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Correction du Devoir 1

Exercice 1
1. C’est un grand classique qu’il ne parait pas utile de détailler ici; remarquons simplement que ’existence
d’une bijection entre N et Q s’obtient facilement en utilisant le théoréme de Cantor-Bernstein (pour construire
une injection de Q dans N on peut remarquer qu’un rationnel s’écrit avec les 12 symboles —, /,0,1,...,9 et
utiliser le développement en base 12 d’un entier...)
2. Soit X I’ensemble des réels qui ne font intervenir que des 0 et des 1 dans leurs parties décimales ; on considére
Papplication F': P(N) — X définie par

F(A) =) 1070tV

icA
Cette application est bien & valeurs dans X, et est injective : si F(A) = F(B) alors en regardant la i-iéme
décimale de F'(A) on voit que i € A < i € B.
3. Notons @ I’application de R dans P(Q) qui & € R associe {g € Q: ¢ > r}.
Soient 71 et ro deux réels tels que 1 < ro; par densité de Q il existe un rationnel gy tel que r1 < o < r2, d’otl
on tire go € ®(r1) \ ®(r2); par conséquent P(ry) # P(r2) et ceci montre que ¢ est injective.
On a donc une injection de R dans P(Q) et par conséquent (d’aprés 1.1) une injection de R dans P(N). Comme
d’apres la question 2. il y a aussi une injection de PN) dans R, le théoréme de Cantor-Bernstein permet de
conclure qu’il existe une bijection de R sur P(N), autrement dit que le cardinal de R est égal & 2%°.

Exercice 11
1. On fixe un ensemble X | et on considére ’ensemble (non vide) A formé par les paires (4, <) telles que A C X
et < est un bon ordre strict sur A. Ensuite on munit A de la relation R définie par

(A, <)R(A',<")) & (AC A et (A, <) est un segment initial de (4’,<)).

On vérifie sans peine que R est une relation d’ordre sur A ; reste & vérifier que l'ordre en question est inductif
(autrement dit tout sous-ensemble totalement ordonné de A admet un majorant). Pour cela, prenons une
famille (A;, <;) totalement ordonnée par R; on veut montrer qu’elle admet un majorant pour la relation R.
On commence par poser A = U;ecrA;; A contient tous les A;, et il nous reste & définir un bon ordre sur A dont
les sgments initiaux soient les (A;, <;); pour x,y € A on pose

(x<y)@(HixeAietyeAiethy).

11 nous reste & vérifier que < est un bon ordre sur A ; pour cela, commencons par remarquer que si < y alors
pour tout ¢ tel que x,y € A; on a x <; y. En effet, on sait qu’il existe i, tel que z,y € A;, et © <;, y. Soit
alors un autre i tel que z,y € A;. Comme la famille (4;, <;) est totalement ordonnée par R, deux cas sont
possibles :

(a) A; C A, et <;, prolonge <;; alors, on voit que = <; y puisque z,y € A; et <;, prolonge <;.
(b) A;y C A; et <; étend <, ; alors on a x <; y puisque <; étend <;,.
Cette remarque faite, montrons que la relation < est un bon ordre total strict sur A dont chaque (A;, <;) est
un segment initial :
AR) si z < z alors il existe 7 tel que x € A;, et notre remarque ci-dessus (appliquée avec y = x) montre que
q ) q ppiiq Yy q
r <; x ce qui est impossible.
(AS) Supposons x < y. Alors pour tout i tel que z,y € A; on a z <; y donc (puisque <; est un ordre strict)
on n’a pas y <; x, ce qui prouve que I’on n’a pas non plus y < z.
(T) Supposons z < y et y < z. Alors on a i tel que z,y € A; et j tel que y,z € A;; la famille (A4;);er étant
totalement ordonnée par R, on a A; C Aj ou A; C A;; on peut donc supposer par exemple A87 C A;.
Mais alors on az,y,z € Aj et * <; y <; z, ce dont on déduit x <; z et par conséquent z < z.
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Soient x # y € A. Comme ci-dessus, il existe i tel que z,y € A;. Comme <; est total on sait que x <; y
pu y <; x, ce dont on déduit que x < y ou y < x.
C’est 1a qu’on utilise le fait d’avoir imposé que les A; soient des segments initiaux les uns des autres.
Soit X une sous-partie non vide de A. Soit x € X ; il existe i € I tel que = € A;. Soit a le minimum de
X N A; pour <; (qui existe puisque <; est un bon ordre sur 4;), et x un élément de X quelconque. Il
existe j tel que x € A;; deux cas sont possibles :
(a) (A;, <;) est un segment initial de (A4;, <;); alors on voit que a = min(4;NX, <;) = min(4;NX, <;)
et donc a <; z, d’ot1 a < x.
(b) (Aj,<;) est un segment initial de (A;, <;); alors A; C A;, donc = € A;, et par définition de a cela
impose a <; x et donc a < x.
Pour vérifier que (A4;, <;) est un segment initial de (A4, <), prenons a € A; et x € A\ A4;; alors x € A;\ 4;
pour un certain j, et comme (A;, <;) est un segment initial de (A4;, <;) on en déduit ¢ <; = et donc
a<cx.

Le lemme de Zorn implique alors que A admet un plus grand élément (A, <). Montrons par ’absurde que 'on
doit avoir A = X : sinon, il existe z € X \ A; alors on peut définir A’ = AU {z}, et définir un nouvel ordre
sur A’ étendant Iordre sur A en posant a <’ z pour tout a € A. Alors (A’, <’) est bien ordonné, et majore
strictement (A, <) pour la relation R (chayqe (A4, <) est bien un segment initial de (A4’, <’)), contredisant la
maximalité de (4, <).

Par conséquent, un élément (A, <) maximal pour (A, R) doit vérifier A = X ; alors < témoigne du fait que A
peut étre muni d’un bon ordre.

On vient de prouver que le lemme de Zorn implique le principe du bon ordre.

2. Il y a plusieurs facons de répondre & cette question ; présentons-en deux :

Par récurrence transfinie : Fixons un ensemble FE infini non dénombrable, x ¢ E, et une fonction de
choix ¢ sur E. On définit une opération G de la maniére suivante : si « est un ordinal et X est le graphe
d’une fonction f: a — FE, alors on pose

G(X) = e(E\{f(B): B<a}) sicet ensemble est non vide

T sinon '
(Remarque : ¢a peut étre un bon exercice de vérifier que la définition ci-dessus est bien légitime)
Pour tout autre X on pose également G(z) = x.
Alors considérons la restriction & wi de 'opération F' sur les ordinaux obtenue en appliquant le théoréme
de récurrence transfinie & G, et prouvons par récurrence qu’il n’existe aucun « < w; tel que F(a) = .
Comme FE est non vide, on doit avoir F(0) = ¢(F) # x; supposons maintenant que « < w; est tel que
F(B) # x pour tout § < . Alors F définit une fonction de « dans E, et comme « est dénombrable et
E ne Pest pas on ne peut avoir {F(8): 8 < a} = E; par définition de F on a

Fla) = G(F,) = o(E\{F(B): B <a}) #z .

On vient détablir par récurrence transfinie que F' définit une fonction de wy dans E'; de plus cette fonction
est injective par construction, puisque si a < f < wj on a

F(B) =o(E\{F (- ' < B}) C E\{F(a)} .

Autrement dit, on vient de construire une partie de E de cardinal R; : 'ensemble F'(w;).

En utilisant les cardinauz : En utilisant "'axiome du choix, on sait qu’il existe un unique cardinal s tel
que E est en bijection avec k. E étant infini et non dénombrable, on a k > N (puisque Xy est le plus
petit cardinal infini, K # Ny par hypothése et < est un ordre sur les cardinaux). Ceci est équivalent &
N; < E par définition de Ny, par conséquent si E est infini non dénombrable alors il existe une injection
de Ny dans E, autrement dit E contient une partie de cardinal Nj.



3. On suppose que pour toute paire d’ensembles A et B on a |A| < |B| ou |B| < |A|.

Ici on doit penser au cardinal de Hartogs : soit A un ensemble quelconque ; on sait par définition de h(A) qu’on
ne peut pas avoir |h(A)| < |A] (sans symboles : il ne peut pas exister une injection du cardinal de Hartogs
de A dans A). Alors, sous ’hypothése de l'exercice, on doit avoir |A] < |h(A)|, autrement dit il existe une
injection f: A — h(A). Mais toute sous-partie d’un ensemble bien ordonnable est elle méme bien ordonnable
(par Pordre induit, exercice fait en TD), par conséquent f(A) est bien ordonnable; comme A est en bijection
avec f(A), on en déduit que A peut-étre muni d’un bon ordre.

On vient donc de démontrer le théréme de Zermelo, dont on sait qu’il est équivalent & ’axiome du choix, &
partir de ’énoncé donné dans I’exercice.

Exercice 111

1. Ici il faut choisir quelle définition de a+ (5 on utilise ; si on utilise celle du cours, il faut montrer par récurrence
transfinie qu'une somme de deux ordinaux dénombrables est dénombrable. Si I’on utilise la définition du TD,
alors on sait que, pour tous ordinaux «, 8, a + 3 est en bijection avec 'union disjointe de « et 8. L’union de
deux ensembles dénombrables étant dénombrable, on voit que « + 3 est dénombrable dés que « et § le sont.
De méme «.( est en bijection avec le produit de « et 3, et le produit de deux ensembles dénombrables est
dénombrable, par conséquent « et B est aussi dénombrable dés que « et 3 le sont.

Pour o, on n’a pas d’autre choix que de raisonner par récurrence transfinie (nous n’avons pas vu de définition
alternative de I’exponentiation ordinale). Fixons donc un ordinal dénombrable a, et montrons que o est
dénombrable pour tout ordinal dénombrable 8. Si 8 = 0 il n’y a rien & faire; supposons la propriété établie
pour tout #' < 8. Il y a deux cas & considérer :

1. (3 est successeur; alors 3 = ' + 1, donc of = P+t = af . Or par hypothése de récurrence o est
dénombrable, et on a vu plus haut que le produit de deux ordinaux dénombrables est dénombrable. Donc
a” est lui aussi dénombrable.

2. (3 est limite. Alors on a o = sup{o/j/ : 8" < 8}, donc o est le sup d’un ensemble dénombrable (3 < w;)
d’ordinaux dénombrables (par hypothése de récurrence), ce qui prouve que o est dénombrable.

Remarque : Il faut 'axiome du choix (dénombrable) pour montrer en général qu’une union dénombrable
d’ensembles dénombrables est dénombrable, et cela entraine qu’un sup d’un ensemble dénombrable d’or-
dinaux dénombrables est encore un ordinal dénombrable (le sup d’un ensemble d’ordinaux est I’ union
des ordinaux dans ces ensemble). On peut en fait se passer de ’axiome du choix :

2.1. Vérifions par récurrence que si @ = w + « alors a > w.n pour tout n : pour n = 0 il n’y a rien a faire, et si
a > w.nalors @ = w+a > wtw.n = w.(n+1) Par conséquent on voit qu'un ordinal « tel que o = w+a doit étre

plus grand que w? = sup{w.n: n < w}. On observe que l'on a w +w? = sup{w} = sup{w.(n+1): n < w} = W2

En fait, on peut généraliser cette méthode : si F est une opération sur les ordinaux telle que F(«) est un
ordinal pour tout «, F est croissante, F'(a)) > « pour tout « et F' est continue aux ordinaux limites (i.e si
A est limite alors F'(A) = sup{F(a): a < A), alors F' a des points fixes et le plus petit point fixe supérieur
ou égal & un v donné est est la borne supérieure des F" (). En effet, si & > v est un point fixe alors de
a > v et F croissante on déduit « = F(a) > F(v), puis par récurrence on obtient o > F"(v) pour tout n.
Réciproquement, si a = sup{F"™(7y): n < w alors deux cas sont possibles :

1. « est successeur, auquel cas on voit quil existe n tel que F"1(y) = F"(y) = «, donc « est bien un
point fixe pour F.

2. « est limite; alors la suite (F™(v) est strictement croissante et on a F(a) = sup{F(8): 0 < a} =
sup{F(F"(y): n < w} = a par continuité de F' aux ordinaux limites (détaillez cette étape; I'égalité des
deux sup provient de la croissance de F' et de la définition de «).

2.2. Le schéma général expliqué ci-dessus montre que cette fois-ci @ = sup{w": n < w} = w®.
2.3. Et cette fois-ci on a o = sup{w,w”,w*”,...} = € (remarque : c’est un bon exercice de montrer par récur-
rence trasnfinie qu’on a bien w® > a pour tout ordinal «).



3. La question III.A montre que les « obtenus en I11.2.1 et II1.2.2 sont dénombrables ; pour montrer que € est
dénombrable, il suffit de remarquer qu’il est le sup d’un ensemble dénombrable d’ordinaux dénombrables, est
est donc lui-méme dénombrable.



