

# : Etres humains — N
T —— numéro d’étudiant & 'UCBL en 2010-11

La loi #, sauf erreur administrative, définit une fonction. Son domaine est le sous-ensemble
des étudiants a 'UCBL, une partie bien plus petite que I’ensemble de départ affiché. Bien str,
Pensemble d’arrivée est aussi infiniment plus large que 1’image (ou I'image directe) de #. Tout
¢a, c’est bien loin des espaces normés, n’est-ce pas?

Précisons ce que nous entendons par une fonction de plusieurs variables. Soient p, ¢ € N*
et D C RP. Une fonction f définie sur D et d’ensemble d’arrivée est une fonction de plusieurs
variables. Bien evidemment, quand p = 1, la fonction est d’une seule variable, un cas particulier
qui fera néanmoins partie de la discussion générale des fonctions de plusieurs variables. Si ce cas
particulier présente des aspects particuliers non vérifiés en général, ceci sera précisé.

Le cas des fonctions p = ¢ = 1 était systématiquement étudié dans des cours précédents
d’analyse. Dans ce cours, nous essayerons de développer une étude aussi systématique que pos-
sible des fonctions de plusieurs variables en utilisant la notion de norme.

Pour certaines valeurs de p et de g, il existe une terminologie spécifique. Introduisons cette
terminologie aussi quoique ceci ne représente rien d’indispensable pour ce que nous ferons. Ainsi,
une fonction de plusieurs variables avec ¢ = 1 est dite une fonction scalaire et les fonctions avec
q > 1 sont parfois dites vectorielles.

Comment représenter une fonction de plusieurs variables ? En outre de sa définition en tant
que loi entre deux ensembles fixés, il existe des représentations des fonction de plusieurs variables
d’intérét géométrique.

Définition 2.1.1 (Le graphe d’une fonction) Soient p,q € N*, D C RP et f : D — R?

une fonction. Le graphe de f est I’ensemble suivant :

G(f)={(x1,- s @p,y1,---,Yq) € RPT | flz1, o xp) = (W1, Yq) } -

Cette notion si bien connue a une valeur géométrique importante pour ce cours. Illustrons ceci
par deux exemples simples et non moins connus.

f: R — R

€T [a— 172

11
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Le graphe de cette fonction

G(f) = {(z,2%) | z € R}

est une courbe dans R?, une parabole. Nous pouvons élaborer notre exemple un peu pour définir

f : R? — R
(w1, 2) +— @i +a3

Le graphe de cette fonction
g(f) = {(%1,332,.23? +$2) | (.%‘1,3)2) € R2}

est une surface dans R*, un paraboloide.

Afin d’étre étudiés, ces objets géométriques sont parfois entierement dessinés... dans les li-
mites du possible. Parfois, on se restreint a des représentations partielles. Des exemples seront
présentés en cours. Ici, nous nous contentons de donner une définition importante qui sera utile
tout au long du cours et qui concerne le cas des fonctions scalaires de deux variables.

Définition 2.1.2 (Lignes de niveau) Soient p =2, ¢ =1, D C R? et f : D — R. Fizons
un réel k. La ligne de niveau k est l’ensemble

Li(f) = {(z1,22) € D | f(x1,22) =k},
en d’autres c’est I’image inverse du singleton {k} : f=1({k}).

Intuitivement, il s’agit de la “projection” sur R? de l'intersection du graphe G(f) avec le “plan”
{(CEl,(ﬂQ,k) S R?) | (l’l,xg) S RQ}
Illustrons la notion de ligne de niveau avec un exemple géométrique. Fixons a,b € Rf et
définissons la fonction
f: RxR — R
2 2
(x1,20) — 43
Pour tout k € R*, L(f) = 0, tandis que Lo(f) = {(0,0)}. Qu’en est-il pour k € R% ? Dans le
cas particulier olt @ = b, c’est le cercle S(0, \/E) En général, il s’agit d’une ellipse. Pouvez-vous
voir/dessiner & quoi ressemble une telle ellipse ?

2.2 Limites

Comment étendre la notion de limite aux fonctions de plusieurs variables ? Nous utiliserons
la notion de norme. Notons que les normes sur R? ni sur R? ne seront précisées puisque c’est
inutile. En effet, la définition utilise des boules ouvertes autour de certains points fixés. Comme
les normes sont équivalentes en dimension finie (le théoreme 1.3.4), les boules ouvertes (resp.
fermées) gardent leurs natures topologiques quand la norme change.

La notion d’adhérence joue un role important dans la définition. En particulier, un point est
dit adhérent & une partie de R? §’il appartient & I’adhérence de cette partie.

Définition 2.2.1 (Limite d’une fonction de plusieurs variables en un point adhérent
a son domaine) Soient p,q € N*, f : RP — R? une fonction de plusieurs variables définie sur
D C R?. Soit a € RP un point adhérent & D. La fonction f est dite d’avoir la limite b au point
a ou de tendre vers b quand x € D tend vers a si pour tout € € R’y il existe 6 € R’y tel que

lz —all <o = |[f(z) bl <e.

Ce fait sera noté

lim f(z)=b.

r—a
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Il est tres important de noter que a peut ne pas appartenir a D. Voici un exemple simple ol ceci
joue un role :

f+ Ry — R

- 22 si x>0
t 1 si =0

Si nous posons D = R, alors lim, .o f(z) = 0.
Voici deux propriétés de la notion de limite, telle que nous ’avons introduite en plusieurs
variables, qui nous disent que la notion est robuste :

Proposition 2.2.2 Nous gardons la notation de la définition 2.2.1. Soit f : RP — R? une
fonction de plusieurs variables définie sur D C RP.

1. La limite de f en un point a € D est unique si elle existe.

2. La limite de f en un point est indépendante du choiz de normes dans RP et dans R?
(Plus généralement, des normes équivalentes dans ’ensemble de départ et dans l’ensemble
d’arrivée donnent la méme limite).

Comme dans le cas des fonctions d’une seule variable, il est possible de caractériser la notion
de limite en utilisant la notion de convergence :

Proposition 2.2.3 Nous gardons la notation de la définition 2.2.1. Soit D C R (p € N¥). On
considére f: D — R? (¢ € N*). Sia € D, alors

lim f(z) =1

r—a

si et seulement si pour toute suite (v,), N dans D qui converge a a, lim f(x,) =1.

li
n—-+o0o

2.3 Continuité

La notion de continuité s’étend aussi naturellement que celle de limite aux fontions de plu-
sieurs variables.

Définition 2.3.1 (Continuité d’une fonction de plusieurs variables en un point de
son domaine) Soient p,q € N*, D C R? et f : RP — RY une application définie sur D.
L’application f est dite continue en a € D si lim,_., f(z) = f(a).

Cette définition implique les trois points suivants :
1. le point a est dans le domaine de f;
2. la fonction f a une limite en a;
3. la limite de f en a est f(a).

Définition 2.3.2 (Continuité d’une fonction de plusieurs variables sur une partie de
son domaine) Soient p,g € N*, D C RP et f : D — RY une application définie sur D.
L’application f est dite f est dite continue sur A si elle est continue a chaque point de A.

Proposition 2.3.3 (Caractérisations de la continuité) Soient f, D,p,q,a comme dans la
définition 2.3.1. Alors les conditions suivantes sont équivalentes :

1. f est continue en a;

2. pour tout € € R, il existe 6 € R tel que

[l — al| < 9§ entraine ||f(x) — f(a)|| <€;
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3. pour toute suite (zn), N dans D,

st lirf T, = a alors liril flxn) = f(a)

(f( lim z,)= lim f(xn)> .

n—-+oo n—-+4oo

Citons quelques exemples aussi simples qu’utiles de fonctions continues. La proposition
précédente ainsi que les propriétés de la convergence (la proposition 1.5.3) sont clés & la vérification
de leur continuité. Ces exemples et d’autres seront abordés en détail en cours et en travaux di-
rigés. Notons que, sauf mention contraire, p, q sont arbitrairement fixés dans N*.

1. La fonction identité :
f: RFP — TRP

x
2. La fonction constante, ¢ étant un point fixé dans R?
f : RFP — R

xT — C

3. La projection sur la iéme coordonnée (1 < i < p)
m o RP — R
r=(T1,. ., Ty, Tp) > T4
4. La somme dans R?
+ : RP xR — RP
(x,y)  — x4y
5. Le produit dans R
R? — R
(r,y) — ay

2.4 Opérations sur les limites

Les diverses opérations telles que la somme, le produit, le quotientement, la composition des
fonctions ont des effets sur les limites qui sont réminiscentes de ce qui se passe dans le cas des
fonctions d’une seule variable... quitte a prendre soin de certaines subtilités. Comme c¢’est souvent
fait en mathématiques, elles permettent d’étudier des propriétés des fonctions “compliquées”, qui
sont déja connues pour celles qui sont plus “simples”. La section suivante suit la méme approche
dans I’étude de la continuité.

Proposition 2.4.1 Soient p,q € N*, D C R?, g, f deuz fonctions de RP vers R? définies sur D
et a un point adhérent a D. S’il existe deux points ly et l, dans R? telles que

lim f(z) =1 et lim g(z) =1, ,

alors

1 limg o (f + g)(2) = limg—o (f(2) + g(x)) = lf + 1y ;

2. pour ¢ =1, lim,_,(fg)(z) = lim,_o(f(z).g(z)) =1s.ly;

3. pour ¢ =1 et a condition qu’il existe un voisinage de a ot g(z) # 0,

limg—q(f/9)(x) = lim,—o(f(z)/g(z)) =11/,

Proposition 2.4.2 Soient m,p,q € N, Dy CR™, D, CR?, f et g deuz fonctions de R™ vers
RP et de R? vers RY, définies sur Dy et Dy respectivement. Si a € Dy , b € D, , 1 € RT,
lim, ., f(z) =0, limy,_, g(y) =1 et f(Dy) C Dy (en d’autres termes, la composition go f est

définie sur Dy ), alors
lim (g 0 f)(z) =1 .

r—a
Les propositions 2.4.1 et 2.4.2 fournissent des regles de calcul pratiques pour le calcul des
limites qui ont des conséquences sur la continuité aussi.
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2.5 Opérations sur les fonctions continues

Les propositions 2.4.1 et 2.4.2 s’adaptent a la discussion de la continuité et permettent de
conclure la continuité des fonctions “compliquées” a partir des fonctions “simples”.

Proposition 2.5.1 Soient p,q € N*, D C R?, g, f deux fonctions de R? vers R? définies sur
D, etae D. Sif etg sont continues en a, alors

1. f+ g est continue en a ;
2. pour q =1, fg est continue en a ;

3. pour ¢ =1 et a condition qu’il existe un voisinage de g(a) ot g(x) # 0, f/g est continue
en a.

Proposition 2.5.2 Soient m,p,q € N*, Dy CR™, Dy CR?, f et g deux fonctions de R™ vers
R? et de R? wvers R?, définies sur Dy et D, respectivement. Si a € Dy, b € Dy, f(a) =b, f est
continue en a, g est continue en f(a), et f(Dy) C D, (en d’autres termes, la composition g o f
est définie sur Dy ), alors go f est continue en a.

Proposition 2.5.3 Soient p,qg € N, D C RP, fi,..., f, des fonctions de R? dans R définies
respectivement sur D; (1 <i<gq), eta € D= DiN...NDy. Alors toutes les fonctions fi,..., fq
sont continues en a si et seulement si la fonction

f D — RY
z — (falx),..., fy(x))

est continue en a.

Des applications des trois propositions précédentes seront données en cours et en travaux
dirigés. La discussion qui précede ainsi que les exemples somme et produit de la derniére section
permettent de vérifier rigoureusement en utilisant un raisonnement par récurrence sur les degrés
et sur le nombre de monémes que tout polynéome de p variables (p € N*) définit une fonction
continue sur R?.

2.6 Fonctions continues et topologie

Dans tout domaine des mathématiques, les notions principales sont liées a des familles par-
ticulieres de fonctions. En analyse, les notions topologiques, donc les notions qui sont définies
a partir des notions d’ensemble fermé et d’ensemble ouvert sont étroitement liées aux fonctions
continues. Le théoréeme suivant tres important illustre bien ce lien.

Théoréme 2.6.1 (Caractérisation topologique des applications continues) Soient p,q €
N*, et f: RP — RY? une application. Les conditions suivantes sont équivalentes :

1. f est une application continue;
2. si O est une partie ouverte de RY, alors il en est de méme pour f=(0) ;

3. si F est une partie fermée de R?, alors il en est de méme pour f~*(F).

Nous admettrons ce théoreme bien que sa preuve soit a la portée de nos connaissances. Ceux
qui s’interessent a la connaitre peuvent s’adresser aux pages des années précédentes. Ce qui est
important est de comprendre bien son énoncé et de pouvoir ’appliquer correctement.

Mustrons 'utilité pratique du théoreme 2.6.1 en 'appliquant aux lignes de niveau : toute
ligne de niveau de toute fonction f : R> — R continue sur un domaine fermé (par exemple R?
tout entier) est un fermé de R?.

Le théoreme 2.6.1 a beaucoup d’autres applications que nous verrons tout au long de ce
cours. Néanmoins, il faut bien comprendre ses hypotheses et en savoir la portée. Par exemple,
Iénoncé ne dit aucunement que limage directe d’un ouvert (resp. fermé) est ouverte (resp.
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fermée). Donnons un exemple trés simple. Soient p, ¢ € N* et ¢ € R? un point fixé. Considérons
I’application constante
f : RF — R

x — C

L’espace R? est un ouvert de RP. Son image directe sous f est le singleton {c} qui n’est pas un
ouvert de RY.

Pour continuer notre étude, nous introduisons une notion fondamentale, celle d’une partie
compacte de R (plus généralement, un espace normé de dimension finie).

Définition 2.6.2 (Parties compactes de R”) Un ensemble K dans RP est dit compact si K
est fermé et borné.

Cette définition est un mensonge! Non, pas tout a fait, c’est un cas particulier de la no-
tion générale d’ensemble compact. Celle-ci sera donnée au cours de topologie, et pour mieux
I’apprécier il est indispensable de comprendre et de retenir toutes les propriétés des ensembles
compacts de notre cas particulier.

Commencgons par une caractérisation tres utile dont nous admettrons la preuve :

Théoréme 2.6.3 Soient p € N* et K C RP. Alors K est compact si et seulement si, de toute
suite (n), N+ dans K (en d’autres termes, pour tout n € N, z,, € K), on peut extraire une
suite convergente.

Ilustrons ce théoréme par un exemple trés simple. L’intervalle [0, 1] est & la fois fermé et
borné dans R. Il est donc compact. Voici une suite tres simple

Tn, =0sinest pair ; z, =1 sin est impair

Les suites constantes de valeur 0 et 1 respectivement sont deux sous-suites convergentes. Dans
ce cas, c’est presque évident. Ce qui est remarquable est que, d’apres le théoréme 2.6.3, nous
pouvons extraire de telles sous-suites de chaque suite dans [0, 1].

Ce qui n’était pas en général vrai pour les ensembles fermés ou bornés I’est pour les ensembles
compacts :

Proposition 2.6.4 (Parties compactes et fonctions continues) Soient p,q € N* et f :
R? — R? une application continue sur une partie D de RP. Si K est un compact de RP contenu
dans D, alors f(K) est aussi compact.

La preuve de cette proposition sera admise. Pour mieux apprécier son importance, il suffit de
se rappeler que I'image par rapport a une fonction continue d’un fermé n’est pas nécessairement
un fermé, et que l'image d’un ensemble borné n’est pas nécessairement bornée. Voici deux
exemples :

1.

f: R — R
, L
€T 241

Notez que f est continue en tout point de R mais que f(R) =]0, 1].

g - ]O’ 1]

—
x —

8|~ &g

La fonction g est continue sur son domaine qui est une partie bornée de R. Néanmoins,
son image ne ’est pas.

Avant de continuer, soulignons que la proposition 2.6.4 ne dit rien sur les images inverses
des ensembles compacts. En effet, il n’est pas nécessaire que 'image inverse d’un compact soit
compact. L’application constante ci-dessus fournit un exemple.

La proposition 2.6.4 a une conséquence importante et utile en pratique :



2.6. FONCTIONS CONTINUES ET TOPOLOGIE 17

Corollaire 2.6.5 Soient p € N*, f : R? — R une application continue sur une partie D de RP.
Si K est une partie compacte de RP contenue dans D, alors f est bornée sur K et elle atteint
ses bornes sur K. En d’autres termes, il existe a,b € K tels que pour tout x € K,

fla) < f(x) < f(b) .

Pour mieux apprécier la notion suivante nous retournons au deuxieme exemple ci-dessus.
Nous pouvons prolonger Papplication g ci-dessus & 'intervalle [0, 1] qui est compact.

g : ]0,1] — R
. L siz€o,1]
. c siz=0

(c est un réel arbitrairement fixé). Néanmoins, ce prolongement n’est plus continu.

Définition 2.6.6 (Prolongement par continuité) Soient p,q € N*, D C R?, f une fonction
de R? vers RY définie sur D. Si a est adhérent o D et que nous pouvons définir

f : Du{a} — R?
- . { f(x) six € D
c six=a
de telle facon que f soit continue sur D U {a}, alors la fonction f est dite le prolongement par
continuité de f au point a.

La derniere notion topologique de ce chapitre sera importante dans le calcul différentiel et
dans l'intégration. Il s’agit de la connexité par arcs. C’est un cas particulier de la notion de
connexité qui est plus géométrique et suffisant pour notre cours.

Définition 2.6.7 (Arcs dans R?) Soit [a,b] un intervalle fermé et borné de R. On appelle arc
une fonction v : [a,b] — R? (q € N*) continue sur [a,b]. Les points v(a) et y(b) sont dits les
extrémités de l’arc. L’arc 7 est dit de joindre v(a) a v(b).

La notion d’arc ne vous est pas inconnue :

1.
vy : [0,1]] — R?
t  +—— (cos(2nt),sin(27t))
Dans cet exemple, les extrémités sont le méme point : v(0) = (1) = (1,0).
2. Le segment de droite joignant deux points = (21,...,%,4) et ¥y = (y1,...,y,) dans R?

(q € NY).
v : [0,1] — R?
t — z+tly—z)=ty+(1—-t)x

Les extrémités sont v(0) = z et y(1) = y.

Définition 2.6.8 (Parties connexes par arcs de R?) Soit C C RY. L’ensemble C est dit
connexe par arcs si toute paire de points sont joignables par un arc dans C. En d’autres termes,
l’ensemble d’arrivée de la fonction qui définit arc en question est contenue dans C.

Le deuxieme exemple ci-dessus nous fournit immédiatement un exemple d’ensemble connexe
par arcs dans R?, notamment R?. Voici quelques exemples et contrexemples :

1. Tout segment de droite dans R? est connexe par arcs; en particulier un singleton dans RY
est connexe par arcs.

2. Si A = {z,y} est une partie de R? de cardinal 2, alors A n’est pas connexe par arcs. Un
corollaire immédiat de ceci est que la méme conclusion est vraie pour un ensemble fini &
au moins deux éléments.
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3. Soit P un point fixé de R? (¢ > 2), alors 'ensemble RY \ {P} est connexe par arcs.
4. L’ensemble R* n’est pas connexe par arcs.
5. L’ensemble R? \ B((0,0),1) est connexe par arcs.

Comment vérifier tout cela? Les énoncés suivants sont indispensables dans 1’étude de la
connexité par arcs :

Proposition 2.6.9 (Connexité par arcs et fonctions continues) Soient p,q € N*, f une
application de RP vers R? continue sur une partie D de RP. Si D est connexe par arcs, alors
f(D) est connexe par arcs aussi.

Théoréme 2.6.10 (Connexité par arcs dans R) Une partie de R est connexe par arcs si et
seulement si c’est un intervalle.

Théoréme 2.6.11 (Le théoréme des valeurs intermédiaires) Soient p € N*, D une partie
de conneze par arcs de RP. Si f : RP — R est une fonction continue sur D et x1,12 € D, alors
pour tout nombre y entre f(x1) et f(xs), il existe x € D tel que f(x) =y.

La preuve du théoreme des valeurs intermédiaires découle des deux énoncés précédents. Celle
du théoreme 2.6.10 nécessite plus que nous en verrons dans ce cours.



Chapitre 3

Calcul différentiel

Dans ce chapitre, nous étendrons les notions de dérivée et de fonction dérivable aux fonctions
de plusieurs variables. L’approche la plus naive, qui consiste a dire qu’une fonction de plusieurs
variables est dérivable si elle I'est par rapport a chacune de ses variables, s’avere trop faible.
Néanmoins, elle fournit un outil pratique : les dérivées partielles.

Pour aboutir & une solide notion de différentiabilité, nous aurons recours a un aspect algébrique
de la dérivée. Celle-ci définit une application linéaire. Nous commengons donc en essayant de
motiver ceci sur un exemple simple.

3.1 Dérivabilité des fonctions d’une seule variable et a va-
leurs réelles ; rappels, une nouvelle conception

Voici une fonction trés simple d’une seule variable,

f: R — R

r {E3

... si simple que nous savons tous la dériver :
f'(x) = 32%.

Mais qu’est-ce que cela veut dire ? Comment 'interpréter ?

Tout d’abord, il s’agit d’une nouvelle fonction avec sa propre loi, son propre domaine, sa
propre arrivée et ses propriétés. Elle associe a chaque nombre réel a la valeur réelle 3a?. Pour
obtenir cette définition, nous calculons une limite :

3 3
. I~ —a
lim = 3a%.
r—a ; xFa T — Q

Ceci équivaut a
1@ =@~ M@ —a)

r—a ; x#a Tr—a

207

soit encore
f@) = fla)+ f'(a)(@ —a) + oz —a) .

Les deux premiers termes de ’expression forment I’équation de la tangente au graphe de f au
point (a, f(a)). La pente de cette droite est f'(a), et & chaque réel a correspond une application
linéaire :

a +— fla) : R — R
t — f'(a)t
Cette observation souligne I'aspect fondamental de la différentiation. I1 s’agit d’associer a chaque
point du domaine, une application linéaire dont les entrées de la matrice représentante seront
déterminées en utilisant les dérivées partielles.

19
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3.2 Dérivées partielles

Les dérivées partielles essayent d’étendre la notion de différentiation aux fonctions de plu-
sieurs variables. Quoique trop faible pour caractériser la différentiabilité en plusieurs variables,
elles fournissent un outil indispensable pour la détermination de la matrice jacobienne.

Définition 3.2.1 (Dérivées partielles en un point) Soient p € N*, U un ouvert de R et f
une fonction de RP vers R définie sur U. La fonction f est dite d’avoir une dérivée partielle en
a=(ai,...,ap) par rapport la iéme variable si la fonction

t — f(alv" '7ai—17t7a’i+1a"'7ap)
est dérivable en a;, en d’autres termes, si la limite

lim f(ah e ,ai,l,t,aprl, e 7ap) — f((l)
t—a; t—a;

existe. On note cette limite
of
ox;
Cette notion de dérivée utilise de fagon essentielle la notion de dérivée des fonctions d’une
seule variable. Elle permet de définir une nouvelle fonction de R? vers R quand elle existe sur
un ouvert :

(a) ou 0O;f(a) ou D;f(a).

a +— 0;if(a)
Voici quelques exemples :
1.
f : R? — R

(v1,22,23) —— 32] + zixs + 2323

onf : R? — R .

(r1,22,73) +—— 1223 + 22925

oof : R? — R o O3f R — R
(z1,29,73) —— 3x3z3 (z1,22,73) +—— a3+ bzxixi

2.

0 sinon

R
og : R? —~ R
R

82g : R2

l

(z,y) — :
0 sinon

{ v si(5,y) £ (0,0)

Nous n’avons pas encore défini une notion de “dérivée” pour les fonctions de plusieurs variables,
mais quelle que soit la définition qui sera introduite, la fonction g ne doit pas étre “dérivable”
en (0,0) puisqu’elle n’y est pas continue. Or, remarquablement, les dérivées partielles de g sont
toutes définies en tout point de R?. Observons quand-méme que les dérivées partielles de f ne
sont pas continues en (0, 0).

La conclusion que nous tirons du deuxieme exemple est que pour étre “dérivable” au voisi-
nage d’un point il ne doit pas suffire pas d’avoir toutes les dérivées partielles sur ce voisinage.
Les dérivées partielles dépendent des directions, donc d’un choix de chemins, déterminés en
loccurrence les axes de coordonnées. Ces remarques seront précisées au long des sections qui
viennent.
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3.3 Différentiabilité, différentielle d’une fonction de plu-
sieurs variables

Nous commencons immédiatement avec la “bonne” définition de la dérivabilité. Des le début,
les liens avec I'algebre linéaire seront visibles.

Définition 3.3.1 (Différentiabilité en un point) Soient p,q € N*, U C RP un ouvert, f
une fonction de RP vers RY définie sur U, et a € U. La fonction [ est dite différentiable en a
s’il existe une application linéaire notée L € L(RP R?) telle que

i @) = fla) = Lz —a)llge _
ara |lz — allge

03

En d’autres termes, s’il existe L € L(RP,RY) telle que

If(z) = f(a) = L(z — a)|| = o([|x — al|) .
La fonction f est dite différentiable sur U si elle est différentiable en tout point de U.

Voici quelques remarques immédiates :
1. la différentiabilité ne dépend pas de la norme choisie;
2. si p=q =1, alors la notion de différentiabilité équivaut a la dérivabilité usuelle.

3. Nous pouvons introduire la différentiabilité en un point en suivant une exposition légérement
différente de celle de la définition 3.3.1. En gardant la méme notation mais posant h = x—a,
nous arrivons a l'identité

If(a+h) — fla) = L{A)[|Rs _

im 0.
l[j—0 [|h]|Re

Si alors nous posons R(h) = f(a + h) — f(a) — L(h) (la fonction reste), la limite nulle
équivaut a ||R(h)||ge = o(||h||ge), et I'égalité suivante est vraie :

fla+h) = f(a)+ L(h)+ R(h) .

4. La notion de différentiabilité en un point ne dépend pas de choix de normes en R ni
en R?. En d’autres termes, si || [ et || || étaient deux autres normes sur R, et R,
P q

respectivement, alors

If(z) = fa) = L(z — a)llga

lim ; =0,
L o — allg
équivalemment,
fla+h)— fla) — L(h)||pq
i |f(a+h) (/) Ol .
Ill—0 [1AlIge

En effet, I’équivalence des normes (ce qui est toujours le cas sur les espaces normés de
dimension finie) implique Uexistence de 7, s € R tels que r||f(z) — f(a) — L(z — a)llpe <
|If (@) = f(a) = L(z — a)||g+ pour tout x € R” et ||z — al|gr < s|[z — a[p,. Il en découle

que
_ rl|f(z) = fla) = L(z = a)]|pa < Nf(@) ~ fla) — Lz — a)lls
: sz —allr = o~ allr
Or
i I5@) = £@) ~ L~ e _

@—a |z — allg
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rllf(@)=f(a)-L(z—a)llpa

; a tendre vers 0. La méme
S\Ir—al\Rp

Les lois de gendarmerie condamne alors

I (@)~ f(a)-L(z—a)llpa

lz—allmp

conclusion s’ensuit pour . Notons que dans ce raisonnement la méme

application linéaire L a été utilisée.

La propriété bien connue des fonctions dérivables d’une seule variable et a valeurs réelles
s’étend aux fonctions de plusieurs variables :

Proposition 3.3.2 Si f est différentiable en a, alors elle y est continue.
Voici une autre propriété fondamentale :

Proposition 3.3.3 (Unicité de la différentielle) Nous gardons la méme notation dans la
défition 3.8.1. Si la fonction f : U — RY est différentiable en a, alors l’application linéaire
associée a ce point est unique.

Cette unicité permet de définir sans ambiguité la fonction différentielle.

Définition 3.3.4 (Différentielle d’une fonction en un point) Soient p,q € N*, U C RP
un ouvert, f une fonction de RP vers R? définie et différentiable sur U. L’application linéaire
uniquement associée a chaque point a est dite la différentielle de f en a ; l’application qui associe
a a € U la différentielle de f en a est dite la différentielle de f.

Nous utiliserons la notation suivante :

df + U — LR RY
a — df(a)

Les exemples suivants seront détaillés en cours :
1. Soit p € N*,
f: RP — RP

T — .

La fonction f est différentiable en tout point de R?. L’application linéaire qui en témoigne
est la matrice identité. Plus précisément, en tout point € R?, df (z)(h) = h.

2. L’exemple précédent se généralise a une application linéaire quelconque. En d’autres termes,
si nous considérons la fonction

f : RFP — R

r — Az,

ol A est une matrice g x p, alors elle est différentiable en tout point x € RP et sa différentielle
en un tel point est elle-méme

df(z) : R? — R
h +— Ah.

Notons que quand p = g = 1, cette conclusion est un cas particulier que vous connaissez
bien : la dérivée de la fonction z — Az (A € R) est la fonction constante z +— A, et A est
la pente de la droite déterminée par le graphe de la fonction.
On peut se poser la question de ce qui est constant dans le cas général. C’est la fonction
différentielle. En effet,
df : RP — L(R",RY)
v — df(@)

et quel que soit le point « € R?, df (z) est la méme application linéaire.
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3. Puisque nous parlons des constantes, il est bon moment d’étudier la différentiabilité de

f: RF — R

T — c,

ol ¢ est un point fixé de R?. Quelle est sa différentielle & votre avis 7
g : R? — R
(r1,22) +— 27+ 23

La fonction g est différentiable en tout point a de R?. Si a = (a1,a2) est un tel point, alors
la différentielle de g en a, dg(a), est représentée dans la base canonique par la matrice
1x2 (2a1 2a2) = (019(a) O29(a)) :

dg(a) : R? — R
(hihe) —  (2a1 2a2)< Z;)

5. Une fonction d’une seule variable mais & valeurs vectorielles est de la forme

f: R — RP
€ — (fl(x)vafp(x)) ’

avec les f; qui sont des fonctions a valeurs réelles. Si en = € R, chaque f; est dérivable,
alors la fonction f est différentiable en x et

df(z) : R — R?

ho— | fl@h
1<i<p

6. Cet exemple concerne une généralisation du produit de deux nombres réels. Nous définissons
la fonction suivante :
B : RPxRF — R
(z,y) — Ty,

ou . est le produit scalaire. Plus explicitement, si z = (z1,...,%p) et y = (y1,...,Yp) pPar
rapport a la base canonique, alors x.y = Zle x;y;. Alors

dB : R’xRP — L(R” xR’ R)
(z,9) —  dB(z,y) ,

et en tout point (z,y) € RP x RP,
dB(z,y) : RPxRP — R
(h, k) —  (y x)(Z):yh+xk .

3.4 Liens avec dérivées partielles ; matrice jacobienne ; fonc-
tions de classe C!
La proposition 3.3.2 et le deuxieme exemple de la section 3.2 montrent clairement qu’il n’est

pas suffisant d’avoir des dérivées partielles en un point pour y étre différentiable. Néanmoins,
les liens sont forts :
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Proposition 3.4.1 Soient p € N*, U un ouvert dans R?, a € U et f une fonction de R
vers R définie sur U. Si f est différentiable au point a, alors ses dérivées partielles en ce point
sont définies. En plus, la matrice représentant Uapplication linéaire df (a) par rapport d la base
canonique est

@O1f(a) ... Opf(a))

Résumons : si une fonction f est différentiable en un point a, alors sa différentielle est déterminée
par les valeurs des dérivées partielles en ce point. Celles-ci y sont définies. Par contre, la seule
existence des dérivées partielles en un point n’entraine pas la différentiabilité en ce point.
D’autres conditions seront nécessaires. Avant d’introduire des conditions supplémentaires, nous
présenterons le cas général de la proposition 3.4.1.

Nous travaillons avec la méme notation, le seul changement étant le suivant : la fonction f a
R? comme ensemble d’arrivée ol ¢ est un naturel non nul arbitraire. Elle est toujours supposée
étre différentiable en a. Notre fonction est donc de la forme :

f v — R?
a +— (fi(a),..., f4(a))

Alors, la différentielle de f est

o + U — L(RPRY

o — df(a)
avec df (a) représentée par la matrice
81f1 (a) e 6pf1 (a)
9;fi(a)
O11q(a) O1a(0) ) 1cicy 155
soit encore of of
52 (a)
o, ' of,
o (@) oz, () 1<i<q ; 1<j<p

par rapport a la base canonique. Cette matrice est dite la matrice jacobienne de f au point a.
Il est temps d’introduire une condition suffisante de différentiabilité qui utilise les dérivées
partielles. Une définition d’abord :

Définition 3.4.2 (Fonctions de classe C! sur un ouvert) Soient p,q € N*, U un ouvert de
R? et f une fonction de RP vers R? définie sur U. On dira que f est continiment différentiable
sur U, ou de classe C' sur U, si

df : U — L(RP,RY)
a +— df(a)

est une application continue sur U. La notation sera f € C*(U).

La continuité de df a un sens puisqu’il s’agit d’une application de R? vers RP?, deux espaces
normés. Muni de cet arsenal, nous pouvons énoncer un théoreme qui sera de grande valeur
pratique :
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Théoréme 3.4.3 Soient p,q € N*, U un ouvert non vide de R?, f une fonction dont toutes les
dérivées partielles sont définies sur U. Si ces dérivées partielles sont continues sur U, alors f
est de classe C' sur U.

Certaines remarques doivent étre immédiatement faites :

1. La conclusion du théoreme est strictement plus forte que la différentiabilité sur U. Des
exemples de fonctions différentiables sans ’étre contintiment seront étudiés aux travaux
dirigés.

2. Le théoreme 3.4.3 nécessite la continuité des dérivées partielles sur un ouvert non vide,
non seulement a un point.

3. Plus tard, nous introduirons la notion de fonction de classe C* pour tout k € N* en ayant
recours aux dérivées partielles.

Notons aussi que le théoreme 3.4.3 est d’'une grande valeur pratique. Quand la continuité
des dérivées partielles sur un ensemble ouvert non vide est connu, il n’est plus nécessaire de
vérifier la différentiabilité ni de déterminer la différentielle en appliquant la définition 3.3.1. 11
suffit de calculer la matrice jacobienne. L’exemple suivant sur les coordonnées polaires est une
bonne illustration de cette économie d’énergie.

La différentielle de la fonction

[ Rix]0,2n] — R?
(r,t — (rcost,rsint)

en un point (r,t) € RY x]0, 27| est I'application linéaire déterminée par la matrice
cost —rsint
sint rcost

C’est un bon exercice d’essayer de démontrer sa différentiabilité a partir de la seule définition
3.3.1.

3.5 Opérations sur les fonctions différentiables ; opérations
sur les fonctions de classe C!

Cette section a une valeur pratique importante pour calculer des différentielles. Elle illustre
aussi les liens forts entre notre cours et I’algebre linéaire, un phénomene que nous continuerons
de rencontrer.

Proposition 3.5.1 (Sommes et produits par les scalaires) Soient p,q € N*, U,V deux
ouverts dans RP, f, g deux fonctions différentiables (de classe C') sur U et V respectivement.
Alors f + g, définie sur UNV par la loi x — (f + g)(x) = f(z) + g(z) est différentiable (resp.
de classe C') sur UNV. Sa différentielle est définie comme suit :

dif+g) : UNnV — L(RP,RY)
x — (df +dg)(x) = df (z) + dg(z)

En pratique il s’agit de la somme de deuxr matrices jacobiennes :

O f1(z) Op f1(x) 01 () Opg1 ()

011, (x) . 0,1, (x) D1g4(x) . 0,94 ()
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O (fr+g91)(x) e Fp(fr + g1)(x)

9;(fi + 9i)(x)

n(fo + 9)(@) . Ol fa + 9)(@)

Si X € R, alors la fonction \f définie sur U par x — \.f(z) est différentiable (resp. de classe
CY) sur U de différentielle

dAf) : U — LRPRY)
xr — Adf(x)

En pratique il s’agit de multiplier la matrice jacobienne par une matrice scalaire :

A0 ... 0 0 A fi(z) Iy f1(z)
0 A 0 ofie) ... =
0 e 0 A g \ i f(2) Ofol@) ) .,
AL f1 () . A, f1 ()
A0; fi(x)
A0y £, () . . Npfo(@) /.
O1f1(x) Opf1(x) A0 0 0
ajf;(x) : 0 A0
01 fy(2) Ofe(@) ) oy \ O L0

Proposition 3.5.2 (Composition) Soient p,q,r € N*, U et V des ouverts de R? et R? respec-
tivement. Si f et g sont deuxw fonctions différentiables (de classe C*) sur U et V respectivement,
et que f(U) CV, alors go f est différentiable (resp. C') sur U de différentielle
dlgof) : U — L(E"R
r o dg(f(z)) o df ()

La deuxiéme composition est celle de deuz applications linéaires, et en pratique, correspond
au produit des matrices jacobiennes :

di(go () Ip(g o fi(z)

&g Nlx) . By(g 0 ()

TXP
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Ag1(f(2)) e 991 (f(x)) O fi(x) e Opf1(x)

019 (F(2)) - 2u0r(F@) ) o, \ O1f(a) - Oyl

Nous rencontrerons souvent deux applications :

1. une formule qui lie la différentielle d’une fonction a valeurs réelles et différentiable sur un
ouvert a ses dérivées partielles;

2. changement de coordonnées.

3.6 Le théoreme des accroissements finis

Rappelons d’abord le théoreme des accroissements finis dans le cas particulier des fonctions
d’une seule variable et a valeurs réelles :

Fait 3.6.1 Soit f une fonction de R vers R, définie et continue sur un intervalle [a,b] C R (
a,b€R et a <b), et dérivable sur l'intérieur |a,b] du méme intervalle. Alors il existe ¢ €]a,b|

tel que

PNIUEYON

b—a

C’est un résultat simple et fondamental dont une conséquence (parmi d’autres) est souvent
utilisée : une fonction d’une seule variable et & valeurs réelles est constante sur un intervalle ouvert
si et seulement si sa dérivée est nulle sur cet intervalle. La généralisation que nous étudierons est
aussi importante et a des conséquences similaires... quitte a trouver des conditions suffisantes
convenables.

Théoréme 3.6.2 (Le théoréme des accroissements finis pour les fonctions de plu-
sieurs variables et & valeurs réelles) Soient p € N*, U un ouvert de R”, f une application
différentiable sur U. Supposons aussi que U contient deux points P et Q liés par un arc v dans
U, v :[a,b] — U avec v différentiable sur l’intervalle ouwvert |a,b]. Alors il existe to €a,b| tel
que

f(y () = f(v(a)) = df (v(to))y' (to) (b—a) ,
71(t)
V() = dy (1) = :
7p(t))

Pour mieux apprécier cet énoncé, c’est un bon exercice de retrouver le cas du fait 3.6.1 comme
cas particulier de la conclusion générale du théoreme 3.6.2. D’autres exemples seront étudiés en
cours non seulement pour illustrer le théoréme des accroissements finis mais aussi en vue des
conséquences géométriques des notions de ce chapitre.

Maintenant nous citerons deux conséquences de ce théoreme liant I'invariance des valeurs
d’une fonction de plusieurs variables a sa différentielle. Nous le ferons en deux étapes dont la
premiere est I’occasion d’introduire la notion importante de convexité

Définition 3.6.3 (Parties convexes de R?) Une partie C de R? est dite convexe si pour toute
paire de points x1 xo dans C, le segment de droite {(1 — t)x1 + taa|t € [0,1]} qui joint x1 & x2
est contenu dans C.

axp
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Un exemple de partie convexe est la boule ouverte (resp. felmée) de centre x et de rayon r. En
effet, pour toute paire de points a et b dans B(z,r) (resp. B(x,r)) et toute valeur de ¢ € [0, 1]

la(l —t) +bt — x| <r (resp. <)

Corollaire 3.6.4 Soient p € N*, U un ensemble convexe et ouvert de RP, f une application de
différentielle nulle sur U. Alors, f est constante sur U.

Le deuxieme corollaire est une généralisation du premier. Néanmoins, sa preuve se réduit en
utilisant la notion générale de compacité, au cas particulier du corollaire 3.6.4

Corollaire 3.6.5 Soient p € N*, U un ensemble connexe par arcs et ouvert de RP, f une ap-
plication de différentielle nulle sur U. Alors, f est constante sur U.

3.7 Aspects géométriques; le gradient

La différentielle d’une fonction de plusieurs variables et & valeur réelles, disons de R? vers R,
est une fonction qui associe une matrice ligne 1 X p & chaque point de R? ou elle est différentiable.
Nous pouvons traiter une telle matrice comme un point ou vecteur, donc un élément de R?, ce
qui permet de 'interpréter et de 'utiliser de fagon plus géométrique.

Définition 3.7.1 (Le vecteur gradient) Soient p € N*, U un ouvert de R?, f une fonction
de R? vers R différentiable U. Pour tout a € U, le vecteur (01 f(a),...,0pf(a)) est dit le gradient
de f. Il est noté V f(a) ou gradf(a).

De facon similaire & la différentielle, le vecteur gradient permet de définir une fonction :

gradf : U — RP
a +—— Vf(a)=(01f(a),...,0f(a))

Avec cette notation, la définition de la différentielle d’une fonction a valeurs réelles s’écrit aussi
da la maniere suivante :

of : U — L(R",R)

a +— Vf(a)
Pour tout élément (hq,...,h,) de R”, nous obtenons I'égalité suivante :
hy »
Vi@ | | =Y 0ifla)h; .
hy J=1

Remarquablement, ’expression & droite est un produit scalaire, une opération de haute valeur
géométrique qui permet de définir ’angle entre deux éléments de R?.

Essayons de détailler une illustration des aspects géométriques de la notion de différentiabilité
ainsi que du vecteur gradient. Nous étudierons la notion de plan tangent au graphe d’une fonction
de plusieurs variables et a valeurs réelles.

Rappelons d’abord le cas connu, celui d’une fonction d’une seule variable et a valeurs réelles,
et dérivable en un point. Appelons notre fonction f et le point de dérivabilité a. Nous savons
que ’égalité suivante est vraie :

fla+h)=fla) + f(a)h + of(h)

Cette égalité fournit aussi ’approximation linéaire a f au voisinage du point a qui est déterminée
par la droite tangente

{ (hk) €R? | k= f(a)+ f'(a)h } .
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Si on utilise la terminologie de cette section, le vecteur gradient de f est exactement la pente de
la droite tangente. En d’autres termes, c’est la direction de la droite tangente au point (a, f(a)).

L’observation du paragraphe précédent se généralise sans peine au cas d’une fonction f :
R? — R différentiable en un point a € R? :

fla+h) = fla) + df(a)(h) + o(h)
fla) + Vf(a).h + o(h)

Cette équation nous donne Papproximation linéaire de f au voisinage de a = (a1,...,ap)
déterminé par le plan tangent (soit encore 1'hyperplan tangent quand p > 3)

{ (h1,.. by, hpi1) €ERPYY | hyyy = fa) + Vf(a).(hi,. .., hy) }

Une autre fagon décrire I’équation du plan tangent est

{ (h hpir) € R (=Y f(a),1) . (B hyta) = fla) }

avec h = (hq,...,hp). Si f(a) était 0, alors cette équation serait celle d’une orthogonalité. En
d’autres termes, le vecteur (—V f(a), 1) est orthogonal au plan tangent au point (a, f(a)). Cette
obervation, appuyée de certains théoremes, permettra plus tard de parler du vecteur normal a
une surface.

3.8 Dérivées directionnelles

Les dérivées partielles sont des dérivées calculées en suivant une direction particuliere le long
d’une droite (ou d’un vecteur & un point). La méme idée s’étend a toutes les directions :

Définition 3.8.1 (Dérivées directionnelles & un point) Soient p € N*, U C un ouvert de
RP, f : R? — R définie sur U, et v € R’ \ {(0,...,0)}. La fonction f est dite d’avoir une
dérivée directionnelle au point a € U dans la direction de v si la limite suivante eziste :

lim l[f(a—|—hv)—f(a)} .

h—»O;hER* h
Des notations fréquentes sont : fI(a), D, f(a).

Les dérivées directionnelles, comme leur cas particulier qui est celui des dérivées partielles,
sont treés utiles dans I’étude des fonctions et de leurs aspects géométriques. Néanmoins, elles
dépendent du choix de direction. En conséquence, leur seule existence est trop faible pour en-
trainer la différentiabilité.

Voici une proposition qui facilite le calcul des dérivées directionnelles sous des hypotheses
plus fortes :

Proposition 3.8.2 Soient p € N*, U C R? un ouvert de R?, f : R® — R différentiable sur U.
Alors

Dyf(a) = Vf(a).v
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Chapitre 4

Différentielles du second ordre

Dans le chapitre 3, nous avons introduit une bonne notion différentiation pour les fonctions
de plusieurs variables qui ne dépend pas de choix de chemin. Remarquablement, quitte a rai-
sonnablement renforcer les hypotheses, il était possible de trouver des caractérisations de la
différentiabilité en fonction des outils pratiques mais faibles que sont les dérivées partielles : le
théoreme 3.4.3.

Une question naturelle qui se pose est si on ne peut pas continuer ce procédé afin de ’étendre
aux “dérivées d’ordres superieurs”, et a la rigueur, introduire une notion de “dérivée partielle
d’ordre supérieur”. C’est ce que nous ferons dans ce chapitre. Encore une fois, les dérivées
partielles seront tres utiles.

Il convient de rappeler une subtilité du théoreme 3.4.3 et de la notion de fonction de classe
C!. C’est une notion définie sur un ouvert. Sinon, la fonction (x,y) +— sin(Jzy|) fournit un
contreexemple au théoreme 3.4.3.

4.1 Dérivées partielles secondes ; fonctions de classe C?

Définition 4.1.1 (Fonctions de classe C? sur un ouvert) Soient p,q € N*, U un ouvert de
RP. Une fonction f de RP vers R? définie sur U est dite de classe C? sur U, noté f € C*(U), si
la différentielle
af : U — L(RP,RY)
a +— df(a)

est définie sur U et de classe C* sur U ; en d’autres termes, si la différentielle seconde
d(df) : U — L(R", L(R",R?))
est continue en tout point de U.

Comme dans les remarques faites immédiatement apres la définition 3.4.2, cette définition a un
sens puisque df est une application de R? vers RP?, deux espaces normés.

Telle quelle, la définition 4.1.1 est difficile & appliquer directement dans des cas concrets.
Pour surmonter cette difficulté, comme dans 1’étude des fonctions de classe C!, les dérivées
partielles s’averent tres utiles quitte a leur imposer des hypotheses de continuité. Cette fois-ci
nous utiliserons les dérivées partielles secondes.

Définition 4.1.2 (Dérivées partielles secondes) Soient p,q € N*, U un ouvert de R et f
une fonction de RP vers RY définie sur U dont toutes les dérivées partielles

Oifi + U — R (1<j<p,1<i<q)
sont définies sur U.

31
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St une telle dérivée partielle admet une dérivée partielle seconde par rapport a sa kiéme
variable en un point a € U, alors cette dérivée seconde est notée

O (0;fi(a)) = Okjfi(a) .

La fonction f est dite d’admettre des dérivées partielles secondes sur U si toutes les dérivées
partielles Ox; fi sont définies sur U.

Introduisons une autre notation tres souvent utilisée pour les dérivées partielles secondes :

> fi
8x]~ Bxk

(a) = Ojkfila) si j#k;

0% f;

2
8xj

(a) = 0j5fia) st j=k;
Le théoreme suivant dont nous admettrons la preuve est analogue au théoreme 3.4.3.

Théoréme 4.1.3 Soient p,q € N*, U un ouvert de RP, f une fonction de RP vers R? définie
sur U. Alors f € C?(U) si et seulement si f a des dérivées partielles secondes en tout point de
U et que celles-ci sont continues.

Certaines remarques sont nécessaires :

1. En suivant la méme ligne, il est possible d’introduire sur un ouvert U de RP, les classes
supérieures C¥(U) et les caractériser par les kitmes dérivées partielles. Dans le cas trés
particulier des fonctions qui appartiennet & toutes les classes C¥(U), nous parlerons des
fonctions de classe C*° sur U, noté C*=(U).

2. Notons que C*(U) 2 C?(U). La fonction
f : R? — R
y) — { rylrts s (@) £ (0,0)

) 0 . —

appartient & C'(R?)\ C2(R?). La vérification de ce phénomene est liée & la différence

012f((0,0) ) # 021f((0,0) )

C’est en fait le sujet du théoréme de Schwarz que nous aborderons sous peu.

4.2 Opérations sur les fonctions de classe C?
Tout se passe comme prévu comme le montre 1’énoncé suivant :

Proposition 4.2.1 Soient p,q,7 € N*, U et V des ouverts de RP et de R? respectivement.
1. Si f, g€ C3U), alors f + g € C*(U).
2. Sig=1c¢etf, gecC*U), alors f.gc C(U).
3. Si feC*(U),geC?(V) et f(U) CV,aorsgofeC*U).

4.3 Le théoréme de Schwarz

Dans les remarques apres le théoréme 4.1.3, nous avons vu que la classe C' est strictement plus
large que la classe C2. L’outil principal pour détecter des fonctions qui causent cette différence
est le théoreme suivant dont la preuve relativement compliquée sera abordée dans le cours de
calcul différentiel en troisieme année.
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Théoréme 4.3.1 (Le théoréme de Schwarz) Soient p,q € N*, U un ouvert de RY, f une
fonction de R? vers RY de classe C2 sur U. Alors en tout a € U et pour tous 1 < i < gq,
1<jk<p

Ojifi(a) = Ok;fi(a)

Quelques remarques seront utiles pour apprécier mieux ce théoreme fondamental qui nous
sera indispensable dans le développement de la formule de Taylor de plusieurs variables et donc
dans I'étude des extrema.

1. Il existe des fonctions deux fois différentiables mais pas de classe C? sur un ouvert. L’exemple
de la section 4.1 nous permettra d’observer cette différence aussi.

2. Quand g = 1, la symétrie qui découle du théoréme de Schwarz entraine la symétrie (au
sens des formes bilinéaires) de la matrice suivante ot U est un ouvert de R”, f € C3(U) et

aeU:
811f(a) 821f(a) . 8p1f(a)
O12f(a) 0Ooaf(a) . Op2f(a)
)= Ojkf(a)
Op1 f(a) . . Oppf(a)

PXPp
C’est la matrice Hessienne. Elle jouera un réle important dans la formule de Taylor et tout
ce qui en découle.

4.4 La formule de Taylor du second ordre et la matrice
Hessienne

Dans cette section, nous travaillons avec les données suivantes :
p € N*, U est un ouvert de R? et f est une fonction de R vers R de classe C? sur U.

L’hypothese d’appartenir & la classe C?(U) s’exprime pour f de deux manieres différentes
mais équivalentes :

1. la fonction différentielle
df : U — LR, R)
a +—— df(a)=(0f(a) ... Of(a))
est de classe C! sur U ;
2. les dérivées partielles secondes de f sont toutes définies et continues sur U.

La représentation matricielle du point (1) qui permet de traiter la différentielle comme une
fonction de U vers RP et 'usage des dérivées partielles permettent de trouver la matrice Hessienne
comme nous ’avons constaté dans la section précédente :

ddf) : U — L(R",RP)
J
0 — ddf)(a)=Hya)=i| ... 9:f(a)

pXp

Maintenant nous fairons un calcul qui nous permettra de déterminer la formule de Taylor
du second degré de f en un point a = (as,...,a,) € U. Remarquablement, les connaissances
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sur la formule de Taylor pour les fonctions d’une seule variable seront d’importance primordiale
pour déterminer la forme générale de la formule du second ordre. Les termes particuliers seront
ensuite précisés en utilisant les propriétés des matrices jacobienne et Hessienne.

Comme a € U et que U est un ouvert de R, a est le centre d’une boule ouverte B(a,
contenue entierement dans U. Par conséquent, nous pouvons fixer un élément non nul h
(h1,...,hp) € RP, deux réels a, § tels que aw < 0 et 1 < § et définir la fonction

")

v ¢ [a,8] — Bla,r)
t — a-+th.

Nous noterons 7;(t) = a; + th;. Cette fonction est différentiable sur |a, b[, celui-ci contient les
points 0 et 1 auxquels les valeurs de  sont a et a + h respectivement.

On définit ensuite

F : [o,0] — R
t —  fon(t).

Notons que F est une fonction scalaire d’une seule variable, qui de plus est de classe C? &
I'intérieur de son domaine. Par conséquent, pour tout ¢ €]a, b,

(x)  F(@) = F(@0) + F'(0)t + %F”(O)tQ + o(t?) .

Nous soulignons comment la formule de Taylor pour les fonctions d’une seule variable détermine
la forme générale de la formule de plusieurs variables. L’étape prochaine sera la détermination
des termes en t et t? qui sera suivie de ’évaluation de tout en t = 1.

Nous appliquerons dans cette nouvelle étape les regles de composition des différentielles. La
détermination de F’(t) se fait de la maniére suivante :

Fi(t) = df(y(t) . dy(t)

71 (t)
= (f(v(t) - Fpf(¥(1)) - :
Yp(t)
= Y %f(v)v®)
= Y 0 f(y(t)h;
=1

En posant ¢ = 0, nous obtenons F’(0) = >-7_, 9; f(a)h;.
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Ensuite, on aborde la détermination de F”(t) :

F'(t) = 3 [d@:)(®)dr(t) T
» [ Vi (1)
= > | (f@HG®) - @) (v(E) ) - : hi
=] 7p(t)

I
M-
NE

s
Il
-
AN
I
—

0;(0: ) (v ()75 (t) | P

Il
M=
NE
&
S
=
2
=
5

h;
i=1 | j=1
= 8]1f(’}/(t))h]hz
1<i,j<p
ha
= (h1,...,hp) Hr(a+th) :
hy
ha
Par conséquent F"(0) = (h1,...,h,) Hy(a) :
hy

Finalement, la formule (*), apres avoir posé t = 1, fournit les égalités suivantes :

fla+h) = f(a) + df(a)h + %hd(df)(a) h + o(||h]?)

1 i

3 (h1,... hp) Hy(a) | + o(||h]l*)
hp

fl@) + Do @he + 5 S s @iy + ol
i=1 i=1 j=1

= f(a) + df(a)h +

Les deuxieme et troisieme termes a droite des égalités correspondent a des produits matriciels.
Le premier représente la différentielle tandis que le deuxieme représente une forme bilinéaire et
symétrique correspondant & la matrice Hessienne.

C’est le point de départ d’une nouvelle et fructueuse interaction entre notre cours et ’algebre
linéaire dont nous cuillerons les fruits dans le chapitre suivant.
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Chapitre 5

Extrema

Ce chapitre est consacré a 1’étude des valeurs extrémales d’une fonction de plusieurs variables
et a valeurs réelles. Trois directions principales se distinguent : les extrema locaux, les extrema
globaux et les extrema liés. Comme dans les chapitres précédents, la motivation pour I'étude
qui sera menée sera les résultats sur les fonctions d’une seule variable. Pour mettre en place un
développement rigoureux a partir de cette motivation initiale, les différentielles du second ordre
du chapitre précédent seront indispensables.

5.1 Définitions de base; rappels sur les fonctions d’une
seule variable

Avant tout, il faut définir précisément les notions de base.

Définition 5.1.1 Soient p € N*, D C R? et f une fonction de R” vers R définie sur D. La
fonction f est dite d’admettre un maximum (resp. minimum) local en un point a € D s’il existe
un ouvert U de RP tel que a € U C D et que pour tout x € U, f(z) < f(a) (resp. f(x) > f(a)).

La fonction f est dite d’admettre un mazimum (resp. minimum) global en a € D si pour
tout x € D, f(z) < f(a) (resp. f(x) > f(a)).

Un extremum local (resp. global) est un mazimum ou minimum local (resp. global).

Remarquons immédiatement que bien que le point de départ de ’étude des extrema locaux
ou globaux soient le méme, les chemins suivis pour aboutir aux conclusions sont susceptibles
de diverger suivant la topologie de D. L’étude locale utilise les techniques du calcul différentiel
développés depuis le troisieme chapitre tandis que I’étude globale peut ne pas aboutir du tout si
D ne possede pas certaines propriétés topologiques assurant l’existence d’extrema globaux. Le
cas le plus fréquemment rencontré qui assure cette existence est celui o D est compact grace
au corollaire 2.6.5.

Afin de motiver la discussion qui suivra dans les sections suivantes, nous rappelons le cas des
fonctions d’une seule variable réelle. Etudions donc la fonction suivante assez simple qui est par
ailleurs de classe C? sur la totalité de R :

f: R — R
x — z(z—-1)(z+1)

En particulier, en tout point a € R, la formule de Taylor du second ordre est définie :

fla+h)

1
fla) + f(@h + Sf"(@h? + o(h?)
= ala—1)(a+1) + (3a®> —1)h + 3ah® + o(h?).
Les extrema locaux sont susceptibles d’étre atteintes aux points satisfaisant ’équation différentielle

flla)=0.
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Dans notre exemple, les deux candidats sont a = :t%.

Il n’est en général pas nécessaire que chaque point candidat (point critique) fournisse une
valeur extrémale. Dans le cas des fonctions d’une seule variable, ’étude rigoureuse consiste a
étudier la concavité de f au voisinage des points candidats, en d’autres termes le signe de f”(a).
Dans notre cas, cette valeur est définie par la formule 6a qui est strictement positive quand

a= % et strictement négative quand a = f%. La premiére valeur signifie un minimum local,

f (%), tandis que la deuxiéme correspond a un maximum local, f (—%) Ces conclusions sont

naturelles. En effet, dans le premier cas, f” (%) > 0, ce qui signifie qu’autour du point a = %

il y a un intervalle I sur lequel f(a + h) > f(a); dans le deuxieéme cas, f” (—%) < 0, ce qui

signifie Pexistence d’un intervalle contenant ce point et sur lequel f(a + h) < f(a).

Si f”(a) = 0, alors 1’étude résumée ci-dessus est inconclusive. En effet, il suffit de comparer
les fonctions z — z2 et  — 22 en 0. La premiére fonction a un minimum en 0 tandis que la
deuxieme fonction n’a ni maximum ni minimum en 0. Ces observations nous guideront dans le
cas des fonctions de plusieurs variables aussi.

Il convient de souligner 'importance de la formule de Taylor : toute I'information dont nous
avons besoin y est contenue a condition que la fonction soit suffisamment dérivable.

5.2 Extrema locaux

La premiere étape de ’étude des extrema consiste a dresser la liste des points candidats ou
une fonction donnée peut atteindre une valeur extrémale. Soulignons que cette liste n’est qu'une
liste de candidats, il est nécessaire d’y étre mais pas suffisant comme nous I'avons déja constaté
dans le cas de la fonction = +— x3 définie sur R. La proposition suivante fournit la liste des
candidats pour les extrema locaux.

Proposition 5.2.1 Soientp € N*, U un ouvert de R?, f une fonction de R” vers R différentiable
sur U. Si f atteint un extremum local en a € U, alors df(a) = (0 ... 0)

La définition suivante découle de cette proposition.

Définition 5.2.2 Soient p € N*, U un ouvert de R?, f une fonction de R” vers R différentiable
sur U. Un point a € U est dit critique si df (a) = 0.

Comme conséquence du point de départ précis que nous venons d’établir, nous concluons
que toute recherche d’extrema locaux commence par la détermination des solutions du systeme
suivant d’équations différentielles :

81f(a) = 0

,f(a) = 0

Pour pouvoir aller plus loin, nous essayerons de généraliser les méthodes des fonctions d’une
seule variable rappelées dans la section précédente en utilisant la formule de Taylor ainsi que la
matrice hessienne et les symétries de celle-ci. Pour ce faire, nous aurons besoin de supposer que
nos fonctions sont de classe C? sur les ouverts concernés.

Soit donc f une fonction de classe C? sur un ouvert U. Les conclusions finales du chapitre 4
montrent qu’en un point critique a € U, la formule de Taylor a la forme suivante :

flath) = f(a) + di@h + ghHs(@h + of[h]?)

Fl@) + 0 4 Sl ) Hy(a) (b, hy) + ol[AIP)
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D’apres le théoreme de Schwarz (le théoreme 4.3.1), H¢(a) est une matrice symétrique. Si, par
miracle, elle était une matrice diagonale, alors elle aurait la forme suivante :

M O ... 0
0 X ... O
Hy(a)=1] . L
0 N

les \; étant les valeurs propres de la matrice. Dans ce cas particulier, la formule de Taylor a la
forme suivante trés réminiscente du cas des fonctions d’une seule variable :

flash) = @) + 3 D2HN + ollblP).

Les cas suivants se présentent :

Minimum local Chaque A\; € R) . Le point a appartient & une boule ouverte B dans U
qui a la propriété suivante : pour tout h € R? tel que a +h € B, f(a+ h) > f(a). La
fonction atteint un minimum local, f(a), en a.

Maximum local Chaque \; € R*. Le point a appartient & une boule ouverte B dans U
qui a la propriété suivante : pour tout h € R? tel que a + h € B, f(a+ h) < f(a). La
fonction atteint un maximum local, f(a), en a.

Point selle Il existe des valeurs propres strictement négatives ainsi que d’autres strictement
positives. La fonction n’a pas d’extremum en a, c’est un point selle.

Inconclusif Certaine (éventuellement toues les) valeurs propres sont nulles, et les autres
sont toutes de méme signe; il n’est pas possible de conclure.

Dans le cas général, Hy(a) n’est pas nécessairement une matrice diagonale. Néanmoins, le

miracle n’est pas hors de portée. En effet, le théoreme suivant fait un nouveau lien avec 1’algebre
linéaire :

Théoréme 5.2.3 Toute matrice symélrique a entrées réelles se diagonalise avec des valeurs
propres réelles.

Alors, il suffira de faire un changement de base dans RP pour diagonaliser la matrice hessienne.
On peut se demander pourquoi la nouvelle base est aussi légitime que I’ancienne. Un changement
de base correspond a de nouvelles directions pour la détermination des dérivées partielles. Or,
f est de classe C? au voisinage de a. Par conséquent, les dérivées directionnelles sont définies et
continues dans toutes les directions possibles.

5.3 Extrema globaux ; ensembles compacts

Un extremum local n’est pas nécessairement un extremum global. En général, il n’est pas
clair si une fonction, méme quand elle admet des extrema locaux, admet des extrema globaux.
Néanmoins, dans un cas particulier mais tres important, il est possible d’arriver a des conclusions
satisfaisantes en suivant une recette bien établie. Nous supposons que K soit un compact de R?

et que f € C3(K). Alors, le corollaire 2.6.5 assure qu’il existe un point o1 f atteint son maximum
global et un autre point ou elle atteint son minimum global.

Pour déterminer les points ou les extrema sont atteints, on dresse la liste suivante de candi-
dats :

1. les pointsaefo( oudf(a)=(0 ... 0);

2. les points a € Fr(K) ; plus précisément, dans ce deuxiéme cas, nous étudions la restriction
de f a Fr(K). Ceci revient & dire que nous étudierons une nouvelle fonction dont le nombre
de variables libres aura diminué.
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Une fois la liste déterminée, la tache est simple : on évalue f en chacun des points candidats et
n’en retient que ceux ou f atteint ses valeurs extrémales.

Il faut bien noter que la notion d’extremum global a un aspect relatif. Si K varie, la méme
loi de fonction est susceptible de fournir de nouveaux extrema atteints a de nouveaux points.
Pensez & la fonction z +— 22 restreinte aux intervalles [—1,1], [0,3] et [1,4] par exemple. Des
exemples seront étudiés en détail pendant les travaux dirigés.

5.4 Quelques outils pratiques pour les extrema locaux

Appuyée par la force de ’algebre linéaire, la discussion de la section 5.2 est robuste. Néanmoins,
la détermination des signes des valeurs propres peut s’avérer compliquée. Dans le cas particulier
p = 2, la tache est plus simple et une méthode particuliere peut étre développée.

Une matrice 2 x 2 symétrique a la forme générale suivante :

n-(53),

La détermination de ses valeurs propres équivaut a la détermination des racines du déterminant

de la matrice suivante :
-S =T

)\I—H:()‘_R -5 ) )

Ce déterminant est le polynéme caractéristique
A —(R+T)\+RT — 5% .

Ce n’est pas une coincidence, et vous devez savoir pourquoi, que le coefficient de X est la trace
de H (la somme des valeurs propres) tandis que RT — S? est son déterminant (le produit des
valeurs propres).

Le théoreme 5.2.3 se vérifie rapidement pour H. En effet, le discriminant A du polynéme
caractéristique de H est (R — T)? + 52, un nombre positif. Les racines sont donc réelles, et leurs
valeurs sont

N R+T+\/(R—T)%+ 452 N R+T—\/(R-T)%+452
1 = y A2 = :
2 2

Par conséquent, si A > 0, alors les deux racines sont réelles et distinctes, ce qui implique que H
est diagonalisable avec des valeurs propres réelles. Si A = 0, alors R =T et S = 0 : une seule
valeur propre, toujours réelle, et la matrice est déja diagonale.

En utilisant aussi le fait que le déterminant d’une matrice reste invariant quand on change
de base, nous constatons alors que la division en quatre cas de la section précédente prend alors
une nouvelle forme :

Minimum local Chaque \; € R’ ; de maniére équivalente RT — 5% > 0et R+ T > 0.

Maximum local Chaque )\; € R* ; de maniére équivalente RT — S? > 0et R+ T < 0.

Point selle Chaque \; € R* mais il existe des valeurs propres négatives ainsi que d’autres

positives ; de maniere équivalente RT — S? < 0.
Inconclusif Au moins une valeur propre est nulle; ceci équivaut & RT — S? = 0.

Si p > 2, alors le théoreme suivant de ’algebre linéaire est pratique :

Théoréme 5.4.1 Soit

ai; a2 ... QGip
a12  A22

A =
G1p Qpp

une matrice symétrique a entrées réelles.
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1. Les valeurs propres de A sont toutes strictement positives (resp. négatives) s’il en est de
méme pour toute matrice

ail; a2 alk
a12 a2

A = ) ) (1<Ek<p).
aik e e Ak

2. Les valeurs propres incluent 0 si une des matrices Ay est de déterminant 0.

Notons qu’aucune des connaissances de cette section n’est indispensable pour 1’étude des
extrema.

5.5 Extrema liés, multiplicateurs de Lagrange

Parfois, il faut étudier les extrema avec “contraintes”. Voici un exemple simple mais concret :
maximiser le produit de deux nombres réels dont la somme est 2. En fait, nous avons deux
fonctions, ou encore une fonction produit & maximiser contrainte par une équation qui utilise la
fonction somme :

f : R? — R 6 : R? — R
(z,y) — wxy (,y) — x+y—-2 .

La condition est ¢(x,y) = 0, équivalemment,  + y = 2. Dans ce cas simple, nous pouvons
résoudre le probléme & la main : si ¢(z,y) = 0, alors f(z,y) = f(x,2 — z) = (2 — x)z. Par
conséquent 1’étude de f se réduit a celle d'une seule variable fy(z) = (2 — z)z sur ensemble
{(z,y) € R? | ¢(x,y) = 0 }. La maximisation de cette fonction d’une seule variable, certes trés
bien connue par tous nos lecteurs, donne x = 1.

Néanmoins, un peu d’attention permet de trouver une solution générale qui peut résoudre des
problémes de méme forme mais plus compliquée. En effet, au point (1,1) les gradients V f(1,1)
et Vo(1,1) sont paralleles. Tracer les lignes de niveau correspondantes montre que ce n’est pas
une coincidence puisque les graphes de f et de ¢ sont tangents au point (1, 1). La proposition
suivante montre que sous certaines hypotheses, cela est un phénomene tout a fait naturel.

Proposition 5.5.1 Soient p € N*, U un ouvert de RP, f et ¢ deuz fonctions de RP vers R de
classes C* sur U. Notons fy, la restriction de f auz points de l'ensemble { x € U | ¢(x) =0 }.
Sia € U est tel que

1. ¢(a) =0;
2. la restriction fy admette un extremum en a;
3. Vo(a) #0;

alors il existe X € R tel que df (a) = A do(a).

Le coefficient A de la proposition 5.5.1 est un multiplicateur de Lagrange. En fait, exis-
tence d’un tel multiplicateur équivaut au parallélisme des gradients de f et de ¢ aux points
concernés. Les “surfaces de niveau” (donc les lignes de niveau si p = 2), sont tangentes a la
surface déterminée par la contrainte ¢. Par conséquent, dresser la liste des candidats d’extrema,
revient a résoudre le systeme d’équations différentielles :

Vf(a) = AV(a) .
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Chapitre 6

Intégration ; intégrales multiples

Voici quelques questions et réponses dans lesquelles 'usage du mot “volume” peut paraitre
un peu déroutant dans un premier temps.

0. Quel est le volume d’un point de RP ?
Pauvre singleton, il n’est que de dimension 0. Son volume est donc négligeable, disons 0. I1
en est de méme pour toute partie finie de R”.

1. Quel est le volume d’un intervalle compact de R ?

La tendance serait de parler de la “longueur” de lintervalle [a,b] (a,b € R,a < b), mais il
est clair que l'objectif est de mesurer la “quantité de matiere” contenue dans une partie de R.
Dans ce cas particulier, cette quantité est effectivement b — a.

2. Quel est le volume d’un rectangle
[ay,b1] X [ag,ba] = { (z1,22) ER® | a1 <21 <by, azg <ap < by }
de R*?

Nous semblons parler de ’aire plutot que du volume, mais encore une fois, il s’agit de mesurer
la quantité de matiere, contenue cette fois-ci dans un certain endroit de R?. Et cette quantité
est (b1 — al) X (bg — ag).

3. Quel est le volume d’un parallélépipéde rectangle

[a1,b1] X [az, ba] X [az,b3] = { (x1,72,23) ER® | ay < a1 <by, ag < a3 <by, ag <w3<bg}

de R®?
Ca, on le connait : (b —a1) X (b2 — a2) x (bs — as).

4. Quel est le volume d’un “rectangle généralisé”
[ahbl] X ... X [awbp} = { (1‘1,...71‘17) € RP ‘ a; <x; <b; 1€ {17...,p} }

de R??
Les rectangles généralisés ont pour volume [[_, (b; — a;).

Ce que nous avons appelé un “volume” est donc une longueur dans R, une aire R?, un volume
dans R?, ... une mesure de quantité de matiere contenue dans une région de R?. L’intégration est
I’activité de mesurer cette quantité sur des régions qui ont suffisamment de propriétés communes
avec les régions rectangulaires dont nous savons déterminer les volumes.
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6.1 Pavés dans r”; parties pavables de R

Définition 6.1.1 (Pavés dans R” ; parties pavables de R”)

1. Un pavé de R? est une partie de RP de la forme

p

H[ai7bi] = {(2x1,...,2p) eRP | @; <a; < b;ie{l,....,p} }.
i=1

2. Une partie de RP est dite pavable si elle est union finie de pavés.

Les remarques suivantes sur ces notions clés sont simples, intuitives mais importantes pour
mieux comprendre la discussion en cours :

1. Toute partie pavable de R? est fermée et bornée, donc compacte.

2. Une partie pavable P de RP a un volume, ou une “mesure”, que 'on peut déterminer
facilement. Si P est un pavé [[?_,[a;, b;], alors sa mesure est
=1 ) )

Plus généralement, il faut enlever de cette somme la mesure de ’adhérence des intersections
des intérieurs.

Intuitivement, toute partie de R” a une mesure “calculable” si et seulement si elle est “ap-
proximable” par des pavés. La définition suivante clarifie ce procédé d’approximation de maniere
rigoureuse :

Définition 6.1.2 (Parties quarrables de R?) Soit A une partie bornée de RP. Alors A est
dite quarrable si pour tout € € R, il existe deur parties pavables de R?, R et R', telles que
RCACR et queu(R\R) <e.

Afin d’illustrer comment la définition 6.1.2 marche en pratique, nous étudierons le cas d’une
partie bornée de R%. Nous ne préciserons pas la forme géométrique de A puisque la seule condition
est que A soit bornée. Néanmoins, tout lecteur qui préfere un exemple concret peut prendre A
comme la boule euclidienne (fermée ou ouverte) de rayon 1.

Comme A est borné, il existe ai,as,b1,bs € R tels que a1 < by, as < by et que A C
[a1,b1] X [az, ba]. En d’autres termes, A est contenu dans un pavé. Si a; = by ou as = by, alors il
n’y a rien a faire, le volume de A sera 0. Sinon, pour chaque choix de m,n € N, on effectue des
subdivisions des intervalles [aq,b1] et [az,bo] :

To=a1 < X1 ... < Ty = b1
et

v=a < Yy ... < Yp ="by.
Il s’agit donc des segments sur les intervalles [a1,b1] et [ag,b2]. Ensuite, sont définies deux
sommes :

s(o) = > (Yj+1 = ¥5)(Tit1 — T1)

[zi,@it1]x[y;,y54+1]CA

et

S(o) = > (Yjr1 = ¥j)(@ig1 — ;)

[@i,@i41] X [y5,95+1]NAFD
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Comme "union des pavés qui contribuent a s(o) est contenue dans celle des pavés qui contribuent
a S(0), s(o) < S(0). Notons que ces sommes sont toujours des nombres positifs.

Il faut bien constater que la construction ci-dessus peut se faire avec n’importe quel pavé
contenant l’ensemble A et avec n’importe quel subdivision d’un choix particulier de pavé. Par
ailleurs, des choix de subdivisions plus fines augmentent la valeur de s(o) et diminuent celle
de S(o). L’ensemble A est quarrable précisément quand ces augmentations et diminutions
convergent vers une méme mesure :

Proposition 6.1.3 (Caractérisation d’une partie quarrable de R?) Soit A une partie
bornée de RP. Alors les conditions suivantes sont équivalentes :

1. A est quarrable ;
2. sup,(s(o)) = inf,(S(0)) ;
3. Fr(A) est de mesure 0.

A ce stade, une question naturelle se pose : comment déterminer si une partie bornée de R?
est quarrable 7 A priori, c’est difficile & déterminer. Intuitivement, toute partie dont nous savons
calculer le volume est quarrable, et il en est de méme de sa frontiere. Voici quelques exemples :

— les pavés;

— les frontieres des pavés (de mesure 0);

— un disque dans R? de rayon r : la mesure est 77?2 ;

— la frontiére d’un disque dans R? : la mesure est 0.

Evidemment, ces réponses sont loin d’étre satisfaisantes. Non seulement, quoique intuitivement
claires, elles ne sont pas justifiées, mais elles n’offrent pas de méthode générale. L’intégration
fournira la méthode.

6.2 Fonctions intégrables

Dans cette section, nous introduirons la notion de fonction intégrable. Cette notion n’est pas
moins facile & remanier que celle d'un ensemble quarrable. Néanmoins, le théoreme de Fubini
changera le paysage pratique completement et fera le lien entre 'approche utilisant les sommes,
les volumes, les mesures, et I’approche analytique des techniques d’intégration des fonctions
d’une seule variable qui consiste principalement a déterminer les primitives.

Nous commengcons en fixant une partie quarrable A de RP. Soit f une fonction de R? vers
R, définie et bornée sur A. Cette deuxieme hypothese équivaut a dire qu’il exsite M € R, tel
que pour tout & € A, |f(x)] < M. Un exemple fréquent est le cas d’une fonction continue sur
un ensemble compact.

Comme A est quarrable, nous pouvons définir des subdivisions comme dans la section

précédente. Comme A est en particulier borné, il existe a1,...,ap,b1,...b, € R tels que a1 <
by, ax < by, ..., ap < by et que
P
AC H[ah bl] .
i=1

Pour chaque coordonnée, les subdivisions auront la forme suivante :
LEi,O:aini,l Sél’z’k7:bl (1§Z§p, kleN)

Notons que les seules contributions seront apportées par les subdivisions ot chaque intervalle
est de longueur non nulle. Alors, un pavé est de la forme suivante :

p
Ryoiy = @i, wij1] (pour tout i, 0 < ji < k;) .
i=1
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Cette fois-ci, les subdivisions serviront a calculer des sommes pondérées par la fonction f.
En utilisant cette notation, nous définissons

splo) = >, inf  f@)
()

Tiji 11— Tij;)

p
i=
P

—

(
@i =i

1

Sy(o) = > sup  f

..... i

Ces deux sommes sont réminiscentes des sommes de Riemann. Ce n’est pas une coincidence, en
effet la somme suivante est une somme de Riemann généralisée :

D
(6) _
Rfa - Z f(a(jl""’jp)) H(‘ri’jﬂrl - (Ei,ji) )
R(Jl,.,.,jp)ﬂA;é(A iy
le point A4y, rdp) étant arbitrairement choisi dans R(jl,...,jp) A A

Apres toute cette préparation, nous pouvons définir I'intégrabilité d’une fonction.

Définition 6.2.1 (Fonctions intégrables) La fonction f est dite intégrable sur A si et seule-
ment si l'une des deux conditions équivalentes suivantes est vraie :

1. sup, sy(o) = inf, S¢(o) ;

2. limM(R(J_1 )—0 R;U) eziste.

----- Jp)

Remarquons immédiatement que si les conditions de la définition 6.2.1 sont satisfaites, alors

sup(sy) =inf Sy =lim Ry .

Cette valeur, I'intégrale de f sur A est notée

ff flz1,...,zp)dey ... dxy .
A

Dans le cas particulier d’une fonction f dont la restriction & A est la fonction constante de valeur
1, l'intégrale est exactement p(A).

ATTENTION!!! Avertissons nos lecteurs. A ce stade du développement de I'intégration
des fonctions de plusieurs variables, 1’écriture

[ flza,...,zp)dzy ... dzy, .
A

n’est qu’un choix particulier de notation. Il ne faut pas penser qu’elle veut dire qu’on a droit &
faire “intégration partielle”, c’est a dire, intégrer par rapport & une variable, puis a une autre,
ainsi de suite. Ceci sera possible suite au théoréeme de Fubini. Avant d’aborder ce théoreme indis-
pensable dans le calcul d’une intégrale sur un ensemble quarrable, nous précisons des conditions
suffisantes afin de décider de l'intégrabilité d’une fonction.

Théoréme 6.2.2 (Conditions suffisantes d’intégrabilité) Soient A une partie quarrable de
R?, f une fonction de RP vers R définie et bornée sur A. Si l'ensemble de points de discontinuité
de f sur A est de mesure 0, alors f est intégrable sur A.

Vous étudierez la preuve de ce théoreme fondamental en L3. Le corollaire suivant est tres
utile :

Corollaire 6.2.3 Soient A une partie quarrable de R?, f une fonction de R? vers R définie et
bornée sur A. Si f a un nombre fini de discontinuités sur A, alors f est intégrable sur A. En
particulier, une fonction continue sur A est intégrable sur A.

Ce corollaire nous permet de décider dans les cas les plus fréquents dans ce cours si une
certaine partie bornée de R? est quarrable. Il suffit que sa frontiére soit décrite par des fonctions
continues.
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6.3 Propriétés des fonctions intégrables

Toute notion de fonction intégrable digne de cette appellation vérifie certaines conditions.
La proposition suivante en donne I'apergu nécessaire pour notre cours.

Notation efficace pour les discussions théoriques : Afin d’éviter 'usage, pour le
moment inutile, d’'une multitude de symboles d’intégration, nous écrirons

/A f(z) dx

[ fla,...,zp)de ... dzy, .
A

au lieu de

pour noter I'intégrale d’une fonction f de p variables sur une partie quarrable A de RP.

Proposition 6.3.1 Soient A une partie quarrable de R? et f,g deuz fonctions de RP vers R
définies et intégrables sur A.

Linéarité Si A\f, \; € R sont deux scalaires, alors
/A()\ff+)\gg)(x) dr = )\f/A flz) dz + )\g/A g(z) dx .

Croissance Si pour tout a € A, f(a) < g(a), alors

[ 1w < [ g do.

Additivité Si A=A, U...UA,, tel que A; N Aj=10 si et seulement si i # j, alors

/Af(a:) de = i/A f(x) dzx

Preuve. Vous pouvez démontrer ces résultats vous-méme en appliquant directement les sommes
généralisées de Riemann introduites dans la section précédente pour définir I'intégrabilité d’une
fonction. [

6.4 Théoréme de Fubini

Le théoréme de Fubini est réminiscent de la proposition 3.4.1 qui énoncent que sous certaines
conditions la détermination de la différentielle se réduit a celle des dérivées partielles. Ci-dessous
nous en donnons un énoncé, son étude approfondie sera développée sur des exemples détaillés
en cours et aux travaux dirigés.

Théoréme 6.4.1 (Théoréme de Fubini) Soient A une partie quarrable de R? et f une fonc-
tion de R? vers R intégrable sur A. Alors,

[t ds =

A
b Tig=P2 (L1, Thg 5eeesTig yoeesTp) Tig =1 (L1, X5q 5o s Tp)

/ / / f(xe, .. xp) dog, | dag, | ... ) dag,
a Tig=h2(T1,-sTiq 5y TigseeesTp) Tig =1 (L1500, T7q ey Tp)

ot a,b e R etles” symbolisent les variables omises, et les paires de fonctions (¢;,1;) déterminent

les limites de la variable x;, .
Le choiz de l'ordre suivant lequel les variables sont éliminées est libre.
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Notons que le théoreme de Fubini est d’une valeur pratique importante puisque, sous des hy-
potheses assez générales, il permet de remplacer le calcul de limites de sommes par la détermination
de primitives et éventuellement, par des intégrales définies.

Il reste une question : qu’en est-il du calcul de volumes évoqué a la fin de la section 6.1 7 La
promesse était que le théoreme de Fubini fournirait la bonne méthode de détermination. En effet,
il suffit d’intégrer la fonction constante f = 1 sur la région dont il est question de déterminer le
volume. Si la frontiere de cette partie de R? est déterminée par des fonctions intégrables, alors
le résultat obtenu sera le volume de la région en question. Illustrons ceci avec deux exemples, un
simple et un autre légerement compliqué, laissant un dernier un tout petit peu plus exigeant a
la section suivante. D’autres exemples, en quantité suffisante pour digérer toutes les techniques
indispensables seront abordés en cours et en TD.

1. le volume d’'un “rectangle généralisé” de R”, A = [a1,b1] X ... X [ap, b,] avec a; < b; pour
tout i € {1,...,p}:

b1 b2 by P
u(A) = / ldx = / dx = / dx, / dxo / dz, = H(bifai) ;
A A a1 a2 a i=1

P

2. laire du disque D = {(z,y) € R*|z? + % < r2} de rayon r € R :

u(D) = /Ad(m,y) - / (/; dy)dx = ar?

6.5 Changement de variables et intégration

Une question d’intégration comme la suivante est conceptuellement claire et simple, donc
facile a aborder, sans pour autant étre aussi simple au niveau calculatoire qui est indispensable
pour aboutir a une solution finale :

Calculer le volume de la boule unité fermée par rapport & la norme euclidienne dans R®.

Il s’agit du calcul du volume de la région
A = {(z1,22,23) €ER® | 2f + 2 +23< 1},

le théoreme de Fubini permet d’écrire

1 \/l—mg \/l—mg—mg
/lda::/ (/ (/ dx1> dx2>dx3.

A -1 —\/1—z§ —\/1—z§—z§
La complication est causée par les bornes de l'intégration, donc par la frontiere de A, qui
sont plutot sphériques et qui s’expriment avec des équations faisant intervenir des polynémes du
second degré en coordonnées cartésiennes. Or, dans les coordonnées sphériques, A s’exprime de
fagon tres simple en fonction des trois variables (p, ¢, 8) : pour un point P, ces variables expriment
respectivement, la distance euclidienne a (0,0, 0), Pangle entre 'axe des x3 et le segment liant
(0,0,0) & P, 'angle entre I'axe des x; et la projection dans le plan z1z9 du segment liant (0,0, 0)
a P. Dans ce systeme de coordonnées A est plutot une parallélépipéde rectangle dont les bornes

fournissent une intégrale simple & déterminer

A={(p30)|0<p<1,0<¢<m,0<60<2rm}.
Le théoreme suivant nous permet de profiter de cette simplification

Théoréme 6.5.1 Soient D C RP un ensemble quarrable, f : D — R une fonction intégrable
sur D, U etV deux ouverts dans RP. On suppose D C V et qu’il existe un difféomorphisme de ® :
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U — V :la notation sera ®(u) = ®(u1,...,up) = (v1,...,0p) = ®(v) avec v; = P;(uq,...,up)
pour tout i € {1,...,p}. Alors,

/ f) dv = / (fo®)(ui,...,up)d®(u1,...,up)| du.
D o-1(D)

|[d® (w1, ..., up)| est la valeur absolue du déterminant du jacobien.

Une fonction bijective ® : U — V entre deux ouverts respectivement de R? et R” est dite
un difféomorphisme si elle est de classe C! et son inverse aussi est de classe C!. En utilisant vos
connaissances sur le calcul différentiel, vous pouvez vérifier que ceci équivaut a ce que le jacobien
de ® se représente par des matrices inversibles aux points de U.

Tllustrons ce changement dans ’exemple que nous venons de donner. Nous pouvons supposer

D=V =4, U =R%x]0,7[x]0, 2] et

® : RUx]0,7[x]0,27] — A
(p,0,0) — (psin¢gcosd, psin psinb, pcos @) .

La condition sur U et V d’étre ouverts nous fait perdre la frontiere de la boule unité fermée.
Néanmoins, cette perte ne cause aucune variation dans la valeur de I'intégrale. Nous savons que
les frontieres d’un ensemble quarrable sont de mesure négligeable.

Dans un premier temps, la formule de changement de variables peut paraitre difficile & saisir,
méme a motiver. Il est tres utile de penser au cas particulier ot p = 1 que vous connaissez déja
a une valeur absolue pres :

b ta
/ f() dx = / (fom) By (1) dt

siz=(t) et v(t) € C1(I) avec I un intervalle ouvert contenant [ty, ta].
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Chapitre 7

Différentiation, intégration :
quelques liens

Dans ce chapitre nous étudierons certains liens entre la différentiation et 'intégration en
plusieurs variables. Cette étude généralise les liens entre les primitives et les dérivées dans le cas
des fonctions d’une seule variable.

7.1 Longueur d’arc, intégration le long d’une courbe

Nous nous posons la question suivante : nous avons introduit une notion d’intégration bien
établie qui marche, sous des conditions raisonnables, dans tout R”, nous pouvons par conséquent
intégrer des fonctions sur diverses régions dans R” et calculer des volumes ; ne pouvons-nous pas
mesurer la longueur des arcs qui ne sont pas nécessairement des segments de droite dans R?
Cette question qui peut étre généralisée est pertinente en mathématiques et ses applications.
Nous I’étudierons dans le cas des courbes dans RP.

Pour nos objectifs, le cadre le mieux établi est fourni par la version paramétrique de la
définition d’un courbe :

Définition 7.1.1 Soientp € N*, v : R — R” une fonction de la forme v(t) = (71(t), ..., 7p(t))
(“arc généralisé”). On définit la courbe C' comme l'image de 7y :

C={(21,...,2p) ER* | z; =v(t), i€ {l,...,p} , teR } .
La courbe sera dite de classe CF sur un ouvert si la fonction v l’est.

Pour ne pas compliquer la notation, nous préférerons ne mentionner que v comme courbe, en
n’oubliant pas qu’il s’agit de son image.
Voici deux exemples :
1. (Une droite dans R”) On fixe a = (a1,...,ap) € R? et u = (u1,...,u,) € RP\(0,...,0) et
on définit :
v~ : R — RP
t — a+tu

. ) . 2
2. Une version “rallongée” d’une courbe bien connue dans R” :

¥y : R — R3
t +— (cost,sint,t)

Maintenant, retournons a la discussion générale. Nous introduirons une méthode pour me-
surer la longueur d’une courbe v dans RP dans le cas o v définit une fonction différentiable. A

o1
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tout point @ = (as,...,a,) € RP qui se trouve sur 7, en d’autres termes, qui satisfait pour au
moins une valeur ¢, € R le systeme d’équations

ar = (ta)

ap = Yp(ta)
nous pouvons associer une droite tangente en utilisant la différentielle :
{ueR?| u:a+(71(ta)t7...,v;(ta)t) ,teER Y},
soit encore
ur = a1 +7(ta)t
: (teR)
Up = ap+ ’Y;/;(ta)t
Nous utiliserons ces données pour calculer la longueur de l’arc  pour ¢ € [a, b] quand v est

de classe C! sur un ouvert U € R contenant [a,b]. Si nous étions dans le cas de I'intégration
comme dans le chapitre précédent, alors on s’attendrait & une intégrale de la forme

[ra
~

avec une expression pour qui s’obtient en ajoutant les “valeurs” de -y sur des subdivisions de
[a, b]. Or, cette notion de valeur a peu de sens. Néanmoins, une courbe est un objet de “dimension
17 dont les morceaux ressemblent & des segments de droites d’autant plus que les subdivisions
de [a,b] deviennent fines. En effet, sur un intervalle d’une telle subdivision «y est presque une
droite tangente en un point arbitraire de 'intervalle en question.

Plus précisément, on fixe d’abord une subdivision de [a, b] :

t():a < tl S tm:b

Plus cette division est fine, plus le vecteur tangent en t; (i € {1,...,m})

(Vi (ti)s 57y (ti)

est identique au vecteur qui lie y(¢;) au point v(t;+1). Ainsi les valeurs ||/ (¢;)]|2 et ||v(tiv1) —
~(t;)||2 se convergent quand les longueurs des intrevalles des subdivisions converent vers 0. En
fait, ce n’est qu’une application du théoréme des accroissements finis. Ceci motive la définition
de la longueur d’'un arc de courbe de t = a a t = b qui est la suivante :

b
L(a,b) = / ()2 de .

Pour concrétiser nous n’utiliserons que la métrique euclidenne méme si ce n’est pas nécessaire.
Ainsi,

L.(a,b) = /ab \/yg(t)u...ﬂg,(t)? dt .

Une question naturelle se pose. Est-ce bien défini ? En effet, s’il était possible de déterminer
la méme courbe en utilisant une fontion 6 avec les mémes propriétés de différentiation, comment
saurait-on que la méme longueur est obtenue ? Un tel changement correspond & un nouveau choix
de paramétrage @ : [c,d] — [a,b] qui est de classe C. Il s’agit d'un changement de variables du
type 8 = v o ® avec ® un difféomorphisme. On obtient alors en tout u € [¢, d]

d d
/ |02 du = / ldr(d(w) &' ()2 du
b
- / ldry(0)]» dt
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Une fois que nous avons la définition de la longueur d’arc dans R?, I'intégration d’une fonction
le long de cet arc n’est que le calcul d’une somme pondérée de fagon réminiscente de 'intégration
d’une fonction dans le chapitre précédent. Soit donc une fonction f de RP vers R définie sur
~([a, b]). Son intégrale curviligne est

b
| a0 ml®) PO+ at

7.2 Formes différentielles : recherche d’une primitive en
dimension supérieure

Cette section est consacrée a un autre lien entre I'intégration et la différentiation des fonctions
de plusieurs variables : la recherche d’une primitive. Cette étude nécessite 'introduction des
formes différentielles qui est un vaste sujet. Nous nous contenterons de trés peu ce qui néanmoins
suffira de découvrir un univers géométrique tres riche.

Soient U C R? un ouvert et f : R”? — R une fonction différentiable sur U. Nous savons bien
que la différentielle est la fonction

df : U — L(R",R)
a — df(a)=(0f(a) ... Opf(a))

Comme L(R?,R) est un espace vectoriel, nous pouvons distinguer une base canonique et exprimer
une df comme une combinaison linéaire des éléments de cette base. La base canonique (e1, .. ., €;)
de R? nous guidera dans la détermination d’une base canonique pour £(R” R).

Si nous voyons df (a) plutét comme un point dans R? (un “vecteur”), en d’autres termes, si
nous considérons V f(a), alors celui-ci s’écrit

Vf(a) = (0fi(a), ..., Ofpla) ) = Ofi(a)er + ...+ 0fp(a)e, .

Chaque élément e; de la base canonique projette V f(a) sur la iiéme coordonnée correspondante.
Les différentielles de ces projections, que nous avons notées m; au deuxiéme chapitre, forment
la base canonique de £(R”,R). Elles sont notées dx; et nous permettent d’écrire la combinaison
linéaire suivante :

df(a) = oif(a)dzr + ... + Opf(a)dx, .

On rencontre souvent I'une des deux écritures suivantes utilisées pour noter la fonction df :

P P 0, f
df = Y 0fdw; 5 df = - da;.
=1 i=1

8331'

Pour motiver cette écriture, il est utile de penser a l'identité d’une seule variable tant rencontrée
en techniques d’intégration : df = f/(x)dx.
On introduit alors la forme générale suivante :

Z Qi(z) dx; (pour tout i € {1,...,p}, Q; : RP — R)
i=1

Il s’agit d’une fonction de R? vers £(R?,R) définie sur et peut-étre plus sur 'ouvert concerné.

Définition 7.2.1 (Forme différentielle de degré 1) Une fonction de la forme
P
w(z) = Z Qi(z) dz;  (pour tout i € {1,...,p}, Q; : RF — R)
i=1

est dite une forme différentielle de degré 1. Elle est dite de classe CK(U) s’il existe un ouvert U
de R? sur lequel chaque “coeffificient” Q; est de classe C*(U).
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Il est clair que chaque fonction f différentiable sur un ouvert U de R? y définit une forme
différentielle de degré 1, qui n’est rien d’autre que sa différentielle df. Mais est-ce que ce sont les
seules possibilités 7 Ou encore, si w est une forme différentielle de degré 1 arbitrairement définie,
existe-t-il une fonction f : RP — R telle que df = w sur un ouvert de RP ? Cette question
est la recherche de primitive évoquée au début de cette section. Effectivement, dans le cas des
fonctions d’une seule variable, comme c’était illustré ci-dessus par Uidentité df = f'(z)dz, elle
se réduit a la recherche d’une primitive.

Comme dans le cas des fonctions d’une seule variable, cette recherche n’est ni évidente ni
facile. La réponse générale est négative, et quand elle est positive, elle est tres liée a 'intégration.
Notons que si une “primitive” f telle que df = w existe, alors QQ; = 9;f pour tout i € {1,...,p}.
Les dérivées partielles seront utiles.

Nous traitons d’abord un cas particulier mais fréquemment rencontré : p = 2. Dans ce
contexte tres particulier, nous utiliserons une notation tratidionnelle pour les formes différentielles :

w = Pdzr + Qdy .

Bien évidemment, ce n’est qu'une notation. De maniere plus détaillée, w est une fonction de
R? vers £(R?,R) (nous pouvons voir ce dernier espace comme R?), qui associe & chaque point
a € R?, le point (ou encore le vecteur, ou I'application linéaire de R? vers R) dont les coordonnées
par rapport a la base canonique sont

(P(a), Q(a)) -

Ce type de fonction porte un autre nom particulier : un champ de vecteurs.
Dans ce cas, on peut démontrer la proposition suivante qui fournit une condition nécessaire
d’existence de primitive :

Proposition 7.2.2 Soit w = Pdx+ Qdy une forme différentielle de degré 1 de classe Ct(U) sur
un owvert de U. S’il existe f € C2(U) telle que df = w sur U, alors 0, P = 0,Q.

En effet, si une telle f existe, alors 91 f = P et 0>f = Q. 1l s’ensuit, en utilisant le théoreme de
Schwarz que

aZP = anf = 812f = alQ .

Cette proposition simple se généralise a p arbitraire :

Proposition 7.2.3 On fize un naturel p > 2. Soit w = Y ©_, Q;(x)dx; une forme différentielle
de degré 1 de classe CY(U) sur un owvert de U. S’il existe f € C*>(U) telle que df = w sur U,
alors 0;Q; = 0;Q; pour tout 1 <14 # j < p.

Pour exprimer nos notions de maniere plus claire, nous introduisons la terminologie suivante tres
importante sans aucune restriction sur la valeur de p :

Définition 7.2.4 (Formes exactes/fermées) Soit U un ouvert de R?.

1. Une forme w de classe C1(U) est dite exacte sur U s’il existe une fonction f de classe
C%(U) telle que df = w. La fonction f est dite une primitive de w.

2. Une forme différentielle w = Y%_, Q;(z)dz; de classe C*(U) est dite fermée si 0;,Q; = 0;Q;
pour tout 1 <1 < j <p.

En utilisant la définition 7.2.4, nous pouvons énoncer la conclusion de la proposition 7.2.2
de la maniere suivante : si une forme différentielle est exacte, alors elle est fermée. L’inverse est
faux, et pour déterminer des cas ou il est vrai il nous faudra utiliser certains théoremes. Ces
résultats forment les fondements de la recherche des primitives pour les fonctions de plusieurs
variables. C’est la théorie de I'intégration des formes différentielles.
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7.3 Formes différentielles : intégration

La définition 7.2.4 a fourni la terminologie et les notions pour développer une théorie de
Iintégration des formes différentielles dont les rudiments seront introduits dans cette section.
Ce qui reste a faire est d’introduire une notion solide d’intégration d’une forme différentielle de
degré 1 qui permettra en outre de déterminer les primitives quand elles existent. L’intégration
d’une forme différentielle suit une ligne différente de celle des intégrales curvilignes malgré des
points communs.

Soient U un ouvert de R?, pour tout z = (x1,...,2p) € U

wx) = Qrdrr + ... + Q, dzy

une forme continue sur U (les coefficients @); sont des fonctions continues sur U), v une courbe
donnée paramétriquement
v : R — R?
t (Wl(t)w"")/p(t))

telle que I'image d'un intervalle fermé [a, b] tombe dans U ou la courbe est de classe C'. Nous
posons alors

/w = /Ql(m)dxl + ...+ Qp(z)dzx,
= /[Ql(:r(t))x'l(t) + o+ Qpla)x(t)] dt

Plus généralement, v peut étre I'union d’un nombre fini de courbes de classe C! qui sont les images
des parties d’une subdivision de +, disons 71, ..., v%. Nous appellerons une telle courbe C' par
morceauz. Dans le cas d’une courbe C!' par morceaux, 'intégrale est la somme des intégrales sur

les morceaux C* de 7 :
k
o=
ol i=1Y7i

Les intégrales curvilignes peuvent étre vues comme un cas tres particulier de cette définition
définies par “une forme de longueur”. Nous ne détaillerons pas ces liens. Voici un premier
théoreme qui illustre la force de 'hypothese d’exactitude pour les formes différentielles :

Théoréme 7.3.1 Soient U un ouvert de RP, w une forme exacte de classe C?> sur U, v une
courbe paramétrée de classe C' par morceauz qui joint un point A € U & un point B € U sur
lintervalle fermé |a,b] dont 'image v([a, b]) est incluse dans U. Alors

Lw:ﬂm—mm

ou f est une primitive de w : df = w.

Vous pouvez comparer ce théoreme a celui sur I'intégration des fonctions d’une seule variable
qui énonce que pour toute fonction g

b
/gwm=c@—mw

quand G’ = g sur un intervalle ouvert contenant [a, b] ; G est donc une primitive de g. Ceci est en
fait un phénomeéne qui se produit naturellement : I'intégration se fait sur Uintervalle [a, b] tandis
que le calcul de différence se fait sur la frontiere de cet intervalle.

Le théoreme 7.3.1 montre que le méme phénomene de “passage a la frontiere” a lieu quand
nous intégrons sur une courbe puisque Fr(vy([a,b])) = {4, B}. En particulier, si le point de départ
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coincide avec le point d’arrivée, il n’y a pas de contribution a la valeur de I'intégrale. Comparer
par exemple les valeurs de l'intégrale

/ydac + zdy
v
olt ¥(t) = (cost,sint) sur les intervalles [0, Z], [0,27], [0, 2], [0, 47] pour les valeurs de ¢.

Les derniéres remarques illustrent qu’éventuellement les conditions topologiques et géométriques
liées aux courbes qui entrent dans les calculs peuvent avoir des effets dans le développement de
I'intégration des formes différentielles. Nous aurons besoin de la définition suivante :

Définition 7.3.2 (Ensemble étoilé dans RP) Une partie E de R? est dite étoilée si elle
contient un point C tel que si P est un point arbitrairement choisi dans E, alors le segment de
droite qui joint C a P soit contenu dans E.

Donnons quelques exemples pour motiver cette définition.

1. Un ensemble convexe est étoilé. Ceci découle immédiatement de la définition d’un ensemble
convexe. En effet, tout point peut jouer le role du point C' de la définition 7.3.2. Comme
le montre I’exemple suivant, un ensemble étoilé n’est pas nécessairement convexe.

2. Dans R?, 'union des deux axes {(z,y) € R*|zy = 0} est étoilé mais pas convexe. Pour le
point C' il y a un candidat et un seul : (0,0).

3. La boule euclidienne ouverte D = {(z,y) € R*|z? + y? < 1} est convexe et donc étoilée,
mais quand privée d’un point, elle n’est ni convexe ni étoilée. Essayez de voir pourquoi,
vous constaterez vite qu’il s’agit d’'un “trou” dans la boule qui 'empéche d’étre étoilée.

La notion d’ensemble étoilé joue un role fondamental dans la détermination des formes
exactes. Nous avons vu dans la proposition 7.2.3 qu’une forme exacte est nécessairement fermée.
Comme nous le verrons a travers des exemples en cours et aux travaux dirigés, I'inverse est faux
en général. Or, tant il est facile de vérifier qu'une forme est fermée puisqu’il suffit de dériver,
et tant il est difficile de vérifier qu'une forme fermée a aussi une primitive car il faut intégrer.
Le théoreme suivant montre que sous certaines hypothéses nous pouvons profiter de la notion
d’ensemble étoilé.

Théoréme 7.3.3 (Théoréme de Poincaré) Soient U un ouvert étoilé de RP et w une forme
de classe C* sur U. Alors w est exacte si et seulement si elle est fermée.

Comme nous l'avons indiqué dans le point (3) des exemples ci-dessus, le fait d’étre étoilé est
lié & l’absence de “trous” dans une partie de R”. En effet, le théoréme de Poincaré est valable
sur tout ouvert “sans trous”. Néanmoins, rendre rigoureux notre intuition de “avec/sans trous”
nécessite une préparation qui sera faite dans des cours plus avancés.

Voici un exemple pertinent des limites de ’applicabilité du théoreme de Poincaré :

w = P(z,y)dr + Q(z,y)dy

avec
xT

—-Y
P(z,y) = et Qz,y) = 22

z? + y?
et U =R\ {(0,0)}. Nous pouvons remplacer R? par tout ouvert contenant (0,0) sans changer la
conclusion : la forme w, quoique fermée, n’est exacte sur aucun ouvert contenant (0, 0). Nénmoins,
sur tout ouvert ne contenant pas (0,0), le théoreme de Poincaré s’applique.

Le théoreme de Poincaré regle le probleme de I'existence d’une primitive efficacement. Nous
finirons ce chapitre avec un théoréme qui permet de faire de I'intégration en utilisant les formes
différentielles. C’est un cas particulier pour p = 2 d’un résultat général. En effet, il est possible
de développer la théorie générale des formes différentielles et leur intégration de telle fagon a
obtenir une version plus différentielle de ce que nous avons fait au septieme chapitre.
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Théoreme 7.3.4 (Formule de Green-Riemann) Soit U un ouvert de R* sur lequel est
définie une forme différentielle w = Pdx + Qdy de classe C'. Soit E une région dans R* li-
mitée par une courbe que l'on notera OF et que l’on supposera C* par morceauz. Alors

/aE‘U = /E (01Q — 2 P) d(z,y) .

Nous ferons plusieurs remarques sur ce théoreme important.

1. Le membre de droite de la formule de Green-Riemann est l'intégrale double

/ /E (0,Q — 0,P) dudy .

Tout cela signifie que 'on doit pouvoir utiliser cette égalité pour déterminer des aires
en profitant de la marge de manoeuvre offerte par deux intégrales différentes ayant la
méme valeur. En effet, ’égalité suivante est vraie pour toute partie £ C R? satisfaisant les
hypotheses de la formule de Green-Riemann :

/ zdy = // dxdy .
OE E

11 suffit de poser Q(z,y) = x et P(x,y) = 0. Cette égalité permet de déterminer laire de E
si sa frontiére est décrite par une courbe dont nous connaissons les équations paramétriques.

Une autre égalité de ce genre est la suivante :

/ %(xdy—ydx) = // dxdy .
OE E

Le membre gauche devient en coordonnées polaires (r, t)

1 ! / 1 b
§~/8E ()Y (t) —y(t)2'(t) dt = 5/a 2 dt

ol a et b sont des bornes a déterminer suivant la forme de la frontiere. Cette derniere forme
est utile pour les frontieres données par des équations polaires ol il y a un lien entre r et
t, par exemple si r est une fonction de ¢.

2. L’endroit déterminé par la courbe OF est la frontiere Fr(FE). Néanmoins, comme les pa-
ramétrisations peuvent varier, Fr(F) peut correspondre & plusieurs courbes paramétrées.



