Correction de quelques exercices non traités, ou traités trop rapidement, en TD

Exercice III, feuille 8. Soit ¢/ un ultrafiltre non w; complet sur 'ensemble (nécessairement infini) I; par
définition on peut trouver des ensembles I; (j < w) tels que I; € U et ﬂj<w I; = (; on peut supposer que
Iy = I et, quitte & remplacer chaque I; par ﬂigj I;, que la suite (I;) est décroissante pour l'inclusion. De
plus, a cause de 'exercice ci-dessous, on peut supposer que toutes les structures A; sont infinies. Pour tout
i € I, définissons n; = max{n: i € I,,}. Alors n; est bien défini pour tout ¢ € I, et pour tout n on voit que
{iel:n;>n}=1,€lU.

Construire une telle suite (n;) était le noeud de la preuve; pour tout ¢, fixons une injection

fZP({O,,n,})—>AZ

A toute partie A C N on peut alors associer le représentant dans [[.A;/U de (fi(AN{0,...,n;}))ier. Si A et
B sont deux parties distinctes et (par exemple) n € A\ B alors pour tout i € I, on a f;(A) # f;(B), et comme
I,, € U on voit que les classes de ces deux suites sont distinctes. On vient donc de construire 2% éléments de

[Licr Ai/U.

Exercice IV, feuille 8. (fait en TD, peut-étre trop vite...)

Soit B =[] B;/U, ou les B; sont des structures finies et U est un ultrafiltre.

Si jamais il existe un entier n tel que {i: |B;| < n} € U, alors B est de cardinal < n (cf. le théoréme 6.5 des
notes de cours). Par conséquent dans la suite on peut supposer que pour tout n {i: |B;| > n} € U.

On va maintenant définir une injection de I’ensemble des parties de N dans B, ce qui prouvera que |B| > 2%0.
Pour cela, prenons A C N; pour tout 4 il existe un plus grand n; tel que 2™ < |B;|, autrement dit tel que
P{O,...,n; —1}) s’'injecte dans B;. Fixons alors une injection f;: {0,...,n; — 1} — B;, puis définissons f(A)
comme la classe (dans [[B;/U) de (fi(AN{0,...,n;}))icr. Il ne nous reste plus qu’a montrer que f est une
injection : soit A, B deux parties distinctes de N et (par exemple) n € A\ B. Alors pour tout i tel que n; > n
on a f;(A) # fi(B); mais commme on est dans le cas ou {i € I: n; > n} € U, on voit que f(A) # f(B). Par
conséquent f: P(N) — B est une injection, ce qui finit la preuve.

Exercice VI, feuille 8. Soit T une théorie compléte dans un langage dénombrable L telle que |S,,(T)| > N;.
Remarquons déja que comme L est dénombrable il n’ya que Ry L-formules ; comme un n-type est un ensemble
de formules (4 au plus n variables libres) particulier, on voit tout de suite que pour toute théorie dans un
langage dénombrable on a |S,(T)| < 2%o.

Essayons maintenant de prouver I'inégalité réciproque (qui est plus intéressante!) ; pour cela, appelons V ’en-
semble formé par les L-formules ¢(x1,...,2,) qui sont contenues dans au moins Ny n-types distincts, puis
considérons I’ensemble ® formé par les n-types les que toutes les formules de p sont dans V. Alors on voit que
[Sn(T)\ @] < Ng : en effet, il n’y a que Xy L-formules, et une formule qui n’est pas dans V' appartient au plus
a Ng types distincts. Par conséquent il y a au plus Rg.Rg = Xy types qui contiennent une formule qui n’est pas
dans V', ce qui revient exactement a dire que |S,(T) \ ®| < Ry. Pour que la suite de la preuve soit plus lisible,
énoncgons un lemme intermédiaire.

Lemme. Soit ¢(x1,...,2,) € V. Il existe une formule x(z1,...,x,) telle que (a1, ..., 25) A x(21,...,25) €t
o(x1,...,xn) N ox(21,...,2,) appartiennent toutes les deux a V.

Preuve du Lemme. On sait qu’il existe deux n-types p(z1,...,2n), q(x1,...,2,) € ® distincts qui contiennent
tous les deux ¢(z1,...,xy,). Soit x(z1,...,x,) telle que x(x1,...,2,) € p(21,...,2pn) €t ~x(z1,...,2,) €
q(z1, ..., x,). Alors p(xq, ..., xn)AX(21, ..., Tn) € p(21,...,T,), donc comme toutes les formules de p(x1, ..., z,)
sont dans V on voit que ¢(x1,...,2,) A X(21,...,2,) € V; le méme raisonnement (en remplagant p par q...)
mountre que Y (1, ...,T,) A —x(x1,...,2,) € V. Ceci conclut la preuve du lemme. [

Une fois le lemme prouvé, la preuve s’achéve par une dichotomie (on plonge I’ensemble des branches infinies



d’un arbre binaire dans S, (7T)).
On peut utiliser le lemme pour construire une famille (¢;)seo<w de L-formules telles que, pour toute suite
binaire s € 2<%, on ait :

e,V

e THVxy.. .Vxn(gés(ml, cosy) o (ds—o(1, ..y Tn) V ds_1(z1, . .. ,mn))

e T V.. .V:cn(—\ ((;55_0(331, cos @) A Qg1 (1, .. ,xn)) )
(On note s — 0 pour la suite obtenue en ajoutant un 0 a la fin de s, de méme pour s — 1).
Alors toutes ces formules sont consistantes avec T (puisque V est formé de formules qui sont toutes consistantes
avec T, car contenues dans des types de T') donc par compacité on voit que pour tout s € 2% 'ensemble de
formules {¢S|n : n € N} est consistant, et donc contenu dans un type ps. La construction assure que si s et ¢
sont deux suites binaires infinies alors p, et p; sont différents, donc I’application s — ps est une injection de
2¢ dans S, (T), ce qui achéve la démonstration.

Remarque sur le résultat de cet exercice. Si on utilise la topologie naturelle sur ’ensemble des n-types, alors
Sn(T) est un espace métrique compact ; et un résultat classique de topologie affirme qu’un espace métrique
compact, s’il n’est pas (au plus) dénombrable, est de cardinal 2%° (c’est par exemple une conséquence du
théoréme de Cantor-Bendixson). Plus généralement, un espace métrique complet non dénombrable est néces-
sairement de cardinal supérieur a 2%. On voit ici que, méme si I’hypothése du continu n’a pas de raison d’étre
vraie pour des ensembles quelconques, elle est par contre vérifiee pour des ensembles "réguliers" (compacts,
complets, boréliens dans un métrique complet séparable...); c’est 1a un des points de départ de la théorie
descriptive des ensembles, qui s’intéresse en particulier & la structure des ensembles "définissables" dans les
espaces métriques complets séparables.

Exercice VII, feuille 8. Cet exercice est assez similaire a l’exercice précédent, donc je vais me contenter
de donner un schéma de preuve (& charge pour vous de rédiger la preuve en détail, comme entrainement et
pour vérifier que vous avez compris la démonstration de I’exercice précédent) : supposons par I'absurde qu’il
existe une formule ¢(z1,...,x,) consistante avec T et qui n’est contenue dans aucun n-type principal. Soit
p(z1,...,2,) un type qui contient ¢(z1,...,x,); il existe une formule 9 (x1, ..., 2z,) de p(z1,...,z,) qui n’est
pas une conséquence de ¢(z1,...,x,) (puisque p n’est pas principal) et donc ¢(z1,...,2,) A Y(x1,...,2Tn)
et ¢(x1,...,2n) A (21,...,2,) sont toutes deux consistantes avec T. De plus, ces deux formules ne sont
contenues dans aucun n-type principal (puisque sinon ¢(z1,...,x,), qui est une conséquence de chacune de
ces deux formules, serait aussi contenue dans un type principal).
Mais alors on peut faire une construction similaire & celle de l’exercice précédent, et obtenir une famille
(¢s)sea<w de L-formules consistantes avec T telles que, pour toute suite binaire finie s :

e ¢, n’est contenue dans aucun type principal

o T'FVxy...Va, ((253_0(561, ces ) = Gs(x, ... ,xn))

e TH (V:L’l .. .V:z:n(qﬁs_l(xl, cey ) — Gs(x, ... ,xn))

e T -Vz,.. .Vxn(ﬂ (Ps—o0(x1y. . xn) A qﬁs_l(:cl,...,xn))).
A partir de 1a, vous devriez étre & méme de conclure en vous inspirant de ’exercice précédent.

Exercice IV, feuille 9
(a) Une axiomatisation de la théorie T est obtenue en considérant les énoncés suivants :

o VaVy ((R(:E,y) — R(y,:z:)) A (—| R(x, x))) (R est symétrique et irréflexive)

o Vi ... Va, Yy .. .Vym</\i§n7j§m T # yj) — <3Z<(/\1§¢5n R(xi,2)) A (Ni<icm ﬁR(me))))

(On rajoute un énoncé pour toute paire (n,m) d’entiers naturels; cet ensemble infini d’énoncés exprime le
fait que, si X; et X5 sont deux ensembles finis disjoints contenus dans un modéle de T, il exsiste un élément
z de ce modeéle qui est relié a tous les éléments de X; et a aucun élément de X5).
(b) Soit M un modele de T', et A C M une partie finie. Alors il existe z € M tel que M |= R[(z,a)] pour tout
a € A, en particulier z n’appartient pas a A (la relation R est irréflexive); la partie A étant quelconque, ceci



prouve que M est infini.

Soient maintenant A et B deux modéles dénombrables de T'; on va appliquer la méthode de va-et-vient, résumée
par le lemme suivant :

Lemme. Soient (aq,...,a,) € A" et (b1,...,b,) € B™ tels que pour tout (7,4) on ait

A= R[(ai, a5]) © B = R[(bi, b))] -

Alors pour tout a € A il existe b € B tel que (a1, ...,an,a) et (b1,...,b,,b) satisfont les mémes conditions.
Je laisse en exercice le soin de démontrer ce lemme, qui ne devrait pas étre trop difficile.

Une fois ce lemme démontré, on peut facilement construire un isomorphisme entre deux modéles dénombrables
de T en utilisant la méthode de va-et-vient ; rappelons que pour cela on fixe deux énumérations (a,) et (by,)
de A et B, puis on construit deux suites (z,) € AN et (y,,) € BY telles que

Vn xo, = ap,

vn Yon+1 = by

Vi, j A= Rl(zi,2;)] < B = R(yi,v;)]-
Alors lapplication f: A — B définie par f(z;) = y; est un isomorphisme de A sur B. Donc tous les modéles
dénombrables de T sont isomorphes.
On déduit immeédiatement que 7" est compléte du fait que T' est Rg-catégorique (corollaire 6.2.2 des notes de
cours).
(¢) A cause du critére de va-et-vient établi en (b), on sait que deux éléments z et y ont méme type sur A si,
et seulement si on a, pour tout a dans A et tout i, G = R[(z,a)] & G = R[(y,a)]. Par conséquent, un 1-type
p(x) sur A est entiérement déterminé par

e Un sous-ensemble de A (I’ensemble des éléments avec qui x est en relation R); ce sont les types possibles

pour les éléments qui n’appartiennent pas a A,

ou bien

e la donnée d’un élément de A (chaque élément de a détermine un unique type principal sur a, ensemble

des conséquences de la formule z = ¢,).
L’axiomatisation de T permet de vérifier facilement que tous ces 1-types sont réalisés dans tous les modéles
de T', autrement dit que tous les modéles de T sont w-saturés.
(d) Ici on va décrire les k-types. Toujours grace du critére de va-et-vient établi en (b), on voit que tout k-
type sur T est en fait équivalent & un k-type sans quantificateurs (et donc T a la théorie d’élimination des
quantificateurs) ; mais alors un k-type est en fait obtenu comme ’ensemble des conséquences (dans T') d’une
formule ¢(z1,...,z) de la forme

N@i=z)n N@i#z)n N\ Ranz) A N\ (=R, ),

invj ity (1,5)¢B (i.7)eB

ol B est symeétrique, contient {(i,i): 1 < i < k}, et ~ est une relation d’équivalence sur {1,...,k} (~ "dit"
quels éléments sont égaux). En particulier, tous les k-types sont principaux ; d’autre part il est facile de vérifier
que chaque formule ci-dessus est consistante avec T

Pour compter les k-types, on commence par compter ceux ol z; # x; pour tout j (autrement dit, ot ~ est
Pégalité) : on voit qu'il y en a autant que de graphes distincts dont ’ensemble de sommets est {1,...,n}, et
ce nombre est égal (pour n > 1) a [{(4,5): 1 <14 < j < k}| (pour chacune de ces paires il faut choisir si on met
une aréte ou pas entre le i-éme sommet et le j-iéme sommet). Il y a donc 2F(=1)/2,

En général, pour tout n < k il faut considérer I’ensemble des k-types tels qu’il y a seulement n éléments
distincts. L’ensemble de relations d’équivalence qui doit étre pris en compte est celui des relations d’équivalence
a exactement n classes sur {1,...,k}; le cardinal de cet ensemble est appelé nombre de Stirling de deuziéme
espéce, et noté S(k,n). Pour chacune de ces relations on a exactement 21(n=1)/2 types possibles, et on obtient
donc la formule

k
[SK(T)] = 2" D28 (k, n) .
n=1

(on verra une autre formule plus bas)
(e) La description des 1-types sur une partie finie permet de voir qu’il y a n + 2™ 1-types sur une partie de



cardinal n.
Pour calculer en général le cardinal de Pensemble des k-types sur A, on utilise le fait que deux (k + 1)-uplets
(x1,...,2541) de G ont le méme type sur A si, et seulement si, tpg((z1,...,25)/A) = tpg((x1,...,21)/A) et
tpg(Tpe1/A Uz, .. ok}) = tpg(Yer1 /AU {y1,...,yx}) 1. On peut vérifier (par récurrence, ot en décrivant
les k-types) que le nombre de k-types sur A ne dépend que de |A| et, si Pon note p(k,n) le nombre de k-types
sur une partie de cardinal n, on obtient

o p(k,0) = 321, 2" D28 (k) 5

e Vn p(l,n) =n+2";

o VkVn p(k+1,n) =p(k,n).p(l,n+ k).
De la troisiéme formule on tire que pour tout & > 1 on a p(k,n) = p(1,n).p(1,n+1)...p(1,n+ k — 1), d’ou
au final la formule suivante, valable pour tout k et tout n > 1 :

k—1
p(k,n) = H (n+i+2"") .
i=0

Remarque. En utilisant le méme type de méthode, on voit que p(k,0) = p(k — 1,0).p(1,k — 1), ce dont on tire

k—1

|Sk(T)| = p(k,0) = [[(n+2") .

n=1

(f) Soit A C G une partie dénombrable. Pour tout B C A, I’ensemble de £(A)-formules & une variable libre
{R(x,¢cq): a € BYU{-R(z,a): a € A\ B} est finiment consistant avec T, et donc (par compacité) consistant
avec T. Par conséquent cet ensemble d’énoncés est contenu dans un 1-type ¢g sur A. Si B et B’ sont distinctes
alors clairement qg # qps, donc on vient de construire une injection de I’ensemble des parties de A dans
SY(A), ce qui prouve bien sir que |SY(A)| > 2%0. Comme A est dénombrable I'autre inégalité est claire
(Vest-elle vraiment ?) et on obtient donc |SY(A)| = 2% pour toute partie dénombrable A C G.

Retour sur cet exercice. L’'unique modéle dénombrable de T' est appelé le graphe aléatoire ; on peut le carac-
tériser (& isomorphisme prés) comme 'unique graphe G dénombrable universel (tout graphe fini - ou méme
dénombrable - est isomorphe a un sous-graphe de G) et ultrahomogéne (tout isomorphisme partiel entre des
sous-graphes finis de G s’étend en un isomorphisme de G tout entier). C’est un exemple de limite de Fraissé
d’une famille de structures finies du premier ordre. Le nom graphe aléatoire vient du fait que ce graphe a
une construction probabiliste ; on peut construire un graphe dont ’ensemble de sommets est N de la facon
suivante : pour toute paire (i,7j) d’entiers distincts on lance (une fois par paire) une piéce de monnaie; on
décide que R(i,j) est vraie si on obtient "‘face"’, fausse sinon. Alors le graphe obtenu est presque stirement
(c’est-a~dire : avec probabilité 1) isomorphe au graphe aléatoire.

Signalons enfin que ce graphe a une réalisation "concréte" (ou plutot, explicite) issue de 'arithmétique : cette
fois I’ensemble de sommets est I’ensemble des nombres premiers congrus & 1 modulo 4, et on met deux tels
entiers distincts p et g en relation si, et seulement si, p est un carré modulo ¢ (ou, de maniére équivalente, ¢
est un carré modulo p...).

Lo’est un bon exercice !



