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Preuve du Théorème 7.3.
Soient L, M, N comme dans l'énoncé. Notons M = {ai : i ∈ N} et N = {bi : i ∈ N} les univers respectifs de
M et N . Commençons par prouver qu'on peut par récurrence construire des suites d'éléments (xn) ∈ MN et
(yn) ∈ MN telles que :
• ∀n ∈ N x2n = an

• ∀n ∈ N y2n+1 = bn

• ∀n (x1, . . . , xn) et (y1, . . . , yn) satisfont les mêmes L-formules.
En e�et, supposons la construction e�ectuée jusqu'au rang n (éventuellement n = −1, cas où on commence
la construction) ; traitons d'abord le cas où n + 1 = 2k. Alors on doit poser xn+1 = ak. Reste à dé�nir yn+1 ;
soit p(x) = tpM(xn+1/{x1, . . . , xn}). Ce type correspond à un unique type q(x) au-dessus de y1, . . . , yn (celui
qu'on obtient en remplaçant x1, . . . , xn par y1, . . . , yn respectivement dans les formules de p), qui doit être
réalisé dans N puisque N est ω-saturée. Tout y tel réalisant ce type est par dé�nition tel que (x1, . . . , xn, xn+1)
et (y1, . . . , yn, y) satisfont les mêmes L-formules ; autrement dit, poser yn+1 = y nous permet de prolonger la
construction.
Le cas où n + 1 est impair se traite exactement de la même façon, en échangeant les rôles de M et N (et donc
en utilisant cette fois l'hypothèse selon laquelle M est ω-saturé).
Soit alors f : M → N l'application dé�nie par f(ai) = bi. Cette fonction est injective (le langage L est
égalitaire...), dé�nie sur M tout entier (au rang 2n on a assuré que f est dé�nie en xn) et surjective par
construction (au rang 2n + 1 on a assuré que yn est dans l'image de f) ; de plus, la construction assure aussi
que pour toute L formule φ(x1, . . . , xn) on a, pour tout n-uplet m1, . . . , mn ∈ M

M |= φ[(m1, . . . , mn)] ⇔ N |= φ[(f(m1), . . . , f(mn)]

Autrement dit, f est un isomorphisme entre M et N .

Preuve du Lemme 7.3.5(1).
C'est essentiellement la même idée que ci-dessus. Soient M, N comme dans l'énoncé du lemme et B =
{b1, . . . , bk} une partie �nie de N . Soit p(x) un élément de SN1 (B). Puisque M et N sont ∞-équivalentes, il
existe (a1, . . . , an) dansM tel que (a1, . . . , an) et (b1, . . . , bn) ont même type (c'est-à-dire : satisfont les mêmes
formules). Comme ci-dessus, on considère l'élément q(x) de SM1 ({a1, . . . , an}) obtenu en remplaçant chaque bi

par ai dans les formules de p. Ce type est réalisé dans M par hypothèse, par un élément a ∈ M . On sait qu'il
existe b ∈ N tel que (a1, . . . , an, a) et (b1, . . . , bn, b) ont même type, autrement dit b réalise p(x).

Exercice II.
Qu'aurait dû être un énoncé démontrable ?

Soient L un langage, T une L-théorie complète dont les modèles sont in�nis et κ un cardinal in�ni. Montrer
que si pour tout ensemble de paramètres A de cardinal au plus κ, le cardinal de SM1 (A) est au plus κ, M étant
un modèle quelconque de T contenant A, alors |SMk (A)| ≤ κ pour tout k ∈ N∗.

Remarque : Dans l'énoncé ci-dessus, on peut remplacer �modèle quelconque de T contenant A� par �modèle
κ+-saturé de T contenant A�.

Il su�t de considérer le passage de SMk (A) à SMk+1(A). Pour ce faire, on commence par le constat que si p ∈
SMk+1(A) alors la restriction de p à SMk (A), en d'autres termes la famille de L(A)-formules à au plus k variables
libres dé�nie par p∩SMk (A), est un k-type. Alors, p∩SMk (A) est réalisé dans une extension élémentaire N deM



par (α1, . . . , αk). Alors on applique l'hypothèse de départ dans N à la famille de paramètres A∪ {α1, . . . , αk}
pour conclure que SN1 (A∪ {α1, . . . , αk}) est de cardinal au plus κ. Par récurrence, il existe au plus κ choix de
(α1, . . . , αk) donnant des k-types deux à deux distincts sur A puisque pour toute extension élémentaire N de
M, SNk (A) = SMk (A) (le lemme 7.2.3 qui était aussi étudié en cours). Or κ× κ = κ.

Exercice III.
1. On veut montrer que les modèles ω-saturés de T sont exactement ceux qui ont une in�nité de classes in�nies ;
pour cela, on va utiliser le fait que la théorie a la propriété d'élimination des quanti�cateurs.
Commençons par le plus facile ; soit M un modèle ω-saturé. Pour toute partie �nie A ⊂ M , notons L(A) le
langage obtenu en ajoutant à L un symbole de constante pour chaque a ∈ A ; on véri�e en utilisant le théorème
de compacité que l'ensemble de L(A)-énoncés {¬R(x, ca) : a ∈ A} ∪ {¬Cn(x) : n ∈ N∗} est consistant. Par
conséquent il est contenu dans un 1-type sur A, qui doit être réalisé dans M puisque A est �nie et M est
ω-saturé. On vient de prouver que pour toute partie �nie A ⊂ M il existe x ∈ M tel que x apartient à une
classe in�nie et x n'est dans la classe d'aucun élément de A. On en déduit facilement que M a une in�nité de
classes in�nies.
Soit maintenantM un modèle à une in�nité de classes in�nies, A = {a1, . . . , an} une partie �nie de M et p un
élément de SM1 (A). Remarquons qu'on a vu dans le DM 6 que deux n+1-uplets ont même type si, et seulement
si, ils satisfont les mêmes formules atomiques dans le langage L+ = L ∪ {Cn : n ∈ N∗}. Par conséquent, deux
éléments x et y (dans une extension élémentaire quelconque de M) ont même type sur A si, et seulement si,
ils satisfont les mêmes formules atomiques dans le langage L(A)+ = L(A) ∪ {Cn : n ∈ N∗}.
N'importe quel 1-type sur A est donc complètement déterminé par un ensemble d'énoncés qui appartient à
l'une des familles suivantes :
• {x = cai} (pour un certain i)
• {x 6= cai : 1 ≤ i ≤ n} ∪ {Cp(x)} ∪ {∧i∈I R(x, cai) ∧

∧
i∈J(¬R(x, cai))}, où p est un entier non nul et I, J

forment une partition de {1, . . . , n}.
• {x 6= cai : 1 ≤ i ≤ n} ∪ {¬Cp(x) : p ∈ N∗} ∪ {∧i∈I R(x, cai) ∧

∧
i∈J (¬R(x, cai))}, où I, J forment une

partition de {1, . . . , n}.
Il est clair que tous les éléments consistants de chacune de ces trois familles sont bien réalisés dans un modèle
qui a une in�nité de classes in�nies (ce qui est utilisé pour réaliser les types de la troisième famille), ce qui
montre qu'un tel modèle est ω-saturé.
2. Soient A = {a1, . . . , ak} et φ comme dans l'énoncé. Dans le langage L(A)+, (dé�ni comme au point 1) φ est
équivalente à une formule ψ sans quanti�cateurs et avec les mêmes variables libres. Par conséquent, il existe
n ∈ N∗ (un majorant strict de l'ensemble des j tels que Cj intervient dans l'écriture de ψ et de l'ensemble
des indices des classes �nies qui contiennent un des ai) tel que, ψ(x, a1, . . . , ak) est vraie pour tout élément
de E =

⋃
p≥n{x ∈ M : Cp(x)}, ou fausse pout tout élément de E. Ceci prouve que φ(N, a1, . . . , ak) coupe un

nombre �ni ou co-�ni de classes �nies.
En particulier, puisque M ne contient que des classes �nies, tout ensemble dé�nissable dans M est la réunion
d'un nombre �ni ou co�ni de classes �nies, et est donc lui-même �ni ou co�ni.
3. Soient x, y dans N qui appartiennent tous deux à des classes in�nies di�érentes des classes des ai. Alors
par la description des types du point 1, x et y ont même type sur A. D'après le théorème 7.6 du cours,
il existe une extension élémentaire N ′ de N et un automorphisme de (N ′, a)a∈A qui envoie x sur y. Donc
x ∈ φ(N ′, ca1 , . . . , can) ⇔ y ∈ φ(N ′, ca1 , . . . , can) (un automorphisme de (N , a)a∈A est un automorphisme de
N ′ qui �xe chaque ai (1 ≤ i ≤ n). Mais comme N ′ est une extension élémentaire de N , on a

φ(N, ca1 , . . . , can) = N ∩ φ(N ′, ca1 , . . . , can) .

En d'autres termes, x ∈ φ(N, ca1 , . . . , can) ⇔ y ∈ φ(N, ca1 , . . . , can), ce qui conclut la réponse à cette question.
4. Soit N n'importe quelle extension élémentaire stricte de M ; N doit avoir un élément a dont la classe est
in�nie. L'ensemble dé�ni dans N par la L({a})-formule "R(x, ca)" est in�ni, ainsi que son complémentaire.
On voit donc qu'aucune extension élémentaire stricte de M n'est minimale.
Ce qu'on vient d'écrire montre que la formule "R(x, y)" contredit le critère de minimalité forte du DM5.
5. (i) Pour déterminer |Sk(T )|, on peut commencer par le théorème 7.5 des notes de cours. En e�et, le langage
que nous utilisons est dénombrable. Par ailleurs, comme on peut trouver un modèle à une in�nité dénombrable
de classes in�nies et dénombrables, d'après la question III.1 ci-dessus T a un modèle ω-saturé et dénombrable.
C'est un (le) modèle où tous les types dans S(T ) seront réalisés. Alors on utilise les connaissances des théories



des ensembles et la dé�nition S(T ) = ∪k∈NSk(T ) pour conclure que pour tout k ∈ N, |Sk(T )| ≤ ℵ0.

Puisque nous avons la description complète des 1-types dans la question III.1, il su�t de véri�er que |S1(T )| ≤
|Sk(T )| pour chaque k ∈ N∗. Plus généralement on peut véri�er que |Sk(T )| ≤ |Sk+n(T )| pour tous k, n ∈ N.
En e�et, si p1 et p2 sont deux types distincts dans Sk(T ), alors il existe une L-formule θ à au plus k variables
libres telle que θ ∈ p1 et ¬θ ∈ p2. Ces deux formules séparent les deux ensembles à au plus k + n variables
libres que sont p1 et p2, ainsi que leurs complétions à des (k + n)-types.

(ii) Pour le point (ii), nous retournons au lemme 7.3.9 des notes et à sa preuve. Soit A = {a1, . . . , an}. Alors,
on dé�nit l'application suivante :

ι : Sk(A) −→ Sk+n(T )
tpM̃(b/A) 7−→ tpM̃(b, a1, . . . , an) .

L'application ι est injective. En e�et, si p1 et p2 sont deux types distincts dans tpM̃(b/A), alors il existe
une L(A)-formule θ telle que θ ∈ p1 et que ¬θ ∈ p2. Si b et b

′ sont deux réalisations dans M̃ de p1 et p2

respectivement, alors θ sépare aussi les types tp(b, a1, . . . , an) et tp(b
′
, a1, . . . , an). Dans la littérature, parfois

on dit que �le type de b sur a est déterminé par le type de (b, a)�.

Une conséquence directe du paragraphe précédent est que |Sk(A)| ≤ |Sk+n(T )|. Par ailleurs, d'après le lemme
7.2.4 du cours, chaque élément de Sk(T ) s'étend à un type dans Sk(A). Un raisonnement similaire à celui du
paragraphe précédent montre alors que deux types distincts dans Sk(T ) s'étendent à deux familles disjointes de
types dans Sk(A). Par conséquent, |Sk(T )| ≤ |Sk(A)| pour tout k ∈ N. Ces conclusions et le point (i) montrent
alors que |Sk(A)| = ℵ0 pour tout k ∈ N∗.

5.(iii) Montrons d'abord que |SN1 (A)| = ℵ0. Nous savons que la théorie élimine les quanti�cateurs dans le
langage L+. Alors, pour toute formule φ(x; ca1 , . . . , cak

) à exactement une variable libre avec {a1, . . . , ak} ⊂ A
il existe une L({a1, . . . , ak})+-formule sans quanti�cateur ψ(x; ca1 , . . . , cak

) à exactement une variable libre
telle que

T ` ∀x(φ(x; ca1 , . . . , cak
) ↔ ψ(x; ca1 , . . . , cak

)) .

Par conséquent, tout 1-type sur A est déterminé par le positionnement d'une de ses réalisations par rapport
aux éléments de A et aux classes �nies. Par rapport à l'étude d'un 1-type sur un ensemble �ni de paramètres, le
seul changement est qu'il existe plus de possibilités par rapport aux classes des paramètres. Plus précisément,
il faut considérer tous les cas R(x, cai) (respectivement, ¬R(x, cai)). Or, cette discussion de cas est réduite aux
deux possibilités suivantes :

• le type entraîne ¬R(x, cai) pour tout i ∈ N ;

• le type entraîne R(x, cai) pour un certain i ∈ N.

Il en découle qu'il n'existe que ℵ0 types sur A.

A ce stade, on peut résister à la tentation d'appliquer la règle générale de comptage de l'exercice II, et utiliser
les propriétés de la théorie que nous étudions pour déduire le cardinal de Sk(A) pour tout k ∈ N∗ suivant la
méthode du k = 1.


