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Corrigé du DM 7

Preuve du Théoréme 7.3.
Soient £, M, N comme dans 1’énoncé. Notons M = {a;: i € N} et N = {b;: i € N} les univers respectifs de
M et N'. Commencons par prouver qu’on peut par récurrence construire des suites d’éléments (z,,) € MY et
(yn) € MY telles que :

e Vn € N z9, = a,

eVneN Yon+1 = by

oVn (x1,...,zp) €t (y1,...,Yn) satisfont les mémes L-formules.

En effet, supposons la construction effectuée jusqu’au rang n (éventuellement n = —1, cas ol on commence
la construction) ; traitons d’abord le cas o n + 1 = 2k. Alors on doit poser x,+1 = ai. Reste & définir y,11 ;
soit p(x) = tppm(xnt1/{x1,...,2n}). Ce type correspond & un unique type ¢(z) au-dessus de y1, ..., y, (celui
qu’on obtient en remplagant x1,...,%, par yi,..., Yy, respectivement dans les formules de p), qui doit étre
réalisé dans N puisque N est w-saturée. Tout y tel réalisant ce type est par définition tel que (z1,...,%Tn, Tni1)
et (y1,...,Yn,y) satisfont les mémes L-formules; autrement dit, poser y,4+1 = y nous permet de prolonger la
construction.

Le cas oil n+ 1 est impair se traite exactement de la méme fagon, en échangeant les roles de M et A/ (et donc
en utilisant cette fois ’hypothése selon laquelle M est w-saturé).

Soit alors f: M — N Dapplication définie par f(a;) = b;. Cette fonction est injective (le langage L est
égalitaire...), définie sur M tout entier (au rang 2n on a assuré que f est définie en x,) et surjective par
construction (au rang 2n + 1 on a assuré que y, est dans 'image de f); de plus, la construction assure aussi
que pour toute £ formule ¢(z1,...,z,) on a, pour tout n-uplet mq,...,m, € M

Autrement dit, f est un isomorphisme entre M et N.

Preuve du Lemme 7.3.5(1).

C’est essentiellement la méme idée que ci-dessus. Soient M, N comme dans 1’énoncé du lemme et B =
{b1,...,bx} une partie finie de N. Soit p(z) un éléement de SV (B). Puisque M et N sont co-équivalentes, il
existe (a1, ...,a,) dans M tel que (a1,...,a,) et (b1,...,by,) ont méme type (c’est-a-dire : satisfont les mémes
formules). Comme ci-dessus, on considére ’élément ¢(x) de S{*({a1,...,a,}) obtenu en remplacant chaque b;
par a; dans les formules de p. Ce type est réalisé dans M par hypothése, par un élément a € M. On sait qu’il
existe b € N tel que (a1,...,an,a) et (by,...,b,,b) ont méme type, autrement dit b réalise p(z).

Exercice 1II.
Qu’aurait di étre un énoncé démontrable ?

Soient L un langage, T une L-théorie compléte dont les modéles sont infinis et k un cardinal infini. Montrer
que si pour tout ensemble de parameétres A de cardinal au plus r, le cardinal de S{U(A) est au plus k, M étant
un modéle quelconque de T contenant A, alors |S{MM(A)| < k pour tout k € N*.

Remarque : Dans I’énoncé ci-dessus, on peut remplacer “modéle quelconque de T contenant A” par “modéle
kt-saturé de T contenant A”.

1l suffit de considérer le passage de S (A) a S,?jlrl(A). Pour ce faire, on commence par le constat que si p €
St (A) alors la restriction de p a S;'(A), en d’autres termes la famille de £(A)-formules & au plus k variables
libres définie par pNS{(A), est un k-type. Alors, pNSit(A) est réalisé dans une extension élémentaire A" de M



par (aq,...,ax). Alors on applique I’hypothése de départ dans N & la famille de paramétres AU {aq,...,ax}
pour conclure que SPY (AU {ay,...,ax}) est de cardinal au plus x. Par récurrence, il existe au plus & choix de
(a1, ...,ar) donnant des k-types deux a deux distincts sur A puisque pour toute extension élémentaire N de
M, SN (A) = SM(A) (le lemme 7.2.3 qui était aussi étudie en cours). Or k X & = k.

Exercice III1.
1. On veut montrer que les modéles w-saturés de T' sont exactement ceux qui ont une infinité de classes infinies ;
pour cela, on va utiliser le fait que la théorie a la propriété d’élimination des quantificateurs.
Commengons par le plus facile; soit M un modéle w-saturé. Pour toute partie finie A C M, notons L(A) le
langage obtenu en ajoutant & £ un symbole de constante pour chaque a € A ; on vérifie en utilisant le théoréme
de compacité que l'ensemble de L(A)-énoncés {—R(z,cq.): a € A} U{=Cp(z): n € N*} est consistant. Par
conséquent il est contenu dans un 1-type sur A, qui doit étre réalisé dans M puisque A est finie et M est
w-saturé. On vient de prouver que pour toute partie finie A C M il existe x € M tel que x apartient & une
classe infinie et x n’est dans la classe d’aucun élément de A. On en déduit facilement que M a une infinité de
classes infinies.
Soit maintenant M un modéle & une infinité de classes infinies, A = {a1, ..., a,} une partie finie de M et p un
élément de S{M(A). Remarquons qu’on a vu dans le DM 6 que deux n+ I-uplets ont méme type si, et seulement
si, ils satisfont les mémes formules atomiques dans le langage L+ = LU {C,,: n € N*}. Par conséquent, deux
éléments x et y (dans une extension élémentaire quelconque de M) ont méme type sur A si, et seulement si,
ils satisfont les mémes formules atomiques dans le langage £(A)T = L(A) U{C,: n € N*}.
N’importe quel 1-type sur A est donc complétement déterminé par un ensemble d’énoncés qui appartient &
I'une des familles suivantes :

o {x = ¢4, } (pour un certain 7)

o {xF# ¢y 1 <i <npU{Cy(x)} U{A;c; R(,¢ca;) N N\;c (mR(z,¢cq,))}, Ol p est un entier non nul et I,.J

forment une partition de {1,...,n}.

o {z # o1 <i <npU{=Ch(x): p € NFU{A;c; R(x,ca;) N Njes(mR(2,¢q,))}, ot I,J forment une

partition de {1,...,n}.
Il est clair que tous les éléments consistants de chacune de ces trois familles sont bien réalisés dans un modéle
qui a une infinité de classes infinies (ce qui est utilisé pour réaliser les types de la troisiéme famille), ce qui
montre qu’un tel modéle est w-saturé.
2. Soient A = {ay,...,ar} et ¢ comme dans I’énoncé. Dans le langage L£(A)™, (défini comme au point 1) ¢ est
équivalente & une formule ¢ sans quantificateurs et avec les mémes variables libres. Par conséquent, il existe
n € N* (un majorant strict de ensemble des j tels que C; intervient dans I’écriture de 9 et de I’ensemble
des indices des classes finies qui contiennent un des a;) tel que, ¥(z,a1,...,ar) est vraie pour tout élément
de E'=J,5,{z € M: Cp(z)}, ou fausse pout tout élément de E. Ceci prouve que ¢(N,a1,...,ax) coupe un
nombre fini ou co-fini de classes finies.
En particulier, puisque M ne contient que des classes finies,; tout ensemble définissable dans M est la réunion
d’un nombre fini ou cofini de classes finies, et est donc lui-méme fini ou cofini.
3. Soient z,y dans N qui appartiennent tous deux a des classes infinies différentes des classes des a;. Alors
par la description des types du point 1, x et y ont méme type sur A. D’aprés le théoréme 7.6 du cours,
il existe une extension élémentaire A/ de A/ et un automorphisme de (N’,a)qca qui envoie x sur y. Donc
x € (N cayye - sCa,) &Y E PN Cays--.,Cqa,) (un automorphisme de (N, a)qsca est un automorphisme de
N’ qui fixe chaque a; (1 <7 <n). Mais comme N’ est une extension élémentaire de NV, on a

O(N,Cayy--yca, ) =NNO(N' cars. . Ca) -
1 n 1 n

En d’autres termes, x € ¢(N,cayy---1Ca, ) < Y € O(N,Cays- -+, Ca, ), ce qui conclut la réponse a cette question.
4. Soit N n’importe quelle extension élémentaire stricte de M ; N doit avoir un élément a dont la classe est
infinie. L’ensemble défini dans N par la £({a})-formule "R(z,c,)" est infini, ainsi que son complémentaire.
On voit donc qu’aucune extension élémentaire stricte de M n’est minimale.

Ce qu’on vient d’écrire montre que la formule "R(x,y)" contredit le critére de minimalité forte du DM5.

5. (i) Pour déterminer |Si(T)|, on peut commencer par le théoréme 7.5 des notes de cours. En effet, le langage
que nous utilisons est dénombrable. Par ailleurs, comme on peut trouver un modéle & une infinité dénombrable
de classes infinies et dénombrables, d’aprés la question III.1 ci-dessus 7' a un modéle w-saturé et dénombrable.
C’est un (le) modeéle ou tous les types dans S(T') seront réalisés. Alors on utilise les connaissances des théories



des ensembles et la définition S(T') = UkenSk(T') pour conclure que pour tout k € N, [Si(T)] < No.

Puisque nous avons la description compléte des 1-types dans la question III.1, il suffit de vérifier que |:S1(T)| <
|Sk(T)| pour chaque k € N*. Plus généralement on peut vérifier que |Sg(T)| < |Sk+n(T)| pour tous k,n € N.
En effet, si p; et ps sont deux types distincts dans Sy (7'), alors il existe une L-formule 6 & au plus k variables
libres telle que 6 € p; et =0 € ps. Ces deux formules séparent les deux ensembles & au plus k 4+ n variables
libres que sont p; et pa, ainsi que leurs complétions a des (k + n)-types.

(ii) Pour le point (ii), nous retournons au lemme 7.3.9 des notes et & sa preuve. Soit A = {a1,...,a,}. Alors,
on définit I’application suivante :

Lo Sk(AZ —  Skn(T)

0, (B/A) — tpg(byar,...,an) .

L’application ¢ est injective. En effet, si p; et ps sont deux types distincts dans tp M(B/A), alors il existe
une L(A)-formule 6 telle que 6 € p; et que = € py. Si b et b sont deux réalisations dans M de p1 et po
respectivement, alors § sépare aussi les types tp(b, a1, ..., an) et tp(b, a1, ..., a,). Dans la littérature, parfois

on dit que “le type de b sur @ est déterminé par le type de (b,a)”.

Une conséquence directe du paragraphe précédent est que |Sx(A)| < [Sk4n(T)|. Par ailleurs, d’aprés le lemme
7.2.4 du cours, chaque élément de Si(T) s’étend & un type dans Si(A). Un raisonnement similaire & celui du
paragraphe précédent montre alors que deux types distincts dans S (7T') s’étendent & deux familles disjointes de
types dans Si(A). Par conséquent, |Si(T)| < |Sk(A)| pour tout k& € N. Ces conclusions et le point (i) montrent
alors que |Sk(A)| = Xy pour tout k € N*.

5.(ii)) Montrons d’abord que |SP(A)| = No. Nous savons que la théorie élimine les quantificateurs dans le
langage L. Alors, pour toute formule ¢(z; cq,, - - -, Cq, ) & exactement une variable libre avec {a1,...,ap} C A
il existe une L({a1,...,ax})"-formule sans quantificateur ¢ (z;cq,,...,cq,) & exactement une variable libre
telle que

T Va(d(z;cayy .-y Cay) < V(T Cayy ey Cay)) -

Par conséquent, tout 1-type sur A est déterminé par le positionnement d’une de ses réalisations par rapport
aux éléments de A et aux classes finies. Par rapport a I’étude d’un 1-type sur un ensemble fini de parameétres, le
seul changement est qu’il existe plus de possibilités par rapport aux classes des paramétres. Plus précisément,
il faut considérer tous les cas R(x, cq,) (respectivement, = R(z, ¢4, )). Or, cette discussion de cas est réduite aux
deux possibilités suivantes :

e le type entraine - R(z, ¢y, ) pour tout ¢ € N;

e le type entraine R(z,c,,) pour un certain i € N.

Il en découle qu’il n’existe que Ny types sur A.

A ce stade, on peut résister a la tentation d’appliquer la régle générale de comptage de 'exercice II, et utiliser

les propriétés de la théorie que nous étudions pour déduire le cardinal de Si(A) pour tout k € N* suivant la
méthode du k£ = 1.



