Math IV, Analyse (Printemps 2010) – Fiche 7

10 mai 2010

Exercice 1 (Divergence).

Nous commençons par décrire le contexte de cet exercice. Soit $n \in \mathbb{N}^*$ et $V : \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 . On note $(0, e_1, \dots, e_n)$ le repère affine canonique de \mathbb{R}^n . En d'autres termes, V est un champ de vecteurs. Soit $x_0 \in \mathbb{R}^n$ et $\varepsilon > 0$. Soit $X_0, X_1, \dots, X_n : \mathbb{R} \to \mathbb{R}^n$ de classe \mathcal{C}^2 solutions de

pour tout
$$t \in \mathbb{R}$$
, $X'(t) = V(X(t))$

et vérifiant $X_0(0) = x_0$ et, pour tout $j \in [1, n]$, $X_j(0) = x_0 + \varepsilon e_j$. On définit alors

$$\begin{array}{cccc} D_{\varepsilon} & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & \det \left((X_j(t) - X_0(t))_{j \in \llbracket 1, n \rrbracket} \right) \ . \end{array}$$

L'objectif de cet exercice est d'expliciter le lien entre la variation de volume décrit par le repère (X_0, X_1, \ldots, X_n) et la divergence de V.

1. (Détour; vous pouvez aborder directement le point suivant) Ce premier point a pour but de déterminer la différentielle de l'application qui, pour $n \in \mathbb{N}^*$ fixé, associe à chaque matrice $n \times n$ à entrées réelles son déterminant :

$$\det : \mathcal{M}_{n,n}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$X = (x_{ij})_{i,j \in [\![1,n]\!]} \longmapsto \det(X) .$$

C'est une application de classe $\mathcal{C}^{\infty}(\mathbb{R}^{n^2})$ (pourquoi?).

– Soit $X \in \mathcal{M}_{n,n}$. Montrer que

$$\frac{\partial \det}{\partial x_{ij}}(X) = X^{ij} ,$$

où X^{ij} est le ij-ième cofacteur de X.

- Déduire que pour toutes matrices $X, H \in \mathcal{M}_{n,n}$

$$(\mathrm{~d~det})(X).H \ = \ \sum_{i,j \in [\![1,n]\!]} X^{ij} h_{ij} \ = \ \mathrm{tr}(^t\mathrm{com}(X)\ H)$$

où com(X) est la matrice des cofacteurs de X.

- 2. Calculer $D'_{\varepsilon}(0)$. Dans les calculs invoquant la différentielle du déterminant vous pouvez utiliser le point précédent ou l'exercice 4 de la fiche 4.
- 3. En déduire que

$$\operatorname{div}(V)(x_0) = \lim_{\varepsilon \to 0} \frac{D'_{\varepsilon}(0)}{D_{\varepsilon}(0)} .$$

Exercice 2 (Rotationnel).

L'objectif de cet exercice est de donner une interprétation géométrique du rotationnel.

1. Soit $\omega \in \mathbb{R}^+$ et $x_0 \in \mathbb{R}^3$. On définit $X : \mathbb{R} \to \mathbb{R}^3$ par, pour tout $t \in \mathbb{R}$, X(t) est l'image de x_0 par la rotation d'axe $e_3 = (0, 0, 1)$ et d'angle ωt . Montrer que, pour tout $t \in \mathbb{R}$,

$$X'(t) = \omega e_3 \wedge X(t)$$
.

- 2. Soit $\Omega \in \mathbb{R}^3$. On définit $V : \mathbb{R}^3 \to \mathbb{R}^3, X \to \Omega \wedge X$. Montrer que rot(V) est constant, égal à 2Ω . Faire le lien avec le point précédent.
- 3. Soit $f: \mathbb{R}^3 \to \mathbb{R}$ de classe C^2 . Montrer que $rot(\nabla f) = 0$.