Math IV, Analyse (Printemps 2010) – Fiche 3

15 mars 2010

Exercice 1 (Topologie en se servant de la continuité).

1. Déterminer rigoureusement si les ensembles suivants sont ouverts, fermés, compacts, connexes par arc :

$$A = \{ (x,y) \in \mathbb{R}^2 \mid 0 < |x| < |y| < 1 \}$$

$$B = \{ (x,y) \in \mathbb{R}^2 \mid (x^2 + y^2 - 4)(x^2 + y^2 - 1) \le 0 \}$$

- 2. Trouver un exemple de fonction continue f de \mathbb{R} vers \mathbb{R} et de partie ouverte $U \subset \mathbb{R}$, telles que f(U) ne soit pas ouvert.
- 3. Trouver un exemple de fonction continue $g: \mathbb{R} \longrightarrow \mathbb{R}$ et de partie fermée $F \subset \mathbb{R}$, telles que g(F) ne soit pas fermé.
- 4. Trouver un exemple de fonction continue $h : \mathbb{R} \longrightarrow \mathbb{R}$ et de partie compacte $K \subset \mathbb{R}$ telles que $h^{-1}(K)$ ne soit pas compact.

Exercice 2 (Dérivées partielles, la matrice jacobienne).

On définit f_1 et f_2 de la façon suivante :

$$f_{1} : \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$(x_{1}, x_{2}) \longmapsto \begin{cases} \frac{x_{1}x_{2}^{3}}{x_{1}^{4} + x_{2}^{2}} & \text{si } (x_{1}, x_{2}) \neq (0, 0) \\ 0 & \text{si } (x_{1}, x_{2}) = (0, 0) \end{cases}$$

$$f_{2} : \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$(x_{1}, x_{2}) \longmapsto \sin(x_{1}x_{2})$$

On définit alors

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x_1, x_2) \longmapsto (f_1(x_1, x_2), f_2(x_1, x_2))$$

- 1. Déterminer les dérivées partielles premières de f_1 et de f_2 en tous les points de \mathbb{R}^2 où elles sont définies. Expliciter ces dérivées partielles comme des fonctions de leurs domaines dans \mathbb{R}^2 vers \mathbb{R} .
- 2. Déterminer la jacobienne de f en un point $(a, b) \in \mathbb{R}^2$.
- 3. Vérifier que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 3 (Divers aspects d'une fonction de plusieurs variables).

Voici la définition d'une fonction de plusieurs variables suivie des questions pour éveiller les esprits :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto \sin(|xy|)$$

1. Tracer les lignes de niveau

$$\{ (x,y) \in \mathbb{R}^2 \mid f(x,y) = 0 \}, \{ (x,y) \in \mathbb{R}^2 \mid f(x,y) = 1 \}.$$

- 2. Déterminer les dérivées partielles premières de f.
- 3. Vérifier si f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 4 (Entraînement : continuité).

On fixe $\alpha_1, \ \alpha_2 \in \mathbb{R}^*, \ \beta_1, \ \beta_2, \ \gamma \in \mathbb{R}_+^*$ et définit la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{|x|^{\alpha_1}|y|^{\alpha_2}}{(|x|^{\beta_1}+|y|^{\beta_2})^{\gamma}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

Montrer que la fonction f est continue en (0,0) si et seulement si $\frac{\alpha_1}{\beta_1} + \frac{\alpha_2}{\beta_2} > \gamma$.

Exercice 5 (Entraînement : calculs simples d'arc; topologie).

1. On définit

$$S = \{ (x, y) \in \mathbb{R}^2 \mid ||(x, y)||_{\infty} = 1 \}.$$

Trouver une application continue γ de l'intervalle [0,1] vers S telle que $\gamma(0)=(0,-1)$ et $\gamma(1)=(1,0)$.

2. On définit

$$D = \{ (x,y) \in \mathbb{R}^2 \mid x^2 + (y-1)^2 = 1 \} \cup \{ (x,y) \in \mathbb{R}^2 \mid x^2 + (y+1)^2 = 1 \}.$$

Nous fixons deux points dans $D: P_0 = (1,1)$ et $P_1 = (-1,-1)$. Trouver un arc continu γ de l'intervalle [0,1] vers S telle que $\gamma(0) = P_0$ et $\gamma(1) = P_1$. (Vous pouvez utiliser les coordonnées polaires.)

3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente dans \mathbb{R}^p $(p\in\mathbb{N}^*)$. On note l sa limite. Montrer que l'ensemble $\{u_n\mid n\in N\}\cup\{l\}$ est compact.