Math IV, analyse (L2) – Fiche 9

23 & 24 avril 2007

Exercice 1.

Soit $f:\mathbb{R}^2 \to \mathbb{R}$ une fonction continue. Calculer les intégrales $\int_{\Gamma} f(x,y) \, \mathrm{d}s$ dans les cas suivants :

- 1. $f(x,y) = (x^2 + y^3)$ et Γ est le bord du triangle de sommets (0,0),(1,0) et (0,1),
- 2. $f(x,y) = x^2 + y^2$ et Γ est le cercle de centre (1,1) et de rayon 2.
- 3. f(x,y) = x et Γ est le quart d'ellipse d'équation $\frac{x^2}{25} + \frac{y^2}{9} = 1$ situé dans le quart de plan $\{(x,y) \mid x \ge 0, y \ge 0\}$.

Exercice 2.

Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ un champ de vecteurs défini pour tout $x, y \in \mathbb{R}^2$ par

$$F(x,y) = (2xy, x^2 + y^2)$$
.

Calculer l'intégrale de ce champ de vecteurs le long des arcs orientés suivants :

- 1. Le segment orienté d'origine (0,0) et d'extrémité (1,1),
- 2. L'arc de parabole d'équation $y = x^2$, du point (0,0) au point (1,1).

Quelle conjecture en déduisez-vous? Démontrer votre affirmation.

Exercice 3.

Calculer l'intégrale curviligne

$$\int_C (2x - y) \, \mathrm{d}x + (x + y) \, \mathrm{d}y$$

où C est le cercle de centre 0 et de rayon R, considéré avec l'orientation directe.

Exercice 4.

Calculer l'intégrale curviligne

$$\int_{\Gamma} (y-z) \, \mathrm{d}x + (z-x) \, \mathrm{d}y + (x-y) \, \mathrm{d}z$$

où Γ est l'arc de l'hélice circulaire paramétrée par $(r\cos(t),r\sin(t),ht)$, avec $r,h\in\mathbb{R}_+^*$ fixés et $t\in[0,2\pi[$.

Exercice 5.

1) Calculer $\iint_D (x-y) dx dy$ où D est la partie du plan délimitée par les droites d'équation :

$$x = 0, \quad y = x + 2, \quad y = -x$$

2) Calculer $\iint_D xy \ \mathrm{d}x \ \mathrm{d}y$ où D est la partie du plan délimitée par les courbes d'équation :

$$y = x^2, \quad y = x^3.$$

3) Calculer $\iint_D e^{x+y} \ \mathrm{d}x \ \mathrm{d}y$ sur le carré $D = \{(x,y) \mid |x|+|y| \leq 1\}.$

Exercice 6.

Calculer l'intégrale $\iiint_D (x+y+z)^2 dx dy dz$, où D est la partie de l'espace délimitée par les plans d'équation :

$$x = 0$$
, $y = 0$, $z = 0$, $x + y + z = 1$.

Exercice 7.

Calculer l'intégrale curviligne $\int_{\Gamma} -y \, dx + x \, dy$, où Γ est l'intersection de la sphère de centre (0,0,0) et de rayon 1, et du plan d'équation x+y+z=1, en indiquant le sens choisi du parcours.