Math IV, Analyse (Printemps 2010) – Fiche 4

29 mars 2010

Dans cette fiche, pour insister sur la structure matricielle, on notera $A \cdot B$ le produit matriciel de matrices (ou de vecteurs) A et B. À cet usage, on rappelle l'identification de \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$ (pour tout $n \in \mathbb{N}^*$).

Exercice 1 (Connexité par arcs).

Soit Ω connexe par arcs et $f:\Omega\to\mathbb{R}$ continue telle que $f(\Omega)\subset\{0,1\}$. Montrer que f est constante.

Exercice 2 (Fonctions Lipschitziennes).

Soit $n \in \mathbb{N}^*$, Ω un ouvert de \mathbb{R}^n et $f : \Omega \to \mathbb{R}$. Ayant choisi une norme $\|\cdot\|$, pour tout $k \in \mathbb{R}^+$, on dit que f est k-Lipschitzienne si, pour tout $(x, y) \in \Omega^2$,

$$|f(x) - f(y)| \le k ||x - y||.$$

On suppose Ω convexe – c'est-à-dire que, pour tout $(x,y) \in \Omega^2$, on a $[x,y] \subset \Omega$ – et f de classe \mathcal{C}^1 .

1. Montrer que, pour tout $(x,y) \in \Omega^2$,

$$f(y) - f(x) = \int_0^1 df (x + t(y - x)) \cdot (y - x) dt$$
.

2. On suppose de plus que $df: \Omega \to \mathcal{M}_{1,n}(\mathbb{R})$ est bornée par $k \in \mathbb{R}^+$, $\mathcal{M}_{1,n}(\mathbb{R})$ étant muni de la norme $\|\cdot\|$ subordonnée à $\|\cdot\|$. Montrer que f est k-Lipschitzienne.

Exercice 3 (Dérivées directionnelles).

On définit

$$f: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \left\{ \begin{array}{ll} \frac{x^3}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{array} \right. \end{array}$$

- 1. Montrer que f est continue en tout point de \mathbb{R}^2 .
- 2. Montrer que f admet en (0,0) des dérivées directionnelles dans toutes les directions de \mathbb{R}^2 .
- 3. Montrer que f n'est pas différentiable en (0,0).

Exercice 4 (Formes bilinéaires).

1. Soit $(n_1, n_2, p) \in (\mathbb{N}^*)^3$ et $b : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^p$ bilinéaire. Montrer que, pour tout (X_1, X_2) , $(Y_1, Y_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, on a

$$db((X_1, X_2)) \cdot ((Y_1, Y_2)) = b(X_1, Y_2) + b(Y_1, X_2)$$
.

2. Soit $n \in \mathbb{N}^*$ et $B \in \mathcal{M}_n(\mathbb{R})$. On note $\langle \cdot, \cdot \rangle$ le produit scalaire canonique sur \mathbb{R}^n et l'on définit

$$f: \mathbb{R}^n \to \mathbb{R}, \quad X \mapsto \langle X, BX \rangle$$
.

Déterminer le gradient de f en tout point de \mathbb{R}^n .

3. Soit $(n,p) \in (\mathbb{N}^*)^2$ et $A : \mathbb{R} \to \mathcal{M}_{n,p}(\mathbb{R}), Y : \mathbb{R} \to \mathbb{R}^p$ de classe \mathcal{C}^1 . On définit

$$f: \mathbb{R} \to \mathbb{R}^n, \quad t \mapsto A(t) \cdot Y(t)$$
.

Donner la dérivée de f en tout point.

Exercice 5 (Entraînement : globe et planisphère).

On définit

$$f: [-\pi, \pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^3, \quad (\theta, \varphi) \mapsto (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi))$$

et

$$g: \mathbb{R}^3 \setminus (\mathbb{R}^2 \times \{1\}) \to \mathbb{R}^2, \quad (x, y, z) \mapsto \left(-\frac{2x}{z-1}, -\frac{2y}{z-1}\right).$$

Déterminer le domaine de définition et calculer la différentielle de $g\circ f$.

Exercice 6 (Entraînement : dérivées partielles non continues).

On définit

$$f: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ f: & \\ (x,y) & \longmapsto & \left\{ \begin{array}{ccc} (x^2+y^2)\sin\left(\frac{1}{x^2+y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{array} \right..$$

- 1. Montrer que les dérivées partielles de f sont définies partout sur \mathbb{R}^2 mais qu'elles ne sont pas continues à l'origine.
- 2. Montrer que f est différentiable en tout point de \mathbb{R}^2 .