Math IV, Analyse (Printemps 2011) – Fiche 9

9 mai 2011

Exercice 1 (Formes différentielles : calculs élémentaires).

- I. Evaluez les formes ci-dessous aux vecteurs indiqués de l'espace tangent au point donné :
 - 1. dx_1 , dx_2 , dx_3 , $dx_1 + dx_2$, $x_1 dx_1 + x_2 dx_2 + x_3 dx_3$ en e_i ($i \in \{1, 2, 3\}$) de l'espace tangent en (1, 1, 1);
 - 2. $dx_1 \wedge dx_3$, $dx_2 \wedge dx_3$, $x_1 dx_1 \wedge dx_2$, $dx_1 \wedge dx_2$, $x_1 dx_1 \wedge dx_2 + dx_3 \wedge dx_2$ aux paires (e_i, e_j) $(1 \le i < j \le 3)$ de l'espace tangent en (0, 0, 0), ensuite de celui en (1, 1, 1);
 - 3. df avec $f(x_1,...,x_p) = \sum_{i=1}^p ix_i$ en $(1,-1,...,(-1)^{p-1})$ de l'espace tangent en (1,1,...,1) dans \mathbb{R}^p $(p \in \mathbb{N}^*)$.
- II. Soit $\omega \in \Omega^k(U)$ avec U un ouvert de \mathbb{R}^p . Montrer $\omega \wedge \omega = 0$ si k est impair. Donner des exemples qui réfutent cette conclusion quand k est pair.
- III. Dans $\bigcup_{k=0}^{+\infty} \Omega^k(\mathbb{R}^3)$, on se donne les formes suivantes :

$$\omega_1 = x^2 + y^2 + z^2
\omega_2 = yz \, dx + xz \, dy + xy \, dz
\omega_3 = xy \, dx \wedge dy + xz \, dx \wedge dz + yz \, dy \wedge dz
\omega_4 = x \, dy \wedge dz + y \, dx \wedge dz + z \, dx \wedge dy
\omega_5 = (x^5 + y^4x) \, dx \wedge dy \wedge dz$$

- 1. Calculer $\omega_i + \omega_j$ pour $(1 \le i \le j \le 5)$ quand c'est possible.
- 2. Calculer $\omega_i \wedge \omega_j$ pour $(1 \leq i, j \leq 5)$.
- 3. Calculer $d\omega_i$ pour $(1 \le i \le 5)$.

Exercice 2 (Calculs en utilisant le théorème de Fubini).

Calculer les intégrales suivantes :

$$\iint_D (x-y) \, \mathrm{d}x \, \mathrm{d}y \;, \; D \; \text{est limit\'e par les courbes} \; \; x=0 \;, \; y=x+2 \;, \; y=-x \;,$$

$$\iint_D x \cos(y) \; \, \mathrm{d}x \; \, \mathrm{d}y \;, \; D = \{(x,y) \in \mathbb{R}^2 | \; 0 \leq x \leq \sin(y) \;, \; 0 \leq y \leq \pi/2 \} \;,$$

$$\iint_D xy \; \, \mathrm{d}x \; \, \mathrm{d}y \;, \; D = \{(x,y) \in \mathbb{R}^2 | \; 0 \leq x^2 + y^2 \leq 1 \;, \; x+\sqrt{3}y \leq 1 \} \;,$$

$$\iiint_D x^2 y \; \, \mathrm{d}x \; \, \mathrm{d}y \; \, \mathrm{d}z \;, \; D = \{(x,y,z) \in \mathbb{R}^3 | \; 0 \leq y \leq 1-x^2 \;, \; |x+y+z| \leq 1 \} \;.$$

Exercice 3 (Changement de variables).

1. Calculer l'aire de la région dans \mathbb{R}^2 limitée par les courbes d'équation

$$y = ax$$
, $y = x/a$, $y = b/x$, $y = 1/bx$, où $a > 1$, $b > 1$.

2. Calculer l'intégrale

$$\iiint_D \frac{x^2 + y^2}{x^2 + y^2 + z^2} \, dx \, dy \, dz \,,$$

où D est l'intérieur de la sphère de centre (0,0,0) et de rayon 1, et extérieur au cône de révolution autour de l'axe des z (troisième coordonnée) et d'angle $\pi/3$.

3. Calculer le volume du domaine D défini par l'intersection d'une sphère de rayon R > 0 et d'un cylindre de révolution de rayon R' > 0, avec R' < R, ayant pour axe un diamètre de la sphère.

Exercice 4.

Calculer l'intégrale :

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \quad .$$

Exercice 5 (Là où Fubini ne s'applique pas (entraînement pour les curieux)). Montrer que les intégrales suivantes ne sont pas égales :

$$\int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \right] dy \qquad \text{et} \qquad \int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \right] dx \;,$$

et expliquer pourquoi le théorème de Fubini n'est pas applicable.

Indication: On commencera par calculer les dérivées

$$\frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right)$$
 et $\frac{\mathrm{d}}{\mathrm{d}x} \left(\arctan(x) \right)$.