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Exercice I.
Pour tout n ∈ N, choisissons un énoncé ϕn qui dise �le modèle a au moins n éléments� (on a vu de tels énoncés
dans un DM précédent). Notons T ′ = T ∪{ϕn : n ∈ N}∪{¬σ}. Les modèles de T ′ sont exactement les modèles
in�nis de T qui satisfont ¬σ, et par hypothèse il n'y a pas de tel modèle. Donc T ′ est contradictoire, ce qui
signi�e (par compacité) qu'un fragment �ni de T ′ est contradictoire. Mais un tel fragment doit être contenu
dans un ensemble de la forme T1 ∪ {ϕn : n ∈ I} ∪ {¬σ}, où T1 est un sous-ensemble �ni de T et I est un
ensemble �ni d'entiers. Si l'on appelle N le plus grand élément de I, on voit en particulier que la théorie
T ∪ {ϕn : n ≤ N} ∪ {¬σ} est contradictoire, ce qui signi�e exactement que tout modèle de T de cardinal
supérieur ou égal à N doit satisfaire σ.

Exercie II.
Fixons un entier naturel b et une formule φ(x, y1, . . . , yk). Dire que, pour tout k-uplet (a1, . . . , ak), ou l'ensemble
des éléments x de l'univers qui satisfont φ(x, a1, . . . , ak) a moins de b éléments, ou son complémentaire a moins
de b éléments, peut s'exprimer par un énoncé du premier ordre dans notre langage (écrivez cet énoncé !).
Par conséquent, s'il existe bφ tel que cet énoncé est vrai dans A, alors il est vrai aussi dans toute extension
élémentaire de A, ce qui prouve une des deux implications demandées dans l'exercice.
Pour prouver l'implication réciproque, on raisonne par contraposée. Supposons l'existence d'une L-formule
φ(x, y1, . . . , yk) telle que pour tout n ∈ N il existe (a1,n, . . . , ak,n) ∈ Ak tel que

(A, a)a∈A |= ∃>nxφ(x, a1,n, . . . , ak,n) ∧ ∃>nxφ(x, a1,n, . . . , ak,n) .

Nous posons
L+ = L(A) ∪ {c1, . . . , ck} ∪ {bi|i ∈ N} ∪ {b′i|i ∈ N}

et

T+ = Th((A, a)a∈A)∪{bi 6= bj | i 6= j}∪{b′i 6= b′j | i 6= j}∪{φ(bi; c1, . . . , ck) | i ∈ N}∪{¬φ(b′i; c1, . . . , ck) | i ∈ N}

Une partie �nie de T+ fait intervenir au plus K des bi et b′j pour un certain K ∈ N. Alors, on pose cAi = aK
i

pour tout i ∈ {1, . . . , k} et (A, a)a∈A est un modèle de la partie �nie en question avec ses énoncés provenant
de Th((A, a)a∈A) interprétés comme d'habitude. Par compacité, T+ est consistant et un modèle (B, bBi (i ∈
N), b

′B
i (i ∈ N), cB1 , . . . , cBk ) de T+, après réduction au langage L fournit l'extension élémentaire recherchée.

Exercice III.
On va voir deux façons de répondre à cette question (en ajoutant l'hypothèse - indispensable- selon laquelle
la structure M est in�nie). Commençons par noter X l'ensemble des termes dans le langage L.

En pensant comme un théoricien des ensembles. SiM est de type �ni alors on a par dé�nition une partie
�nie M0 de M telle que

M =
⋃

t∈X

{t(A) : A ⊂ M0}

L'équation ci-dessus donne immédiatement |M | ≤ P(M0).|X|. Donc toute L-structure de type �ni est de
cardinal inférieur ou égal à ℵ0.|X| ; mais par le théorème de Löwenheim-Skolem ascendant on sait que
pour tout cardinal κ assez grand il existe une extension élémentaire de M de cardinal κ. En particulier
il existe une extension élémentaire de M qui n'est pas de type �ni.



En pensant comme un théoricien des modèles.. On va encore utiliser la méthode des diagrammes et le
théorème de compacité. On commence par rajouter à notre langage un symbole de constante cm pour
tout élément de M . Ensuite on rajoute un nouveau symbole de constante d. Dans ce langage augmenté,
on peut pour tout terme t ∈ X et toute partie �nie A ⊂ M , écrire un énoncé φA,t qui dise "d n'est
l'image d'aucune sous-partie �nie de A par t".
Alors, considérons la théorie T = Th((M,m)m∈M ) ∪ {φA,t : A �nie ⊂ M et t ∈ X}. Pour véri�er que
cette théorie est consistante, il su�t de prouver la consistance de ses fragments �nis ; un tel fragment
est contenu dans Th((M,m)m∈M ) ∪ {φA′,t : A′ ⊂ A �nie ⊂ X et t ∈ Xf}, où Xf est un ensemble �ni
de termes. On peut faire de M un modèle de cette théorie : comme M est in�nie, il existe x ∈ M
qui n'est l'image d'aucune sous-partie de A par un des termes de Xf ; on peut interpréter d par x et
obtenir un modèle de notre fragment �ni, qui est donc consistant. Soit maintenant M1 un modèle de
cette théorie ; alors le réduit deM1 au langage d'origine (encore notéM1) est une extension élémentaire
deM (par construction) qui n'est pas engendrée par une partie �nie de M (notre construction consiste à
ajouter àM un témoin de ce fait). Mais on n'a rien fait pour éviter qu'une partie �nie de M1 n'engendre
M1... Pour résoudre ce problème, on peut utiliser un argument de chaîne élémentaire : en répétant la
construction précédente, on peut construire une suite (Mn)n<ω de L-structures telles que M0 = M,
pour tout n Mn+1 est une extension élémentaire de Mn, et il n'existe aucune partie �nie de Mn qui
engendre Mn+1. Alors �au bout de la chaîne� on a construit une extension élémentaire Mω, d'univers
Mω =

⋃
Mn, qui est une extension élémentaire de chacun des Mn (construction vue en TD). Si l'on

prend une partie �nie A de Mω, alors il existe n < ω tel que A ⊂ Mn ; par construction on sait qu'il
existe x ∈ Mn+1 qui n'est pas l'image d'une sous-partie de A sous l'action d'un terme, ce qui montre que
Mω n'est pas �niment engendrée.

Remarque. La première preuve a l'air beaucoup plus courte, mais c'est simplement parce qu'elle utilise le
théorème de Löwenheim-Skolem, qu'on a essentiellement redémontré dans la deuxième preuve...


