Fiche 3: un exercice abordé mais peu détaillé en td

Exercice 12 Soit p un nombre premier, on note \mathbb{F}_p le corps \mathbb{Z}/\mathbb{Z}_p et on identifie \mathfrak{S}_p avec le groupe de bijections de \mathbb{F}_p . On note GA(p) le groupe des bijections affines de \mathbb{F}_p , i.e. l'ensemble des applications

$$f_{a,b} : \mathbb{F}_p \longrightarrow \mathbb{F}_p$$
 $x \longmapsto ax + b$,

où $a \in \mathbb{F}_p^*$ et $b \in \mathbb{F}_p$. On pose $t = f_{1,1}$ et $m_a = f_{a,0}$.

(a) Montrer que le groupe GA(p) est résoluble.

Réponse : Nous démontrerons un peu plus que ce qui est demandé : $GA(p) = T \times M$ avec $T = \langle t \rangle$ et $M = \{m_a \mid a \in \mathbb{F}_p\}$. Les tâches de vérifier que GA(p) est un ensemble de permutations de \mathbb{F}_p et que, muni de la composition des permutations, il est un sous-groupe de \mathfrak{S}_p sont laissées aux lecteurs. Il en est de même pour M. Notez aussi que M est un groupe commutatif, en fait il est isomorphe au groupe $(\mathbb{F}_p^{\times}, .)$. Par ailleurs, T est isomorphe au groupe $(\mathbb{F}_p, +)$.

Pour démontrer la décomposition en produit semi-direct recherchée, nous vérifierons les trois conditions pour les produits semi-directs. Vérifons d'abord que $T \cap M = \{1\}$. Il suffit de comparer deux éléments arbitrairement choisis, l'un de T l'autre de M:

$$t^b(x) = m_a(x)$$
 si et seulement si $x + b = ax$ si et seulement si $b = 0$ et $a = 1$.

Ensuite, vérifions que $T \triangleleft GA(p)$. En effet, si $m_a \in M$, $t \in T$ et $b \in \mathbb{F}_p$, alors

$$m_a t m_a^{-1} \ = \ m_a t^b (a^{-1} x) \ = \ m_a (a^{-1} + b) \ = \ x + ab \ = \ t_{ab} (x) \ .$$

Finalement, vérifions que le groupe GA(p) se factorise comme produit de T et de M, en d'autres termes, que GA(p) = TM. En effet, pour tout $f_{a,b} \in GA(p)$ et tout $x \in \mathbb{F}_p$,

$$f_{a,b}(x) = ax + b = t^b(ax) = t^b(m_a(x))$$
.

A ce stade, un calcul assez rapide (faites-le) montre que le groupe dérivé GA(p)' = T si $p \neq 2$ et $GA(p)' = \{1\}$ si p = 2. Comme T est commutatif, si $p \neq 2$, alors GA(p) est résoluble de classe 2. Quand p = 2, GA(p) est commutatif, donc résoluble de classe 1.

(b) Soit G un sous-groupe de \mathfrak{S}_p transitif, montrer que tout sous-groupe distingué non trivial de G est encore transitif.

Réponse : Soient G comme dans l'énoncé, et N un sous-groupe distingué de G. Nous supposons $N \neq \{1\}$. Montrons que N agit transitivement sur \mathbb{F}_p .

Comme G est un groupe de permutations, l'action de G sur \mathbb{F}_p n'a pas de noyau, en d'autres termes aucun élément de G ne fixe \mathbb{F}_p entièrement. Rappelons aussi que pour tous $g \in G$ et $x \in \mathbb{F}_p$

$$\operatorname{Stab}_G(gx) = g\operatorname{Stab}_G(x)g^{-1}$$
.

Ainsi, comme $N \triangleleft G$ et que G agit transitivement sur \mathbb{F}_p ,

pour tout
$$x \in \mathbb{F}_p$$
, $N \not\leq \operatorname{Stab}_G(x)$.

Soulignons que ce raisonnement monre en fait le lemme général suivant :

Lemme : Soit Γ un groupe de permutations d'un ensemble X. Si N est un sous-groupe distingué et non trivial de Γ , alors pour tout $x \in X$, $N \not\leq \operatorname{Stab}_{\Gamma}(x)$; en d'autres termes, le stabilisateur d'un point arbitraire ne contient pas de sous-groupe non trivial distingué dans Γ .

Par ailleurs,

$$|\operatorname{orb}_N(x)| = |N/\operatorname{Stab}_N(x)|$$

= $|N/\operatorname{Stab}_G(x) \cap N|$
= $|\operatorname{Stab}_G(x)N/N|$.

Notons aussi que N étant un sous-groupe distingué de G, l'ensemble $N\mathrm{Stab}_G(x)$ est en fait un sous-groupe de G. Les calculs de cardinal ci-dessus montre que $N\mathrm{Stab}_G(x)$ est un sous-groupe strictement plus grand que $\mathrm{Stab}_G(x)$. Comme G agit transitivement sur \mathbb{F}_p , $[G:\mathrm{Stab}_G(x)]=p$. Ainsi, il n'y a qu'une possibilité pour $N\mathrm{Stab}_G(x)$, notamment $G=\mathrm{Stab}_G(x)N$. Ceci équivaut à dire que chaque classe de $\mathrm{Stab}_G(x)$ contient un élément de N, en d'autres termes N agit transitivement sur \mathbb{F}_p .

- (c) Soit G un sous-groupe de \mathfrak{S}_p transitif et résoluble. On note $(H_i)_{1 \leq i \leq r}$ la suite décroissante des groupes dérivés $(H_r = \{1\})$.
 - (i) Montrer que H_{r-1} est conjugué au groupe T.
 - (ii) Soit $\sigma \in \mathfrak{S}_p$ tel que $\sigma \tau \sigma^{-1} \in GA(p)$. Montrer que σ est dans GA(p).
 - (iii) En déduire que G est un conjugué à un sous-groupe de GA(p).

Réponse : (i) Nous suivrons la notation de l'énoncé. Alors, H_{r-1} est un sous-groupe non trivial, commutatif et distingué de G. Etant non trivial et distingué, c'est un sous-groupe transitif. Comme c'est un sous-groupe commutatif, tous ses sous-groupes sont distingués. Alors, il découle du lemme général du point (b) que $\operatorname{Stab}_{H_{r-1}}(x) = \{1\}$. Par conséquent $|H_{r-1}| = p$. En particulier, H_{r-1} est un groupe cyclique. Si τ est un générateur de H_{r-1} , alors il induit une permutation de la forme

$$(0 \tau(0) \ldots \tau^{p-1}(0)),$$

avec 0 l'élément neutre de $(\mathbb{F}_p, +)$. Comme l'élément t aussi induit une telle permutation, ils sont conjugués dans \mathfrak{S}_p .

(ii) Soit $\sigma \in \mathfrak{S}_p$ tel que $\sigma t \sigma^{-1} \in GA(p)$. Alors, comme |GA(p)| = p(p-1) et que |M| = p-1, il existe $i \in \{1, \dots, p-1\}$ tel que $\sigma t \sigma^{-1} = t^i$. Il s'ensuit de cette conclusion que pour tout $x \in \mathbb{F}_p$,

$$\sigma t \sigma^{-1}(x) = x + i .$$

Par conséquent.

$$\sigma^{-1}(x) + 1 = \tau \sigma^{-1}(x) = \sigma^{-1}(x+i)$$
.

Il en découle que pour tout $x \in \mathbb{F}_p$, $\sigma^{-1}(x) = i^{-1}x + \sigma^{-1}(0)$, c'est la formule d'une droite affine sur \mathbb{F}_p . Ainsi σ^{-1} , et donc σ , appartiennent à GA(p).

- (iii) Une conséquence du point (ii) est que $N_{\mathfrak{S}_p}(\langle t \rangle) = GA(p)$. Maintenant, d'après le point (i), le sous-groupe H_{r-1} est conjugué au sous-groupe $\langle t \rangle$. Il en découle que G, étant un sous-groupe de $N_G(H_{r-1})$ est conjugué à un sous-groupe de $N_G(\langle t \rangle)$. Or, nous venons de remarquer que ce dernier normalisateur est exactement GA(p).
- (d) Soit G un sous-groupe transitif de \mathfrak{S}_p . Montrer que G est résoluble si et seulement si l'identité est le seul élément de G ayant deux points fixes.

Réponse : La nécessité de la condition sur les points fixes découle des points précédents. En effet, si G est un sous-groupe transitif et résoluble de \mathfrak{S}_p , alors G est conjugué à un sous-groupe de GA(p) d'après le point (c). Or, le groupe GA(p) satisfait à la condition dont nous essayons de vérifier la nécessité à la résolubilité de G.

Supposons maintenant que G soit un sous-groupe transitif de \mathfrak{S}_p qui satisfait à la condition sur les points fixes. D'après l'exercice 8 (b) de la fiche 2, G a un élément qui ne fixe aucun point. Appelons τ un tel élément de G. Nous montrerons que τ est un p-cycle. Puisque pour tout $x \in \mathbb{F}_p$,

$$|\operatorname{orb}_{\langle \tau \rangle}(x)| = \frac{|\tau|}{|\operatorname{Stab}_{\langle \tau \rangle}(x)|} = |\tau| ,$$

la formule suivante, où la somme est décrite par un élément x et un seul de chaque orbite sous l'action de $\langle \tau \rangle$:

$$p = \sum_{x} |\operatorname{orb}_{\langle \tau \rangle}(x)|$$
.

Il s'ensuit que $|\tau|$ | p. Ainsi $|\tau| = p$, et τ agit transitivement sur $G/\operatorname{Stab}_G(x)$.

Le dernier paragraphe montre que $G = \langle \tau \rangle \operatorname{Stab}_G(x)$. L'élément τ étant d'ordre p,

$$\langle \tau \rangle \cap \operatorname{Stab}_G(x) = \{1\}$$
.

Par ailleurs, d'après la condition sur le nombre de points fixes,

$$\operatorname{Stab}_G(x)\cap\operatorname{Stab}_G(y)\ =\{1\}\ \text{ si et seulement si }x\neq y\ .$$

Il en découle que $N_G(\operatorname{Stab}_G(x)) = \operatorname{Stab}_G(x)$ (vérifiez les détails qui mènent à cette conclusion). Nous déduisons alors la formule suivante :

$$|G| = |\tau| |\operatorname{Stab}_G(x)| = |\tau| (|\operatorname{Stab}_G(x)| - 1) + 1 + |\operatorname{les}$$
 éléments qui ne fixent aucun point |.

Ces égalités montrent que $\langle \tau \rangle$ est formé par l'élément neutre et tous éléments de G qui ne fixent aucun point de \mathbb{F}_p . Ainsi $\langle \tau \rangle \lhd G$, et finalement,

$$G = \langle \tau \rangle \rtimes \operatorname{Stab}_G(x)$$
.

L'élément τ étant un p-cycle, nous pouvons conjuguer τ à t dans \mathfrak{S}_p . Puisque $N_{\mathfrak{S}_p}(\langle t \rangle) = GA(p)$, cette dernière conjugaison implique que $\operatorname{Stab}_G(x)$ soit un groupe abélien. Par conséquent G est résoluble. \square