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Exercice I
1. C'est un grand classique qu'il ne paraît pas utile de détailler ici ; remarquons simplement que l'existence
d'une bijection entre N et Q s'obtient facilement en utilisant le théorème de Cantor-Bernstein (pour construire
une injection de Q dans N on peut remarquer qu'un rationnel s'écrit avec les 12 symboles −, /, 0, 1, . . . , 9 et
utiliser le développement en base 12 d'un entier...)
2. Soit X l'ensemble des réels qui ne font intervenir que des 0 et des 1 dans leurs parties décimales ; on considère
l'application F : P(N) → X dé�nie par

F (A) =
∑

i∈A

10−(i+1)

Cette application est bien à valeurs dans X, et est injective : si F (A) = F (B) alors en regardant la i-ième
décimale de F (A) on voit que i ∈ A ⇔ i ∈ B.
3. Notons Φ l'application de R dans P(Q) qui à r ∈ R associe {q ∈ Q : q ≥ r}.
Soient r1 et r2 deux réels tels que r1 < r2 ; par densité de Q il existe un rationnel q0 tel que r1 < q0 < r2, d'où
on tire q0 ∈ Φ(r1) \ Φ(r2) ; par conséquent Φ(r1) 6= Φ(r2) et ceci montre que φ est injective.
On a donc une injection de R dans P(Q) et par conséquent (d'après I.1) une injection de R dans P(N). Comme
d'après la question 2. il y a aussi une injection de PN) dans R, le théorème de Cantor-Bernstein permet de
conclure qu'il existe une bijection de R sur P(N), autrement dit que le cardinal de R est égal à 2ℵ0 .

Exercice II
1. On �xe un ensemble X, et on considère l'ensemble (non vide) A formé par les paires (A,<) telles que A ⊂ X
et < est un bon ordre strict sur A. Ensuite on munit A de la relation R dé�nie par

(
(A,<)R (A′, <′)

) ⇔ (
A ⊂ A′ et (A,<) est un segment initial de (A′, <′)

)
.

On véri�e sans peine que R est une relation d'ordre sur A ; reste à véri�er que l'ordre en question est inductif
(autrement dit tout sous-ensemble totalement ordonné de A admet un majorant). Pour cela, prenons une
famille (Ai, <i) totalement ordonnée par R ; on veut montrer qu'elle admet un majorant pour la relation R.
On commence par poser A = ∪i∈IAi ; A contient tous les Ai, et il nous reste à dé�nir un bon ordre sur A dont
les sgments initiaux soient les (Ai, <i) ; pour x, y ∈ A on pose

(
x < y

) ⇔ (∃i x ∈ Ai et y ∈ Ai et x <i y
)

.

Il nous reste à véri�er que < est un bon ordre sur A ; pour cela, commençons par remarquer que si x < y alors
pour tout i tel que x, y ∈ Ai on a x <i y. En e�et, on sait qu'il existe io tel que x, y ∈ Ai0 et x <i0 y. Soit
alors un autre i tel que x, y ∈ Ai. Comme la famille (Ai, <i) est totalement ordonnée par R, deux cas sont
possibles :
(a) Ai ⊂ Ai0 et <i0 prolonge <i ; alors, on voit que x <i y puisque x, y ∈ Ai et <i0 prolonge <i.
(b) Ai0 ⊂ Ai et <i étend <i0 ; alors on a x <i y puisque <i étend <i0 .

Cette remarque faite, montrons que la relation < est un bon ordre total strict sur A dont chaque (Ai, <i) est
un segment initial :

(AR) si x < x alors il existe i tel que x ∈ Ai, et notre remarque ci-dessus (appliquée avec y = x) montre que
x <i x ce qui est impossible.

(AS) Supposons x < y. Alors pour tout i tel que x, y ∈ Ai on a x <i y donc (puisque <i est un ordre strict)
on n'a pas y <i x, ce qui prouve que l'on n'a pas non plus y < x.

(T) Supposons x < y et y < z. Alors on a i tel que x, y ∈ Ai et j tel que y, z ∈ Aj ; la famille (Ai)i∈I étant
totalement ordonnée par R, on a Ai ⊂ Aj ou Aj ⊂ Ai ; on peut donc supposer par exemple A8i ⊂ Aj .
Mais alors on ax, y, z ∈ Aj et x <j y <j z, ce dont on déduit x <j z et par conséquent x < z.



(Tot) Soient x 6= y ∈ A. Comme ci-dessus, il existe i tel que x, y ∈ Ai. Comme <i est total on sait que x <i y
pu y <i x, ce dont on déduit que x < y ou y < x.

(BO) C'est là qu'on utilise le fait d'avoir imposé que les Ai soient des segments initiaux les uns des autres.
Soit X une sous-partie non vide de A. Soit x ∈ X ; il existe i ∈ I tel que x ∈ Ai. Soit a le minimum de
X ∩ Ai pour <i (qui existe puisque <i est un bon ordre sur Ai), et x un élément de X quelconque. Il
existe j tel que x ∈ Aj ; deux cas sont possibles :
(a) (Ai, <i) est un segment initial de (Aj , <j) ; alors on voit que a = min(Ai∩X, <i) = min(Aj∩X, <j)

et donc a <j x, d'où a < x.
(b) (Aj , <j) est un segment initial de (Ai, <i) ; alors Aj ⊂ Ai, donc x ∈ Ai, et par dé�nition de a cela

impose a <i x et donc a < x.
(SI) Pour véri�er que (Ai, <i) est un segment initial de (A,<), prenons a ∈ Ai et x ∈ A\Ai ; alors x ∈ Aj \Ai

pour un certain j, et comme (Ai, <i) est un segment initial de (Aj , <j) on en déduit a <j x et donc
a < x.

Le lemme de Zorn implique alors que A admet un plus grand élément (A,<). Montrons par l'absurde que l'on
doit avoir A = X : sinon, il existe x ∈ X \ A ; alors on peut dé�nir A′ = A ∪ {x}, et dé�nir un nouvel ordre
sur A′ étendant l'ordre sur A en posant a <′ x pour tout a ∈ A. Alors (A′, <′) est bien ordonné, et majore
strictement (A, <) pour la relation R (chayqe (A,<) est bien un segment initial de (A′, <′)), contredisant la
maximalité de (A,<).
Par conséquent, un élément (A,<) maximal pour (A, R) doit véri�er A = X ; alors < témoigne du fait que A
peut être muni d'un bon ordre.
On vient de prouver que le lemme de Zorn implique le principe du bon ordre.

2. Il y a plusieurs façons de répondre à cette question ; présentons-en deux :

Par récurrence trans�nie : Fixons un ensemble E in�ni non dénombrable, x 6∈ E, et une fonction de
choix ϕ sur E. On dé�nit une opération G de la manière suivante : si α est un ordinal et X est le graphe
d'une fonction f : α → E, alors on pose

G(X) =

{
ϕ(E \ {f(β) : β < α}) si cet ensemble est non vide
x sinon

.

(Remarque : ça peut être un bon exercice de véri�er que la dé�nition ci-dessus est bien légitime)
Pour tout autre X on pose également G(x) = x.
Alors considérons la restriction à ω1 de l'opération F sur les ordinaux obtenue en appliquant le théorème
de récurrence trans�nie à G, et prouvons par récurrence qu'il n'existe aucun α < ω1 tel que F (α) = x.
Comme E est non vide, on doit avoir F (0) = ϕ(E) 6= x ; supposons maintenant que α < ω1 est tel que
F (β) 6= x pour tout β < α. Alors F dé�nit une fonction de α dans E, et comme α est dénombrable et
E ne l'est pas on ne peut avoir {F (β) : β < α} = E ; par dé�nition de F on a

F (α) = G(F|α) = ϕ(E \ {F (β) : β < α}) 6= x .

On vient détablir par récurrence trans�nie que F dé�nit une fonction de ω1 dans E ; de plus cette fonction
est injective par construction, puisque si α < β < ω1 on a

F (β) = ϕ(E \ {F (β′ : β′ < β}) ⊂ E \ {F (α)} .

Autrement dit, on vient de construire une partie de E de cardinal ℵ1 : l'ensemble F (ω1).

En utilisant les cardinaux : En utilisant l'axiome du choix, on sait qu'il existe un unique cardinal κ tel
que E est en bijection avec κ. E étant in�ni et non dénombrable, on a κ > ℵ0 (puisque ℵ0 est le plus
petit cardinal in�ni, κ 6= ℵ0 par hypothèse et < est un ordre sur les cardinaux). Ceci est équivalent à
ℵ1 ≤ E par dé�nition de ℵ1, par conséquent si E est in�ni non dénombrable alors il existe une injection
de ℵ1 dans E, autrement dit E contient une partie de cardinal ℵ1.



3. On suppose que pour toute paire d'ensembles A et B on a |A| ≤ |B| ou |B| ≤ |A|.
Ici on doit penser au cardinal de Hartogs : soit A un ensemble quelconque ; on sait par dé�nition de h(A) qu'on
ne peut pas avoir |h(A)| ≤ |A| (sans symboles : il ne peut pas exister une injection du cardinal de Hartogs
de A dans A). Alors, sous l'hypothèse de l'exercice, on doit avoir |A| ≤ |h(A)|, autrement dit il existe une
injection f : A → h(A). Mais toute sous-partie d'un ensemble bien ordonnable est elle même bien ordonnable
(par l'ordre induit, exercice fait en TD), par conséquent f(A) est bien ordonnable ; comme A est en bijection
avec f(A), on en déduit que A peut-être muni d'un bon ordre.
On vient donc de démontrer le thórème de Zermelo, dont on sait qu'il est équivalent à l'axiome du choix, à
partir de l'énoncé donné dans l'exercice.

Exercice III
1. Ici il faut choisir quelle dé�nition de α+β on utilise ; si on utilise celle du cours, il faut montrer par récurrence
trans�nie qu'une somme de deux ordinaux dénombrables est dénombrable. Si l'on utilise la dé�nition du TD,
alors on sait que, pour tous ordinaux α, β, α + β est en bijection avec l'union disjointe de α et β. L'union de
deux ensembles dénombrables étant dénombrable, on voit que α + β est dénombrable dès que α et β le sont.
De même α.β est en bijection avec le produit de α et β, et le produit de deux ensembles dénombrables est
dénombrable, par conséquent α et β est aussi dénombrable dès que α et β le sont.
Pour αβ , on n'a pas d'autre choix que de raisonner par récurrence trans�nie (nous n'avons pas vu de dé�nition
alternative de l'exponentiation ordinale). Fixons donc un ordinal dénombrable α, et montrons que αβ est
dénombrable pour tout ordinal dénombrable β. Si β = 0 il n'y a rien à faire ; supposons la propriété établie
pour tout β′ < β. Il y a deux cas à considérer :

1. β est successeur ; alors β = β′ + 1, donc αβ = αβ′+1 = αβ′ .α. Or par hypothèse de récurrence αβ′ est
dénombrable, et on a vu plus haut que le produit de deux ordinaux dénombrables est dénombrable. Donc
αβ est lui aussi dénombrable.

2. β est limite. Alors on a αβ = sup{αβ′ : β′ < β}, donc αβ est le sup d'un ensemble dénombrable (β < ω1)
d'ordinaux dénombrables (par hypothèse de récurrence), ce qui prouve que αβ est dénombrable.

Remarque : Il faut l'axiome du choix (dénombrable) pour montrer en général qu'une union dénombrable
d'ensembles dénombrables est dénombrable, et cela entraîne qu'un sup d'un ensemble dénombrable d'or-
dinaux dénombrables est encore un ordinal dénombrable (le sup d'un ensemble d'ordinaux est l' union
des ordinaux dans ces ensemble). On peut en fait se passer de l'axiome du choix :

2.1. Véri�ons par récurrence que si α = ω + α alors α ≥ ω.n pour tout n : pour n = 0 il n'y a rien à faire, et si
α ≥ ω.n alors α = ω+α ≥ ω+ω.n = ω.(n+1) Par conséquent on voit qu'un ordinal α tel que α = ω+α doit être
plus grand que ω2 = sup{ω.n : n < ω}. On observe que l'on a ω +ω2 = sup{ω} = sup{ω.(n+1): n < ω} = ω2.

En fait, on peut généraliser cette méthode : si F est une opération sur les ordinaux telle que F (α) est un
ordinal pour tout α, F est croissante, F (α) ≥ α pour tout α et F est continue aux ordinaux limites (i.e si
λ est limite alors F (λ) = sup{F (α) : α < λ), alors F a des points �xes et le plus petit point �xe supérieur
ou égal à un γ donné est est la borne supérieure des Fn(γ). En e�et, si α ≥ γ est un point �xe alors de
α ≥ γ et F croissante on déduit α = F (α) ≥ F (γ), puis par récurrence on obtient α ≥ Fn(γ) pour tout n.
Réciproquement, si α = sup{Fn(γ) : n < ω alors deux cas sont possibles :

1. α est successeur, auquel cas on voit qu'il existe n tel que Fn+1(γ) = Fn(γ) = α, donc α est bien un
point �xe pour F .

2. α est limite ; alors la suite (Fn(γ) est strictement croissante et on a F (α) = sup{F (β) : β < α} =
sup{F (Fn(γ) : n < ω} = α par continuité de F aux ordinaux limites (détaillez cette étape ; l'égalité des
deux sup provient de la croissance de F et de la dé�nition de α).

2.2. Le schéma général expliqué ci-dessus montre que cette fois-ci α = sup{ωn : n < ω} = ωω.
2.3. Et cette fois-ci on a α = sup{ω, ωω, ωωω

, . . .} = ε (remarque : c'est un bon exercice de montrer par récur-
rence trasn�nie qu'on a bien ωα ≥ α pour tout ordinal α).



3. La question III.A montre que les α obtenus en III.2.1 et III.2.2 sont dénombrables ; pour montrer que ε est
dénombrable, il su�t de remarquer qu'il est le sup d'un ensemble dénombrable d'ordinaux dénombrables, est
est donc lui-même dénombrable.


