Kholle 10 (rattrapage), le 24 mai 2011

Exercice 1 (Question de cours)

- (i) (3 pts) Qu'est-ce qu'un champ de vecteurs dans \mathbb{R}^p ? Pour une fonction $f: D \longrightarrow \mathbb{R}$, donner des conditions suffisantes sur f et D pour que f soit intégrable sur D.
 - (ii) (3 pts) Donner la formule décrivant la droite tangente à une courbe paramétrée dans \mathbb{R}^3 .

Exercice 2 (5 pts) Calculer l'intégrale suivante :

$$\iint_D (x+2y)^2 dx dy \text{ où } D \text{ est le triangle de sommets } (0,0) , (1,1) , (2,-1) .$$

Exercice 3 (4 pts) On fixe $n \in \mathbb{N}^*$ et on considère la fonction suivante :

$$\wedge : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto u \wedge v .$$

Vérifier que cette application est différentiable et déterminer sa différentielle.

Exercice 4 (5 pts) On définit

$$\mathcal{P} : \mathbb{R}_{+}^{*} \times]0, 2\pi[\longrightarrow \mathbb{R}^{2} \setminus \mathbb{R}_{+} \times \{0\}$$
$$(r,t) \longmapsto (r \cos t, r \sin t) .$$

- 1. (2 pts) Montrer, en utilisant seulement la définition de la dérivée d'une fonction d'une seule variable, que la fonction $t \mapsto \cos(t)$ est une fonction dérivable pour tout $t \in \mathbb{R}$. ($Aide-mémoire : \cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$.)
- 2. (3 pts) Montrer que \mathcal{P} est différentiable sur son domaine et déterminer sa différentielle (Pour la différentiabilité, vous êtes libre d'utiliser la méthode qui vous convient le plus).