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1. Supposons que pour toute formule ψ(x, y1, . . . , yl) à exactement l variables libres M satisfasse l'énoncé
fourni par le sujet (pour un certain nψ). Cet énoncé étant du premier ordre, il est vrai dans toute extension
élémentaire M′ de M. Fixons maintenant (m1, . . . , ml) ∈ (M ′)l. Alors le fait que l'énoncé donné par le
sujet soit vrai garantit que soit φ(M′, a1, . . . , ak)∩ψ(M′,m1, . . . ,ml) est �ni (de cardinal inférieur à nψ) soit
φ(M′, a1, . . . , ak)∩¬ψ(M′,m1, . . . ,ml) est �ni (et de cardinal inférieur à nψ). Autrement dit φ(M′, a1, . . . , ak)
est minimal, et donc φ(M,m1, . . . , mk) est fortement minimal.
Réciproquement, s'il existe une formule ψ telle que pour tout n l'énoncé du sujet ne soit pas dans Th(M) alors
on voit que l'ensemble de négations de ces énoncés est �niment consistant avec Th(M), et donc consistant par
compacité. Par suite il existe une extension élémentaire de M dans laquelle les négations de ces énoncés sont
toutes vraies, autrement dit une extension élémentaireM′ deM dans laquelle il existe un l-uplet (m1, . . . , ml)
tel que φ(M′, a1, . . . , ak) ∩ ψ(M′,m1, . . . , ml) et φ(M′, a1, . . . , ak) ∩ ¬ψ(M′,m1, . . . ,ml) soient tous deux
in�nis, ce qui prouve qu'alors φ(M, a1, . . . , ak) n'est pas fortement minimale.

2. Il s'agit juste de comparer les deux dé�nitions : une structureM est fortement minimale au sens du cours si,
et seulement si, pour toute extension élémentaire M′ de M, tout k-uplet (m1, . . . , mk) ∈ Mk et toute formule
ψ(a1, . . . , ak), l'ensemble ψ(M,m1, . . . , mk) est �ni ou co�ni. Comme la formule x = x dé�nit tout l'univers
d'une structure, on voit donc que M est fortement minimale au sens du cours si et seulement si la partie de
M dé�nie par la formule x = x (autrement dit, M) est fortement minimale.

3(i) Comme la notion de clôture algébrique a été dé�nie en utilisant un modèle d'une théorie complète, en
l'occurrence Th(M), il faut véri�er que acl(A) est le même ensemble si la même dé�nition est appliquée dans
un autre modèle. Ce souci peut paraître exagéré dans ce cas où la réponse est assez évidente mais en général
nous savons très bien que les propriétés d'une structure particulière ne sont pas nécessairement des propriétés
da sa théorie. Soit donc M′ un autre modèle de Th(M) dont l'univers M ′ contient A. Etant les modèles
d'une même théorie complète,M etM′ sont élémentairement équivalents. D'après la proposition 6.2.4, ils ont
une extension élémentaire M̃ commune. Or si φ(x) est une L(A)-formule algébrique, alors pour tout n ∈ N,
M |= ∃=nφ(x) si et seulement si M′ |= ∃=nφ(x) si et seulement si M̃ |= ∃=nφ(x).

(ii) Comme le langage L est dénombrable, il n'y a que ℵ0 L-formules. Si A est �ni, alors la réunion disjointe
des Ak est au plus dénombrable (chacun de ces ensembles est �ni) ; si A est in�ni alors chaque Ak est de même
cardinal que A, donc dans tous les cas on voit que le cardinal de la réunion disjointe des Ak est inférieur à
|A|+ℵ0. Pour chaque élément de cette réunion disjointe (i.e, pour un uplet (a1, . . . , ak) quelconque) et à chaque
formule φ(x, a1, . . . , ak) correspondent un nombre �ni (éventuellement nul) d'éléments de acl(A) : l'ensemble
φ(M, a1, . . . , ak) si celui-ci est �ni, ∅ sinon. Comme acl(A) est dé�ni comme la réunion de ces ensembles, on
voit que

|acl(A)| ≤ (|A|+ ℵ0).ℵ0 = |A|+ ℵ0 .

4(i) Soit a ∈ A ; alors bien sûr la L(A)-formule x = a dé�nit le singleton {a}, ce qui prouve que a ∈ acl(A).
(rappelons que pour simpli�er la notation on ne fait pas de distinction entre un élément de A et le symbole
de constante qui lui est associé dans le langage étendu)
(ii) Une L(A)-formule est aussi une L(B)-formule ; explicitement, soient x ∈ M ,φ(x, y1, . . . , yk) une formule à
exactement k+1 variables libres et (a1, . . . , ak) ∈ Ak tel que φ(M, a1, . . . , ak) soit �ni et x ∈ φ(M, a1, . . . , ak).
Alors comme (a1, . . . , ak) ∈ Bk, on voit que par dé�nition x ∈ acl(B).
(iii) Soit x ∈ acl(acl(A)), et une formule φ(x, y1, . . . , yk) ainsi que (m1, . . . , mk) ∈ (acl(A))k qui témoignent
de ce fait. Pour chaque i il existe une L(A)-formule ψi(x, y1, . . . , ypi) et un pi-uplet (bi
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de A tels que mi ∈ ψi(M, b1, . . . , bpi) et cet ensemble soit �ni. Notons p =
∑n

i=1 pi et considérons le p-uplet
b1, . . . , bp obtenu en "`mettant bout à bout"' tous les bi

j , puis considérons la L(A)-formule à k + 1 variables
libres ψ(x1, . . . , xk, b1, . . . , yp) dé�nie par
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Alors on a envie de considérer la formule dé�nie par

∃y1 . . . ∃yk

(
ψ(y1, . . . , yk, b1, . . . , bp) ∧ φ(x, y1, . . . , yk)

)

En e�et, cette formule est bien une L(A)-formule satisfaite par x, et pour conclure il su�rait de prouver que
l'ensemble dé�ni dans M par cette formule est �ni. L'idée est que par dé�nition il n'y a qu'un nombre �ni
d'uplets (c1, . . . , ck) d'éléments de M qui satisfont ψ(c1, . . . , ck, b1, . . . , bp) ; le problème est qu'a priori rien
n'empêche que pour un de ces uplets l'ensemble des x satisfaisant φ(x, c1, . . . , ck) soit in�ni. C'est là qu'il
faut penser aux types : (m1, . . . , mk) est tel que φ(M,m1, . . . , mk) est de cardinal �ni, disons n. Mais on
peut exprimer par une formule du premier ordre χ(y1, . . . , yk) le fait qu'il existe n éléments x satisfaisant
φ(y1, . . . , yk) ; cette formule est satisfaite par (m1, . . . ,mk) (autrement dit, elle appartient au k-type qui est
réalisé par (m1, . . . , mk)) et on peut �nalement considérer la L(A)-formule τ(x, b1, . . . , bp) dé�nie par

∃y1 . . . ∃yk

(
ψ(y1, . . . , yk, b1, . . . , bp) ∧ χ(y1, . . . , yk) ∧ φ(x, y1, . . . , yk)

)

Alors x ∈ τ(M, b1, . . . , bp) et cet ensemble est �ni, puisqu'il n'existe dans M qu'un nombre �ni de k-uplets
(n1, . . . , nk) satisfaisant ψ(n1, . . . , nk) ∧ χ(n1, . . . , nk) et que pour chacun de ces (y1, . . . , yk) l'ensemble des
z ∈ M tels que M |= φ(z, n1, . . . , nk) est �ni.
(iv) Soit a ∈ acl(A) ; par dé�nition il existe une L-formule φ(x, y1, . . . , yk) à k +1 variables libres et un k-uplet
(a1, . . . , ak) tel que a ∈ φ(M, a1, . . . , ak) et cet ensemble soit �ni. Mais alors il su�t de regarder la dé�nition
pour voir que a ∈ acl({a1, . . . , ak}), ce qui répond à la question posée.

5. Dans cette question pour être rigoureux il faut supposer que {m1, . . . , mk} ⊂ A ; B ne joue aucun rôle donc
on peut supposer B = ∅.
(i) On raisonne par l'absurde : si f ∈ acl(A) alors on a A ∪ {f} ⊂ acl(A) et donc, d'après 4.(ii), on voit que
acl(A ∪ {f}) ⊂ acl(acl(A)), autrement dit (d'après 4(iii)) on a acl(A ∪ {f}) ⊂ acl(A). L'inclusion réciproque
est une conséquence de 4(i) et 4(ii). On voit donc que si f ∈ acl(A) alors acl(A ∪ {f}) = acl(A) et donc
acl(A ∪ {f}) \ acl(A) = ∅, ce qui est impossible puisque e ∈ acl(A ∪ {f}) \ acl(A).
(ii) Notons τ(x, y) la formule à deux variables libres ψ(x, y)∧∃=kzψ(z, y). Comme φ est fortement minimale on
sait que soit θ(M, e) = φ(M,m1, . . . , mk)∩ψ(M, e) est �ni soit φ(M, m1, . . . ,mk)∩¬ψ(M, e) est �ni. Ici on
est nécessairement dans le deuxième cas ; on voit donc que θ(M, e) est co�ni dans φ(M,m1, . . . ,mk) (il n'est
pas co�ni dans M , sauf si φ(M,m1, . . . , mk) est lui-même co�ni). Autrement dit ¬θ(M, e)∩φ(M,m1, . . . , mk)
est de cardinal n pour un certain n, et ceci s'exprime par une L(A)-formule du premier ordre ρ(x), qui est
bien sûr satisfaite par e.
(iii) Si ρ(x) dé�nit une partie �nie de φ(M,m1, . . . , mk), alors e ∈ acl(A), ce qui est impossible. Donc ρ(x)
dé�nit une partie co�nie de φ(M, m1, . . . ,mk), et on peut trouver des éléments x1, . . . , xk+1 deux à deux
distincts et tels que M |= ρ(xi), autrement dit θ(M, xi) est co�ni dans φ(M,m1, . . . ,mk). Il existe donc
b ∈ M tel que b ∈ ∩k+1

i=1 θ(M, xi). De ceci on déduit que M |= ψ(b, xi) pour tout i ∈ {1, . . . , k + 1} et en
même temps qu'il existe exactement k éléments m ∈ M tels que M |= ψ(m, b), autrement dit on arrive à une
contradiction.
Par conséquent θ(M, e) est �ni, ce qui prouve bien que f ∈ acl(A ∪ {e}).

6(i) On raisonne comme pour montrer qu'un espace vectoriel admet une base (donc on se doute qu'il va falloir
utiliser l'axiome du choix...) : on considère l'ensemble formé par les parties indépendantes de E, et on ordonne
cet ensemble par l'inclusion. Pour montrer que cet ensemble ordonné est inductif, considérons une famille
(Bi)i∈I de parties indépendantes et telle que (Bi)i∈I est totalement ordonné par l'inclusion. Comme prévu, on
pose B = ∪i∈IBi, et on voudrait prouver que B est indépendant. Soit e ∈ B. Si e ∈ acl(B \ {e}), alors d'après



4(iv) il existe b1, . . . , bn ∈ B tous distincts de e et tels que e ∈ acl({b1, . . . , bn}). Mais comme la famille (Bi)
est totalement ordonnée par la relation d'inclusion on peut trouver i ∈ I tel que {e} ∪ {b1, . . . , bn} ∈ Bi, ce
qui contredit le fait que Bi est indépendant. On voit donc �nalement que B est indépendant.
En appliquant le lemme de Zorn, on voit qu'il existe un ensemble B indépendant et maximal pour l'inclusion.
Il nous reste à montrer que pour un tel B on a nécessairement acl(B) = E. Remarquons que pour l'instant on
n'a pas utilisé le fait que E est fortement minimal ; cela va être essentiel maintenant.
Prenons e ∈ E \ B, et notons B′ = B ∪ {e} ; alors B′ contient strictement B et donc (par maximalité) ne
peut pas être indépendant. La première possibilité est que e ∈ acl(B) (ce qu'on veut démontrer) ; la deuxième
possibilité est qu'il existe b ∈ B tel que b ∈ acl(B′ \ {b}) ; alors b ∈ acl((B \ {b}) ∪ {e}) \ acl(B \ {b}). Mais
alors le résultat obtenu au point 5 permet de voir que e ∈ acl(B \ {b} ∪ {b}) = acl(B). Dans les deux cas on
obtient donc e ∈ acl(B), ce qui montre que, toute partie indépendante maximale pour l'inclusion est une base.
(ii) Commençons par rappeler que, si B est un ensemble quelconque, on a |B| ≤ |acl(B)| ≤ |B| + ℵ0. Ceci
montre que B est non dénombrable si, et seulement si, acl(B) est non dénombrable, et qu'on a dans ce cas
|acl(B)| = |B|. Ceci permet de véri�er facilement que s'il existe une base non dénombrable B alors toutes les
bases sont non dénombrables, et de même cardinal que E ; donc dans ce cas toutes les bases sont de même
cardinal.
Examinons maintenant le cas où il existe une base B1 de cardinal n (pour un certain n ∈ N) ; on va utiliser le
résultat du point 5. On va montrer (comme pour un espace vectoriel...) qu'il n'existe pas d'ensemble indépen-
dant de cardinal supérieur ou égal à n + 1.
Pour cela, on raisonne par l'absurde : supposons que {a1, . . . , an+1} est indépendant (les ai étant deux à deux
distincts). On peut supposer que a = a1 6∈ B. Il existe un sous-ensemble B′ ⊂ B de cardinalité minimale (et né-
cessairement non vide) tel que a ∈ acl(B′). Fixons un élément b ∈ B′ ; on a a ∈ acl((B′ \{b})∪{b})\acl(B′ \b),
donc b ∈ acl((B′ \ {b}) ∪ {a}). On en déduit B ⊂ acl((B \ {b}) ∪ {a}), et donc que acl((B \ {b}) ∪ {a} = E.
On voudrait montrer que, de plus, B \ {b} ∪ {a} est indépendant :
• Si a ∈ acl(B \ {b}) alors comme b ∈ acl((B \ {b})∪{a}) on obtient b ∈ acl(B \ {b}), ce qui contredit le fait
que B est une base ;
• s'il existe c ∈ B tel que c ∈ acl((B \ {b, c}) ∪ {a}) alors on obtient (en utilisant le point 5 et le fait que
c 6∈ acl(B \ {b, c}) ) que a ∈ acl(B \ b), et comme ci-dessus on obtient une contradiction.

On vient donc de montrer que ((B\{b})∪{a}) est une base de E. On peut répéter ce processus, et trouver pour
tout 1 ≤ k ≤ n des éléments b1, . . . , bk de B deux à deux distincts et tels que (B\{b1, . . . , bk})∪{a1, . . . , ak} soit
une base de E. Au rang k = n, on obtient que {a1, . . . , an} est une base de E, ce qui contredit l'indépendance
de {a1, . . . , an+1}.
On vient de montrer que si B1 est de cardinal n alors toute famille indépendante est de cardinal inférieur ou
égal à n ; bien sûr il ne peut pas exister de base B′ de cardinal strictemnt inférieur à n (sans quoi, en renversant
les rôles de B et B′, on obtiendrait que |B| est strictement inférieur à n, ce qui est bien sûr absurde), autrement
dit toutes les bases sont de même cardinal.
Si maintenant il existe une base dénombrable, ce qu'on a montré plus haut su�t à établir que toutes les autres
bases sont aussi dénombrables (l'existence d'une base dénombrable exclut l'existence d'une base �nie ou d'une
base non dénombrable).

7. Il s'agit de l'exemple 9.1.1 des notes de cours. On peut sans perte de généralité supposer que A = ∅ (êtes-vous
d'accord ? Si oui, sauriez-vous expliquer pourquoi ?). Soit alors p(x) un 1-type algébrique. Remarquons déjà
qu'alors p(x) est réalisé dans M (puisque p(x) est, comme tout type, réalisé dans une extension élémentaire,
qu'un élément qui réalise p(x) est par hypothèse algébrique, et que l'ensemble des éléments algébriques ne
change pas quand on passe à une extension élémentaire de M). Soit a un élément qui réalise p(x) ; on sait
qu'il existe une formule φ telle que M |= φ(a) et φ(M) est �ni. D'après le choix de φ, M |= ∃=mxφ(x) pour
un certain m ∈ N∗. Parmi les possibilités de φ dans le type p, il en existe une qui est de cardinal minimal, en
d'autres termes, pour ce choix de φ, le nombre m est minimal. Nous montrerons que cette formule isole p(x).
Soit alors ψ(x) ∈ p(x). Comme p(x) est consistant, ¬ψ 6∈ p(x). Alors |(φ ∧ ¬ψ)(M)| < m, et le choix minimal
implique alors que |(φ ∧ ¬ψ)(M)| = 0. En d'autres termes, M |= ∀x(φ(x) → ψ(x)).

8. (i) Remarquons déjà qu'on peut supposer les eij deux à deux distincts. Raisonnons par récurrence sur k, et
traitons d'abord le cas k = 1. Soit e ∈ B1 et θ(x) une formule telle que M1 |= θ(e). Alors, puisque e 6∈ acl(∅),
l'ensemble des m ∈ M1 tel que M1 |= θ(m) est in�ni. Si pour un certain n l'ensemble θ(M2) était de cardinal



n, alors il en serait de même dans tout modèle de T , et ce n'est manifestement pas le cas (c'est faux dans
M1). Comme T est fortement minimale, il en découle que θ(M2) est co�ni, et donc pour tout f ∈ B2 on a
M2 |= θ(f). Les rôles de M1 et M2 étant symétriques, on a prouvé l'équivalence recherchée dans le cas où
k = 1.
Supposons maintenant la propriété désirée établie pour tout i ≤ k, et soit θ une formule à exactement k + 1
variables libres et (ei1 , . . . , eik+1) ∈ Bk+1

1 tel que M1 |= θ(ei1 , . . . , eik+1). Considérons la formule à exactement
k variables libres θ′(x1, . . . , xk) dé�nie par ∃yθ(x1, . . . , xk, y). On a bien sûrM1 |= θ′(ei1 , . . . , eik

) et donc, par
récurrence,M2 |= θ′(ν0(ei1), . . . , ν0(eik

)). De plus, comme eik+1 n'est pas dans acl(ei1 , . . . , eik
), l'ensemble des

m ∈ M1 tels que M1 |= θ(ei1 , . . . , eik
, x) est nécessairement in�ni, et donc co�ni (puisque T est fortement mi-

nimale). Mais alors par hypothèse de récurrence l'ensemble des m′ ∈ M2 tels que M2 |= θ(ν0(ei1), . . . , ν0(eik
))

est également co�ni, et donc pour tout f ∈ B2 qui n'est pas égal à l'un des ν0(eij
) (1 ≤ j ≤ k) on a

M2 |= θ(ν0(ei1), . . . , ν0(eik
), f) (sinon f serait algébrique sur {ν0(ei1), . . . , ν0(eik

)}), ce qui prouve le résultat
demandé.

(ii) Dans ce point, nous étendons l'application ν0 du point précédent à un isomorphisme entre M1 et M2. Le
raisonnement est basé sur le fait que les types algébriques soient isolés. Il faut donc considérer ce point dans
un même contexte que la proposition 9.2.5 et les corollaires 9.2.6 et 9.2.7 du cours.

D'après le point 3 (ii), les univers M1 et M2 de M1 et M2 respectivement ont même cardinal. En e�et,
|M1| = |M2| = max(ℵ0, κ). Fixons alors une énumération de M1 = {mi | i < λ} qui commence par les
éléments de B1. Nous ferons un raisonnement de �va�. En général, un va n'est pas su�sant pour conclure que
l'application obtenue est une surjection, mais dans notre cas, la minimalité forte et ses conséquences nous
permettront d'éviter d'assurer un retour. Vu le travail accompli, c'est bien mérité.

L'application ν0 amorce la récurrence trans�nie qui nous permettra de construire notre application que nous
nous permettons d'appeler ν. Supposons qu'une application ν ait déjà été construite pour

Mα = {mi | i < α} .

Le type tpM1
(mα/Mα) est algébrique puisque mα ∈ acl(B1). Il est donc isolé par une L(Mα)-formule

σα(x;mi1 , . . . , mil
) avec max{i1, . . . , il} < α. Alors, la L(ν(Mα))-formule σα(x; ν(mi1), . . . , ν(mil

)) est sa-
tisfaite dans M2 par un élément de M2 \ ν(Mα) que nous décretons ν(mα). Cette même formule isole alors
le type tpM2

(ν(mα)/Mα). Avant de procéder, soulignons que les deux dernières phrases contiennent certains
détails qui restent à véri�er.

La récurrence décrite dans le paragraphe précédent donne un plongement élémentaire. Il reste à véri�er que
cette construction sans �vient� est malgré tout une surjection. Soit donc, y ∈ M2. Alors, le type tpM2

(y/B2)
est isolé par une formule algébrique σ(y; ν(b1), . . . , ν(bk)). Il en découle que

M1 |= ∃=mx σ(x; b1, . . . , bk) et M2 |= ∃=mx σ(x; ν(b1), . . . , ν(bk))

pour un certain m ∈ N∗. La construction du paragraphe précédent montre que les m éléments dans M1 sont
tous des antécédents des éléments de M2. Forcément, l'une de ces images est y.

(iii) Soit T une théorie fortement minimale dans un langage dénombrable et M1 M2 deux modèles de T de
même cardinal κ > ℵ0. Alors M1 et M2 admettent des bases B1, B2 de cardinal κ ; en particulier, il existe
une bijection ν : B1 → B2 et la question précédente prouve que cette bijection s'étend en un isomorphisme
de M1 sur M2, ce qui prouve que deux modèles non dénombrables de T de même cardinal sont isomorphes,
autrement dit T est catégorique en tous les cardinaux non dénombrables.


