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Exercice 1.

Pour tout n € N, choisissons un énoncé ¢,, qui dise “le modéle a au moins n éléments” (on a vu de tels énoncés
dans un DM précédent). Notons T/ = TU{p,: n € N}U{—0c}. Les modéles de T” sont exactement les modeéles
infinis de T qui satisfont —o, et par hypothése il n’y a pas de tel modéle. Donc T” est contradictoire, ce qui
signifie (par compacité) qu'un fragment fini de 7" est contradictoire. Mais un tel fragment doit étre contenu
dans un ensemble de la forme T7 U {¢,: n € I} U{—c}, ou 11 est un sous-ensemble fini de T et I est un
ensemble fini d’entiers. Si 'on appelle N le plus grand élément de I, on voit en particulier que la théorie
TU{pn:n < N} U {-0c} est contradictoire, ce qui signifie exactement que tout modele de T de cardinal
supérieur ou égal & N doit satisfaire o.

Exercie II.

Fixons un entier naturel b et une formule ¢(x, y1, . .., yr ). Dire que, pour tout k-uplet (aq, ..., ax), ou ensemble
des éléments x de I'univers qui satisfont ¢(x, ay,...,ar) a moins de b éléments, ou son complémentaire a moins
de b éléments, peut s’exprimer par un énoncé du premier ordre dans notre langage (écrivez cet énoncé!).
Par conséquent, s’il existe by tel que cet énoncé est vrai dans A, alors il est vrai aussi dans toute extension
élémentaire de A, ce qui prouve une des deux implications demandées dans I’exercice.

Pour prouver I'implication réciproque, on raisonne par contraposée. Supposons l'existence d’une L-formule
é(z,y1, - .., yx) telle que pour tout n € N il existe (a1, .., ar,) € AF tel que

(Aa a)aGA ': E|>nx¢(l‘, al,na ey ak,n) A\ 3>nw¢(x7 al,na ceey ak,n) .

Nous posons
LT =L(A)U{er, ... e} U{bi]i € N} U {bl]i € N}

et

T* =Th((A a)aca)U{b; # by | i # jYU{b; # 0 [ i # j}U{o(biscr, ... cr) [ € NFU{=g(bis e,y cx) | i € N}
Une partie finie de T fait intervenir au plus K des b; et b; pour un certain K € N. Alors, on pose cg“ =al
pour tout i € {1,...,k} et (A,a)qsca est un modele de la partie finie en question avec ses énoncés provenant
de Th((A, a)sca) interprétés comme d’habitude. Par compacité, TF est consistant et un modéle (B,b? (i €

N), b8 (i € N),cB,...,cB) de T, apreés réduction au langage £ fournit 'extension élémentaire recherchée.

Exercice II1.
On va voir deux fagons de répondre & cette question (en ajoutant I’hypothése - indispensable- selon laquelle
la structure M est infinie). Commengons par noter X ’ensemble des termes dans le langage L.

En pensant comme un théoricien des ensembles. Si M est de type fini alors on a par définition une partie
finie My de M telle que
M= |J{tA): Ac M}
tex

L’équation ci-dessus donne immeédiatement |M| < P(My).|X|. Donc toute L-structure de type fini est de
cardinal inférieur ou égal & No.|X|; mais par le théoréme de Lowenheim-Skolem ascendant on sait que
pour tout cardinal x assez grand il existe une extension élémentaire de M de cardinal . En particulier
il existe une extension élémentaire de M qui n’est pas de type fini.



En pensant comme un théoricien des modéles.. On va encore utiliser la méthode des diagrammes et le
théoréme de compacité. On commence par rajouter a notre langage un symbole de constante c,, pour
tout élément de M. Ensuite on rajoute un nouveau symbole de constante d. Dans ce langage augmenté,
on peut pour tout terme ¢t € X et toute partie finie A C M, écrire un énoncé ¢4+ qui dise "d n’est
I'image d’aucune sous-partie finie de A par t".

Alors, considérons la théorie T = Th((M,m)mem) U {pa,: A finie C M et t € X}. Pour vérifier que
cette théorie est consistante, il suffit de prouver la consistance de ses fragments finis; un tel fragment
est contenu dans Th((M,m)men) U {opa i A’ C Afinie C X et t € Xs}, ou Xy est un ensemble fini
de termes. On peut faire de M un modéle de cette théorie : comme M est infinie, il existe z € M
qui n’est I'image d’aucune sous-partie de A par un des termes de X7 ; on peut interpréter d par x et
obtenir un modéle de notre fragment fini, qui est donc consistant. Soit maintenant M; un modéle de
cette théorie ; alors le réduit de M au langage d’origine (encore noté M;) est une extension élémentaire
de M (par construction) qui n’est pas engendrée par une partie finie de M (notre construction consiste a
ajouter & M un témoin de ce fait). Mais on n’a rien fait pour éviter qu’une partie finie de M; n’engendre
Mj... Pour résoudre ce probléme, on peut utiliser un argument de chaine élémentaire : en répétant la
construction précédente, on peut construire une suite (M, )p<, de L-structures telles que My = M,
pour tout m M, 1 est une extension élémentaire de M,,, et il n’existe aucune partie finie de M,, qui
engendre M,,1. Alors “au bout de la chaine” on a construit une extension élémentaire M,,, d’univers
M, = |JM,, qui est une extension élémentaire de chacun des M,, (construction vue en TD). Si l'on
prend une partie finie A de M, alors il existe n < w tel que A C M, ; par construction on sait qu’il
existe x € M,, 41 qui n’est pas 'image d’une sous-partie de A sous 'action d’un terme, ce qui montre que
M, n’est pas finiment engendrée.

Remarque. La premiére preuve a l'air beaucoup plus courte, mais c’est simplement parce qu’elle utilise le
théoréme de Lowenheim-Skolem, qu’on a essentiellement redémontré dans la deuxiéme preuve...



