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1. Supposons que pour toute formule ¥(x,y1,...,y) & exactement [ variables libres M satisfasse ’énoncé
fourni par le sujet (pour un certain n,). Cet énoncé étant du premier ordre, il est vrai dans toute extension
éléementaire M’ de M. Fixons maintenant (my,...,m;) € (M')!. Alors le fait que 1’énoncé donné par le
sujet soit vrai garantit que soit ¢(M’, a1, ..., ar) NY(M’',mq,...,my) est fini (de cardinal inférieur  n,) soit
d(M'a, ... ap)N=h(M';mq, ..., my) est fini (et de cardinal inférieur a ny). Autrement dit ¢(M’, a1, ..., ax)
est minimal, et donc ¢(M, my, ..., my) est fortement minimal.

Réciproquement, ¢’il existe une formule ¢ telle que pour tout n I’énoncé du sujet ne soit pas dans Th(M) alors
on voit que 'ensemble de négations de ces énonceés est finiment consistant avec Th(M), et donc consistant par
compacité. Par suite il existe une extension élémentaire de M dans laquelle les négations de ces énoncés sont

toutes vraies, autrement dit une extension élémentaire M’ de M dans laquelle il existe un l-uplet (mq, ..., m;)
tel que ¢(M' ar, ... ax) NYM ;mq,...,my) et ¢(M' ay,...,ar) N =M’ mq,...,my) soient tous deux
infinis, ce qui prouve qu’alors ¢(M,ayq,...,ar) n’est pas fortement minimale.

2. 11 s’agit juste de comparer les deux définitions : une structure M est fortement minimale au sens du cours si,
et seulement si, pour toute extension élémentaire M’ de M, tout k-uplet (mq,...,my) € M* et toute formule
Y(ay,...,ax), Vensemble (M, my,...,my) est fini ou cofini. Comme la formule x = = définit tout I'univers
d’une structure, on voit donc que M est fortement minimale au sens du cours si et seulement si la partie de
M définie par la formule z = z (autrement dit, M) est fortement minimale.

3(i) Comme la notion de cléture algébrique a été définie en utilisant un modéle d’une théorie compléte, en
Poccurrence Th(M), il faut vérifier que acl(A) est le méme ensemble si la méme définition est appliquée dans
un autre modéle. Ce souci peut paraitre exagéré dans ce cas ol la réponse est assez évidente mais en général
nous savons trés bien que les propriétés d’une structure particuliére ne sont pas nécessairement des propriétés
da sa théorie. Soit donc M’ un autre modéle de Th(M) dont 'univers M’ contient A. Etant les modeéles
d’une méme théorie compléte, M et M’ sont élémentairement équivalents. D’aprés la proposition 6.2.4, ils ont
une extension élémentaire M commune. Or si ¢(x) est une L(A)-formule algébrique, alors pour tout n € N,
M = F7¢(x) si et seulement si M’ = I="¢(z) si et seulement si M = I="¢(x).

(ii) Comme le langage £ est dénombrable, il n’y a que R L-formules. Si A est fini, alors la réunion disjointe
des AF est au plus dénombrable (chacun de ces ensembles est fini) ; si A est infini alors chaque A* est de méme
cardinal que A, donc dans tous les cas on voit que le cardinal de la réunion disjointe des A* est inférieur &
|A|+Rg. Pour chaque élément de cette réunion disjointe (i.e, pour un uplet (aq,...,ax) quelconque) et & chaque
formule ¢(x,ay,...,ar) correspondent un nombre fini (éventuellement nul) d’éléments de acl(A) : I'ensemble
(M, aq,...,ax) si celui-ci est fini, () sinon. Comme acl(A) est défini comme la réunion de ces ensembles, on
voit que

4(i) Soit a € A; alors bien str la L(A)-formule x = a définit le singleton {a}, ce qui prouve que a € acl(A).
(rappelons que pour simplifier la notation on ne fait pas de distinction entre un élément de A et le symbole
de constante qui lui est associé dans le langage étendu)

(ii) Une L(A)-formule est aussi une £(B)-formule ; explicitement, soient x € M,é(x, y1,. .., yx) une formule &
exactement k4 1 variables libres et (ay,...,a) € A" tel que ¢(M, ay, ..., a;) soit fini et x € ¢(M, ay,...,az).
Alors comme (ay,...,ax) € B*, on voit que par définition = € acl(B).

(iii) Soit = € acl(acl(A)), et une formule ¢(x,y1,...,ys) ainsi que (my,...,ms) € (acl(A))* qui témoignent

de ce fait. Pour chaque i il existe une L£(A)-formule ¢;(x,y1,...,yp,) et un pi-uplet (b,...,b} ) d’éléments



de A tels que m; € 1;(M,by,...,bp,) et cet ensemble soit fini. Notons p = > | p; et considérons le p-uplet
bi,...,b, obtenu en "‘mettant bout & bout" tous les b}, puis considérons la L(A)-formule a k + 1 variables
libres ¢ (z1,..., 2k, b1,...,yp) définie par

k

/\ wz(wa?h e 7b§71)

i=1

Alors on a envie de considérer la formule définie par

Hyl-"Eyk(w(ylv'-'7yk7b11"-7bp>/\¢(x7y17"'7yk))

En effet, cette formule est bien une L£(A)-formule satisfaite par z, et pour conclure il suffirait de prouver que
I’ensemble défini dans M par cette formule est fini. L’idée est que par définition il n’y a qu’un nombre fini
d’uplets (c1,...,cx,) d’éléments de M qui satisfont ¢(cq,...,ck,b1,...,b,); le probléme est qu’a priori rien
n’empéche que pour un de ces uplets I’ensemble des z satisfaisant ¢(z,c1,...,cg) soit infini. Cest 1a qu’il
faut penser aux types : (mq,...,my) est tel que ¢(M,mq,...,my) est de cardinal fini, disons n. Mais on
peut exprimer par une formule du premier ordre x(y1,...,yx) le fait qu’il existe n éléments z satisfaisant
o(y1,...,yk); cette formule est satisfaite par (ma,...,my) (autrement dit, elle appartient au k-type qui est
réalisé par (m1,...,my)) et on peut finalement considérer la L£L(A)-formule 7(z,b1,...,b,) définie par

Elyl < 'Elyk(w(yla'"aykabla"'vbp) /\X(y177yk) A¢(I7y1a7yk))

Alors € 7(M,b1,...,by,) et cet ensemble est fini, puisqu’il n’existe dans M qu’un nombre fini de k-uplets
(n1,...,ng) satisfaisant 1 (nq,...,ng) A x(n1,...,ng) et que pour chacun de ces (y1,...,yr) 'ensemble des
z € M tels que M = ¢(z,nq,...,n;) est fini.

(iv) Soit a € acl(A) ; par définition il existe une L-formule ¢(x,y1,...,yx) & k+ 1 variables libres et un k-uplet

(a1,...,ar) tel que a € ¢(M,aq,...,ax) et cet ensemble soit fini. Mais alors il suffit de regarder la définition
pour voir que a € acl({a1,...,ax}), ce qui répond a la question posée.
5. Dans cette question pour étre rigoureux il faut supposer que {ms,...,my} C A; B ne joue aucun role donc

on peut supposer B = ().

(i) On raisonne par Pabsurde : si f € acl(A) alors on a AU {f} C acl(A) et donc, d’aprés 4.(ii), on voit que
acl(AU {f}) C acl(acl(A)), autrement dit (d’aprées 4(iii)) on a acl(A U {f}) C acl(A). L’inclusion réciproque
est une conséquence de 4(i) et 4(ii). On voit donc que si f € acl(A) alors acl(A U {f}) = acl(4) et donc
acl(AU{f}) \acl(A) = 0, ce qui est impossible puisque e € acl(AU {f}) \ acl(4).

(ii) Notons 7(z, y) la formule & deux variables libres ¢(x, y) A3=F2¢)(2, y). Comme ¢ est fortement minimale on
sait que soit 6(M, e) = p(M,mq,...,mk)NY(M,e) est fini soit ¢(M,mq,...,mg) N —1(M,e) est fini. Ici on
est nécessairement dans le deuxiéme cas; on voit donc que 8(M, e) est cofini dans ¢(M, mq,...,my) (il n’est
pas cofini dans M, sauf si ¢(M,my, ..., my) est lui-méme cofini). Autrement dit =0(M, e)NG(M, mq, ..., my)
est de cardinal n pour un certain n, et ceci s’exprime par une L(A)-formule du premier ordre p(x), qui est
bien sir satisfaite par e.

(iii) Si p(z) définit une partie finie de ¢(M,mq,...,my), alors e € acl(A), ce qui est impossible. Donc p(x)
définit une partie cofinie de ¢(M,my,...,mg), et on peut trouver des éléments x1,...,Tr11 deux a deux
distincts et tels que M | p(x;), autrement dit (M, x;) est cofini dans ¢(M,mq,...,my). Il existe donc
b€ M tel que b € NFH1O(M, z;). De ceci on déduit que M = (b, z;) pour tout i € {1,...,k + 1} et en
méme temps qu’il existe exactement k éléments m € M tels que M = ¢(m, b), autrement dit on arrive a une
contradiction.

Par conséquent 6(M, e) est fini, ce qui prouve bien que f € acl(4A U {e}).

6(i) On raisonne comme pour montrer qu’un espace vectoriel admet une base (donc on se doute qu'il va falloir
utiliser ’axiome du choix...) : on considére ensemble formé par les parties indépendantes de E, et on ordonne
cet ensemble par l'inclusion. Pour montrer que cet ensemble ordonné est inductif, considérons une famille
(Bi)ier de parties indépendantes et telle que (B;);cr est totalement ordonné par U'inclusion. Comme prévu, on
pose B = U,er B;, et on voudrait prouver que B est indépendant. Soit e € B. Si e € acl(B\ {e}), alors d’aprés



4(iv) il existe by,...,b, € B tous distincts de e et tels que e € acl({b1,...,b,}). Mais comme la famille (B;)
est totalement ordonnée par la relation d’inclusion on peut trouver ¢ € I tel que {e} U {b1,...,b,} € B;, ce
qui contredit le fait que B; est indépendant. On voit donc finalement que B est indépendant.
En appliquant le lemme de Zorn, on voit qu’il existe un ensemble B indépendant et maximal pour l’inclusion.
11 nous reste & montrer que pour un tel B on a nécessairement acl(B) = E. Remarquons que pour l'instant on
n’a pas utilisé le fait que E est fortement minimal ; cela va étre essentiel maintenant.
Prenons e € E \ B, et notons B’ = B U {e}; alors B’ contient strictement B et donc (par maximalité) ne
peut pas étre indépendant. La premiére possibilité est que e € acl(B) (ce qu’on veut démontrer) ; la deuxiéme
possibilité est qu’il existe b € B tel que b € acl(B’\ {b}); alors b € acl((B\ {b}) U {e}) \ acl(B \ {b}). Mais
alors le résultat obtenu au point 5 permet de voir que e € acl(B \ {b} U {b}) = acl(B). Dans les deux cas on
obtient donc e € acl(B), ce qui montre que, toute partie indépendante maximale pour I'inclusion est une base.
(ii) Commencgons par rappeler que, si B est un ensemble quelconque, on a |B| < |acl(B)| < |B| + Ng. Ceci
montre que B est non dénombrable si, et seulement si, acl(B) est non dénombrable, et qu’on a dans ce cas
lacl(B)| = |B|. Ceci permet de vérifier facilement que s’il existe une base non dénombrable B alors toutes les
bases sont non dénombrables, et de méme cardinal que F; donc dans ce cas toutes les bases sont de méme
cardinal.
Examinons maintenant le cas ou il existe une base By de cardinal n (pour un certain n € N) ; on va utiliser le
résultat du point 5. On va montrer (comme pour un espace vectoriel...) qu’il n’existe pas d’ensemble indépen-
dant de cardinal supérieur ou égal a n + 1.
Pour cela, on raisonne par ’absurde : supposons que {a1,...,a,+1} est indépendant (les a; étant deux a deux
distincts). On peut supposer que a = a1 ¢ B. Il existe un sous-ensemble B’ C B de cardinalité minimale (et né-
cessairement non vide) tel que a € acl(B’). Fixons un élément b € B’; on a a € acl((B'\ {b})U{b})\ acl(B"\b),
donc b € acl((B"\ {b}) U{a}). On en déduit B C acl((B\ {b}) U{a}), et donc que acl((B\ {b}) U{a} =E.
On voudrait montrer que, de plus, B\ {b} U {a} est indépendant :
e Si a € acl(B\ {b}) alors comme b € acl((B\ {b}) U{a}) on obtient b € acl(B\ {b}), ce qui contredit le fait
que B est une base;
e ¢'il existe ¢ € B tel que ¢ € acl((B \ {b,c}) U {a}) alors on obtient (en utilisant le point 5 et le fait que
¢ acl(B\ {b,c}) ) que a € acl(B \ b), et comme ci-dessus on obtient une contradiction.
On vient donc de montrer que ((B\{b})U{a}) est une base de E. On peut répéter ce processus, et trouver pour
tout 1 < k < n des éléments by, . .., b, de B deux & deux distincts et tels que (B\{b1,...,bx})U{a1,...,ar} soit
une base de E. Au rang k = n, on obtient que {a1,...,a,} est une base de E, ce qui contredit I'indépendance
de {a1,...,an+1}-
On vient de montrer que si B; est de cardinal n alors toute famille indépendante est de cardinal inférieur ou
égal & n; bien sar il ne peut pas exister de base B’ de cardinal strictemnt inférieur & n (sans quoi, en renversant
les roles de B et B’, on obtiendrait que | B| est strictement inférieur & n, ce qui est bien str absurde), autrement
dit toutes les bases sont de méme cardinal.
Si maintenant il existe une base dénombrable, ce qu’on a montré plus haut suffit & établir que toutes les autres
bases sont aussi dénombrables (I’existence d’une base dénombrable exclut I’existence d’une base finie ou d’une
base non dénombrable).

7. 11 ’agit de 'exemple 9.1.1 des notes de cours. On peut sans perte de généralité supposer que A = () (étes-vous
d’accord ? Si oui, sauriez-vous expliquer pourquoi?). Soit alors p(z) un 1-type algébrique. Remarquons déja
qu’alors p(z) est réalisé dans M (puisque p(x) est, comme tout type, réalisé dans une extension élémentaire,
qu’un élément qui réalise p(x) est par hypothése algébrique, et que 'ensemble des éléments algébriques ne
change pas quand on passe & une extension élémentaire de M). Soit a un élément qui réalise p(x); on sait
qu’il existe une formule ¢ telle que M |= ¢(a) et $(M) est fini. D’aprés le choix de ¢, M = I="x¢(x) pour
un certain m € N*. Parmi les possibilités de ¢ dans le type p, il en existe une qui est de cardinal minimal, en
d’autres termes, pour ce choix de ¢, le nombre m est minimal. Nous montrerons que cette formule isole p(z).
Soit alors ¥(x) € p(z). Comme p(z) est consistant, =) & p(x). Alors |(¢ A —)(M)| < m, et le choix minimal
implique alors que |[(¢ A —=)(M)| = 0. En d’autres termes, M = Va(o(z) — ¥(x)).

8. (i) Remarquons déja qu’on peut supposer les e;; deux a deux distincts. Raisonnons par récurrence sur k, et
traitons d’abord le cas k = 1. Soit e € By et 6(z) une formule telle que M; = 0(e). Alors, puisque e & acl(),
Pensemble des m € M tel que M |= 6(m) est infini. Si pour un certain n Pensemble 0(Ms) était de cardinal



n, alors il en serait de méme dans tout modéle de T', et ce n’est manifestement pas le cas (c’est faux dans
M3i). Comme T est fortement minimale, il en découle que 8(Ms) est cofini, et donc pour tout f € By on a
Mo = 0(f). Les roles de M et My étant symétriques, on a prouvé I’équivalence recherchée dans le cas ou
k=1

Supposons maintenant la propriété désirée établie pour tout 7 < k, et soit 6 une formule & exactement k + 1
variables libres et (e;,,...,€;,,,) € B tel que M, = 6(ey,, . . ., €., )- Considérons la formule & exactement
k variables libres 0'(x1, ..., x) définie par yb(z1, ..., 2k, y). On a bien sir My = 0'(e;,, ..., €;,) et donc, par
récurrence, My = 0'(vo(es, ), ..., vo(es,)). De plus, comme e;,,, n’est pas dans acl(e;,, ..., e;,), ensemble des
m € M tels que My = 6(e;y, ..., €, ) est nécessairement infini, et donc cofini (puisque T est fortement mi-
nimale). Mais alors par hypothése de récurrence 'ensemble des m’ € My tels que My = 0(vo(es, ), - - -, vo(es,))
est également cofini, et donc pour tout f € B qui n’est pas égal a I'un des vo(e;;) (1 < j < k) on a
Mo = 0(vo(es,), ..., voles,), f) (sinon f serait algébrique sur {vy(e;,), ..., v0(ei,)}), ce qui prouve le résultat
demandé.

(ii) Dans ce point, nous étendons l'application vy du point précédent a un isomorphisme entre M; et M. Le
raisonnement est basé sur le fait que les types algébriques soient isolés. Il faut donc considérer ce point dans
un méme contexte que la proposition 9.2.5 et les corollaires 9.2.6 et 9.2.7 du cours.

D’apreés le point 3 (ii), les univers My et Ms de M; et My respectivement ont méme cardinal. En effet,

1| = 5| = max(Ng, ). Fixons alors une énumération de M7 = {m; | ¢ ui commence par les
M M. No, F 1 t de M <A 1
éléments de B;. Nous ferons un raisonnement de “va’. En général, un va n’est pas suffisant pour conclure que
I’application obtenue est une surjection, mais dans notre cas, la minimalité forte et ses conséquences nous
permettront d’éviter d’assurer un retour. Vu le travail accompli, ¢’est bien mérité.

L’application vy amorce la récurrence transfinie qui nous permettra de construire notre application que nous
nous permettons d’appeler v. Supposons qu’une application v ait déja été construite pour

My={m;|i<a}.

Le type tpag, (ma/M,) est algébrique puisque m, € acl(Bp). Il est donc isolé par une L(M,)-formule
oa(T;myy, ..., m;,) avec max{iy,...,4} < a. Alors, la L(v(My))-formule o4 (z;v(m;,),...,v(m;,)) est sa-
tisfaite dans My par un élément de Ms \ v(M,) que nous décretons v(m, ). Cette méme formule isole alors
le type tp oy, (¥(Mma)/My). Avant de procéder, soulignons que les deux derniéres phrases contiennent certains
détails qui restent & vérifier.

La récurrence décrite dans le paragraphe précédent donne un plongement élémentaire. Il reste & vérifier que
cette construction sans “vient” est malgré tout une surjection. Soit donc, y € M. Alors, le type tp, (y/B2)
est isolé par une formule algébrique o(y; v(b1),...,v(bg)). Il en découle que

My =372 o(x; by, ..., by) et My =372 o(x;v(by),. .., v(by))

pour un certain m € N*. La construction du paragraphe précédent montre que les m éléments dans M; sont
tous des antécédents des éléments de Ms. Forcément, I’'une de ces images est y.

(iii) Soit 7" une théorie fortement minimale dans un langage dénombrable et M; My deux modéles de T' de
méme cardinal K > Ry. Alors M7 et M5 admettent des bases By, B de cardinal «; en particulier, il existe
une bijection v: By — Bs et la question précédente prouve que cette bijection s’étend en un isomorphisme
de M sur Ms, ce qui prouve que deux modéles non dénombrables de T' de méme cardinal sont isomorphes,
autrement dit 7" est catégorique en tous les cardinaux non dénombrables.



