Math IV, Analyse (Printemps 2011) – Fiche 1

28 février 2011

Exercice 1 (De nouvelles distances à partir des anciennes).

Soient (E, d) un espace métrique et $f : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ une fonction de domaine \mathbb{R}_+ et qui satisfait les conditions suivantes :

FD1 f(0) = 0;

FD2 f est une fonction strictement croissante;

FD3 pour tous $x, y \in \mathbb{R}_+$, $f(x+y) \le f(x) + f(y)$.

Montrer que la fonction suivante munit E d'une nouvelle notion de distance.

$$d_f : E \times E \longrightarrow \mathbb{R}_+$$

 $(x,y) \longmapsto f(d(x,y)).$

Montrer que les lois

$$t \mapsto \frac{t}{1+t}$$
 , $t \mapsto \sqrt{t}$

définissent dans \mathbb{R}_+ des fonctions qui satisfont les conditions FD1, FD2, FD3.

Exercice 2 (Espaces normés, quelques exemples).

1. Dans l'espace vectoriel \mathbb{R}^p $(p \in \mathbb{N}^*)$, on considère les trois applications de \mathbb{R}^p vers \mathbb{R} définies pour tout $x = (x_1, \dots, x_p) \in \mathbb{R}^p$ par :

$$||x||_2 = \sqrt{\sum_{j=1}^p x_j^2}, \qquad ||x||_\infty = \max_{j=1,\dots,n} |x_j|, \qquad ||x||_1 = \sum_{j=1}^p |x_j|.$$

Vérifier que ces applications définissent des normes. (Pour vérifier que $\| \ \|_2$ satisfait l'inégalité triangulaire, vous pouvez vous servir sans preuve du lemme de Schwartz :

pour tous
$$(a_1, ..., a_p)$$
, $(b_1, ..., b_p) \in \mathbb{R}^p$, $\left| \sum_{i=1}^p a_i b_i \right| \leq \sqrt{\sum_{i=1}^p a_i^2} \sqrt{\sum_{i=1}^p b_i^2}$.)

2. Vérifier que la fonction

$$||\ ||\ : \mathbb{R}^2 \longrightarrow \mathbb{R}_+$$

 $(x,y) \longmapsto \max(|x+3y|, |x-y|)$

définit une norme dans \mathbb{R}^2 . Dessiner B((0,0),1) par rapport à cette norme.

3. Déterminer des conditions suffisantes sur les constantes a,b,c,d pour que la fonction suivante définisse une norme dans \mathbb{R}^2 :

$$||\ ||\ : \mathbb{R}^2 \longrightarrow \mathbb{R}_+$$

 $(x,y) \longmapsto |ax+by| + |cx+dy|$.

Exercice 3 (Un espace métrique n'est pas nécessairement un espace normé).

- 1. Montrer que si $(E, ||\ ||)$ est un espace normé non réduit à $\{0\}$, alors E n'est pas borné, en d'autres termes pour tout $r \in \mathbb{R}_+$, il existe $x \in E$ tel que $||x|| \ge r$.
- 2. Montrer que tout ensemble E non vide peut être muni d'une métrique. En conclure, en explicitant un exemple, qu'il existe un ensemble E et une métrique dans E qui n'est induite par aucune norme.
- 3. Montrer que la fonction suivante définit une métrique dans $\mathbb R$:

$$\begin{array}{cccc} d & : & \mathbb{R} \times \mathbb{R} & \longrightarrow & \mathbb{R}_+ \\ & (x,y) & \longmapsto & \frac{|x-y|}{1+|x-y|} \end{array}$$

Montrer que cette métrique n'est induite par aucune norme dans \mathbb{R} .

Exercice 4 (Normes équivalentes).

- 1. Soit $l \in [1, +\infty[$. Dans l'espace vectoriel \mathbb{R}^p $(p \in \mathbb{N}^*)$. Pour tout $x = (x_1, \dots, x_p) \in \mathbb{R}^p$, on définit $\|x\|_l = \left(\sum_{j=1}^p |x_j|^l\right)^{\frac{1}{l}}$. On admettra que la fonction $x \to \|x\|_l$ définit une norme dans \mathbb{R}^p . Montrer que pour tous $l_1, l_2 \in [1, +\infty[$, $\| \cdot \|_{l_1}$ et $\| \cdot \|_{l_2}$ sont équivalentes.
- 2. Soient E un espace vectoriel, $\| \|$ et $\| \|'$ deux normes équivalentes sur E. Montrer qu'il existe $\lambda \in \mathbb{R}_+^*$ tel que, pour tout $x \in E$

$$\lambda \|x\| \le \|x\|' \le \frac{1}{\lambda} \|x\|$$
 et $\lambda \|x\|' \le \|x\| \le \frac{1}{\lambda} \|x\|'$.

Exercice 5 (Norme subordonnée).

L'ensemble des applications linéaires $\mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ avec $p, q \in \mathbb{N}$ arbitrairement fixés, muni de l'addition usuelle des fonctions

$$u + v : x \longmapsto u(x) + v(x)$$
 pour toutes $u, v \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$

et de la multiplication usuelle par les réels

 $\lambda u : x \longmapsto \lambda u(x)$ pour toute fonction $u \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ et tout scalaire $\lambda \in \mathbb{R}$

est un espace vectoriel. Le but de cet exercice est de le munir d'une norme. A cet effet, on définit

$$\begin{array}{ccccc} ||| & ||| & : & \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q) & \longrightarrow & \mathbb{R}_+ \\ & & u & \longmapsto & |||u||| & = & \sup_{x \neq 0} \frac{\|u(x)\|_{\mathbb{R}^p}}{\|x\|_{\mathbb{R}^q}} \end{array},$$

où $\| \cdot \|_{\mathbb{R}^p}$ et $\| \cdot \|_{\mathbb{R}^q}$ sont deux normes arbitrairement fixées sur \mathbb{R}^p et \mathbb{R}^q respectivement.

1. Montrer que pour tout $u \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$, il existe une constante $M \in \mathbb{R}_+$ telle que pour tout $x \in \mathbb{R}^p$,

$$||u(x)||_{\mathbb{R}^q} \le M||x||_{\mathbb{R}^p} .$$

2. Montrer que si M est une constante comme celle déterminée dans le premier point, alors

$$\sup_{x \neq 0} \frac{\|u(x)\|_{\mathbb{R}^q}}{\|x\|_{\mathbb{R}^p}} \; = \; \sup_{\|x\|_{\mathbb{R}^p} = 1} \|u(x)\|_{\mathbb{R}^q} \; \leq M \; .$$

3. Montrer en utilisant les points précédents que ||| ||| détermine une norme sur $\mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$.