
Correction de quelques exercices non traités, ou traités trop rapidement, en TD

Exercice III, feuille 8. Soit U un ultrafiltre non ω1 complet sur l’ensemble (nécessairement infini) I ; par
définition on peut trouver des ensembles Ij (j < ω) tels que Ij ∈ U et

⋂
j<ω Ij = ∅ ; on peut supposer que

I0 = I et, quitte à remplacer chaque Ij par
⋂

i≤j Ij , que la suite (Ij) est décroissante pour l’inclusion. De
plus, à cause de l’exercice ci-dessous, on peut supposer que toutes les structures Ai sont infinies. Pour tout
i ∈ I, définissons ni = max{n : i ∈ In}. Alors ni est bien défini pour tout i ∈ I, et pour tout n on voit que
{i ∈ I : ni ≥ n} = In ∈ U .
Construire une telle suite (ni) était le noeud de la preuve ; pour tout i, fixons une injection

fi : P({0, . . . , ni})→ Ai .

A toute partie A ⊂ N on peut alors associer le représentant dans
∏
Ai/U de (fi(A ∩ {0, . . . , ni}))i∈I . Si A et

B sont deux parties distinctes et (par exemple) n ∈ A\B alors pour tout i ∈ In on a fi(A) 6= fi(B), et comme
In ∈ U on voit que les classes de ces deux suites sont distinctes. On vient donc de construire 2ℵ0 éléments de∏

i∈I Ai/U .

Exercice IV, feuille 8. (fait en TD, peut-être trop vite...)
Soit B =

∏
Bi/U , où les Bi sont des structures finies et U est un ultrafiltre.

Si jamais il existe un entier n tel que {i : |Bi| ≤ n} ∈ U , alors B est de cardinal ≤ n (cf. le théorème 6.5 des
notes de cours). Par conséquent dans la suite on peut supposer que pour tout n {i : |Bi| > n} ∈ U .
On va maintenant définir une injection de l’ensemble des parties de N dans B, ce qui prouvera que |B| ≥ 2ℵ0 .
Pour cela, prenons A ⊂ N ; pour tout i il existe un plus grand ni tel que 2ni ≤ |Bi|, autrement dit tel que
P({0, . . . , ni − 1}) s’injecte dans Bi. Fixons alors une injection fi : {0, . . . , ni − 1} → Bi, puis définissons f(A)
comme la classe (dans

∏
Bi/U) de (fi(A ∩ {0, . . . , ni}))i∈I . Il ne nous reste plus qu’à montrer que f est une

injection : soit A,B deux parties distinctes de N et (par exemple) n ∈ A \B. Alors pour tout i tel que ni > n
on a fi(A) 6= fi(B) ; mais commme on est dans le cas où {i ∈ I : ni > n} ∈ U , on voit que f(A) 6= f(B). Par
conséquent f : P(N)→ B est une injection, ce qui finit la preuve.

Exercice VI, feuille 8. Soit T une théorie complète dans un langage dénombrable L telle que |Sn(T )| ≥ ℵ1.
Remarquons déjà que comme L est dénombrable il n’ya que ℵ0 L-formules ; comme un n-type est un ensemble
de formules (à au plus n variables libres) particulier, on voit tout de suite que pour toute théorie dans un
langage dénombrable on a |Sn(T )| ≤ 2ℵ0 .
Essayons maintenant de prouver l’inégalité réciproque (qui est plus intéressante !) ; pour cela, appelons V l’en-
semble formé par les L-formules φ(x1, . . . , xn) qui sont contenues dans au moins ℵ1 n-types distincts, puis
considérons l’ensemble Φ formé par les n-types les que toutes les formules de p sont dans V . Alors on voit que
|Sn(T ) \Φ| ≤ ℵ0 : en effet, il n’y a que ℵ0 L-formules, et une formule qui n’est pas dans V appartient au plus
à ℵ0 types distincts. Par conséquent il y a au plus ℵ0.ℵ0 = ℵ0 types qui contiennent une formule qui n’est pas
dans V , ce qui revient exactement à dire que |Sn(T ) \Φ| ≤ ℵ0. Pour que la suite de la preuve soit plus lisible,
énonçons un lemme intermédiaire.

Lemme. Soit φ(x1, . . . , xn) ∈ V . Il existe une formule χ(x1, . . . , xn) telle que φ(x1, . . . , xn) ∧ χ(x1, . . . , xn) et
φ(x1, . . . , xn) ∧ ¬χ(x1, . . . , xn) appartiennent toutes les deux à V .

Preuve du Lemme. On sait qu’il existe deux n-types p(x1, . . . , xn), q(x1, . . . , xn) ∈ Φ distincts qui contiennent
tous les deux φ(x1, . . . , xn). Soit χ(x1, . . . , xn) telle que χ(x1, . . . , xn) ∈ p(x1, . . . , xn) et ¬χ(x1, . . . , xn) ∈
q(x1, . . . , xn). Alors φ(x1, . . . , xn)∧χ(x1, . . . , xn) ∈ p(x1, . . . , xn), donc comme toutes les formules de p(x1, . . . , xn)
sont dans V on voit que φ(x1, . . . , xn) ∧ χ(x1, . . . , xn) ∈ V ; le même raisonnement (en remplaçant p par q...)
montre que ψ(x1, . . . , xn) ∧ ¬χ(x1, . . . , xn) ∈ V . Ceci conclut la preuve du lemme.

Une fois le lemme prouvé, la preuve s’achève par une dichotomie (on plonge l’ensemble des branches infinies



d’un arbre binaire dans Sn(T )).
On peut utiliser le lemme pour construire une famille (φs)s∈2<ω de L-formules telles que, pour toute suite
binaire s ∈ 2<ω, on ait :

• φs ∈ V
• T ` ∀x1 . . . ∀xn

(
φs(x1, . . . , xn)↔ (φs−0(x1, . . . , xn) ∨ φs−1(x1, . . . , xn)

)
• T ` ∀x1 . . . ∀xn

(
¬
(
φs−0(x1, . . . , xn) ∧ φs−1(x1, . . . , xn)

) )
(On note s− 0 pour la suite obtenue en ajoutant un 0 à la fin de s, de même pour s− 1).
Alors toutes ces formules sont consistantes avec T (puisque V est formé de formules qui sont toutes consistantes
avec T , car contenues dans des types de T ) donc par compacité on voit que pour tout s ∈ 2ω l’ensemble de
formules {φs|n : n ∈ N} est consistant, et donc contenu dans un type ps. La construction assure que si s et t
sont deux suites binaires infinies alors ps et pt sont différents, donc l’application s 7→ ps est une injection de
2ω dans Sn(T ), ce qui achève la démonstration.

Remarque sur le résultat de cet exercice. Si on utilise la topologie naturelle sur l’ensemble des n-types, alors
Sn(T ) est un espace métrique compact ; et un résultat classique de topologie affirme qu’un espace métrique
compact, s’il n’est pas (au plus) dénombrable, est de cardinal 2ℵ0 (c’est par exemple une conséquence du
théorème de Cantor-Bendixson). Plus généralement, un espace métrique complet non dénombrable est néces-
sairement de cardinal supérieur à 2ℵ0 . On voit ici que, même si l’hypothèse du continu n’a pas de raison d’être
vraie pour des ensembles quelconques, elle est par contre vérifiée pour des ensembles "réguliers" (compacts,
complets, boréliens dans un métrique complet séparable...) ; c’est là un des points de départ de la théorie
descriptive des ensembles, qui s’intéresse en particulier à la structure des ensembles "définissables" dans les
espaces métriques complets séparables.

Exercice VII, feuille 8. Cet exercice est assez similaire à l’exercice précédent, donc je vais me contenter
de donner un schéma de preuve (à charge pour vous de rédiger la preuve en détail, comme entraînement et
pour vérifier que vous avez compris la démonstration de l’exercice précédent) : supposons par l’absurde qu’il
existe une formule φ(x1, . . . , xn) consistante avec T et qui n’est contenue dans aucun n-type principal. Soit
p(x1, . . . , xn) un type qui contient φ(x1, . . . , xn) ; il existe une formule ψ(x1, . . . , xn) de p(x1, . . . , xn) qui n’est
pas une conséquence de φ(x1, . . . , xn) (puisque p n’est pas principal) et donc φ(x1, . . . , xn) ∧ ψ(x1, . . . , xn)
et φ(x1, . . . , xn) ∧ ¬ψ(x1, . . . , xn) sont toutes deux consistantes avec T . De plus, ces deux formules ne sont
contenues dans aucun n-type principal (puisque sinon φ(x1, . . . , xn), qui est une conséquence de chacune de
ces deux formules, serait aussi contenue dans un type principal).
Mais alors on peut faire une construction similaire à celle de l’exercice précédent, et obtenir une famille
(φs)s∈2<ω de L-formules consistantes avec T telles que, pour toute suite binaire finie s :
• φs n’est contenue dans aucun type principal
• T ` ∀x1 . . . ∀xn

(
φs−0(x1, . . . , xn)→ φs(x1, . . . , xn)

)
• T `

(
∀x1 . . . ∀xn

(
φs−1(x1, . . . , xn)→ φs(x1, . . . , xn)

)
• T ` ∀x1 . . . ∀xn

(
¬ (φs−0(x1, . . . , xn) ∧ φs−1(x1, . . . , xn)

))
.

A partir de là, vous devriez être à même de conclure en vous inspirant de l’exercice précédent.

Exercice IV, feuille 9
(a) Une axiomatisation de la théorie T est obtenue en considérant les énoncés suivants :

• ∀x∀y
((
R(x, y)↔ R(y, x)

)
∧
(
¬R(x, x)

))
(R est symétrique et irréflexive)

• ∀x1 . . . ∀xn∀y1 . . . ∀ym

(∧
i≤n,j≤m xi 6= yj

)
→
(
∃z
((∧

1≤i≤nR(xi, z)
)
∧ (
∧

1≤i≤m ¬R(x, ym)
)))

(On rajoute un énoncé pour toute paire (n,m) d’entiers naturels ; cet ensemble infini d’énoncés exprime le
fait que, si X1 et X2 sont deux ensembles finis disjoints contenus dans un modèle de T , il exsiste un élément
z de ce modèle qui est relié à tous les éléments de X1 et à aucun élément de X2).

(b) SoitM un modèle de T , et A ⊂M une partie finie. Alors il existe z ∈M tel queM |= R[(z, a)] pour tout
a ∈ A, en particulier z n’appartient pas à A (la relation R est irréflexive) ; la partie A étant quelconque, ceci



prouve que M est infini.
Soient maintenantA et B deux modèles dénombrables de T ; on va appliquer la méthode de va-et-vient, résumée
par le lemme suivant :
Lemme. Soient (a1, . . . , an) ∈ An et (b1, . . . , bn) ∈ Bn tels que pour tout (i, j) on ait

A |= R[(ai, aj ])⇔ B |= R[(bi, bj)] .

Alors pour tout a ∈ A il existe b ∈ B tel que (a1, . . . , an, a) et (b1, . . . , bn, b) satisfont les mêmes conditions.
Je laisse en exercice le soin de démontrer ce lemme, qui ne devrait pas être trop difficile.

Une fois ce lemme démontré, on peut facilement construire un isomorphisme entre deux modèles dénombrables
de T en utilisant la méthode de va-et-vient ; rappelons que pour cela on fixe deux énumérations (an) et (bn)
de A et B, puis on construit deux suites (xn) ∈ AN et (yn) ∈ BN telles que
∀n x2n = an

∀n y2n+1 = bn
∀i, j A |= R[(xi, xj)]⇔ B |= R[(yi, yj)].

Alors l’application f : A → B définie par f(xi) = yi est un isomorphisme de A sur B. Donc tous les modèles
dénombrables de T sont isomorphes.
On déduit immédiatement que T est complète du fait que T est ℵ0-catégorique (corollaire 6.2.2 des notes de
cours).
(c) A cause du critère de va-et-vient établi en (b), on sait que deux éléments x et y ont même type sur A si,
et seulement si on a, pour tout a dans A et tout i, G |= R[(x, a)]⇔ G |= R[(y, a)]. Par conséquent, un 1-type
p(x) sur A est entièrement déterminé par
• Un sous-ensemble de A (l’ensemble des éléments avec qui x est en relation R) ; ce sont les types possibles
pour les éléments qui n’appartiennent pas à A,
ou bien
• la donnée d’un élément de A (chaque élément de a détermine un unique type principal sur a, l’ensemble
des conséquences de la formule x = ca).

L’axiomatisation de T permet de vérifier facilement que tous ces 1-types sont réalisés dans tous les modèles
de T , autrement dit que tous les modèles de T sont ω-saturés.
(d) Ici on va décrire les k-types. Toujours grâce du critère de va-et-vient établi en (b), on voit que tout k-
type sur T est en fait équivalent à un k-type sans quantificateurs (et donc T a la théorie d’élimination des
quantificateurs) ; mais alors un k-type est en fait obtenu comme l’ensemble des conséquences (dans T ) d’une
formule φ(x1, . . . , xk) de la forme∧

i∼j

(xi = xj) ∧
∧
i 6∼j

(xi 6= xj) ∧
∧

(i,j)6∈B

(R(xi, xj)) ∧
∧

(i,j)∈B

(¬R(xi, xj)),

où B est symétrique, contient {(i, i) : 1 ≤ i ≤ k}, et ∼ est une relation d’équivalence sur {1, . . . , k} (∼ "dit"
quels éléments sont égaux). En particulier, tous les k-types sont principaux ; d’autre part il est facile de vérifier
que chaque formule ci-dessus est consistante avec T .
Pour compter les k-types, on commence par compter ceux où xi 6= xj pour tout j (autrement dit, où ∼ est
l’égalité) : on voit qu’il y en a autant que de graphes distincts dont l’ensemble de sommets est {1, . . . , n}, et
ce nombre est égal (pour n ≥ 1) à |{(i, j) : 1 ≤ i < j ≤ k}| (pour chacune de ces paires il faut choisir si on met
une arête ou pas entre le i-ème sommet et le j-ième sommet). Il y a donc 2k(k−1)/2.
En général, pour tout n ≤ k il faut considérer l’ensemble des k-types tels qu’il y a seulement n éléments
distincts. L’ensemble de relations d’équivalence qui doit être pris en compte est celui des relations d’équivalence
à exactement n classes sur {1, . . . , k} ; le cardinal de cet ensemble est appelé nombre de Stirling de deuxième
espèce, et noté S(k, n). Pour chacune de ces relations on a exactement 2n(n−1)/2 types possibles, et on obtient
donc la formule

|Sk(T )| =
k∑

n=1

2n(n−1)/2S(k, n) .

(on verra une autre formule plus bas)
(e) La description des 1-types sur une partie finie permet de voir qu’il y a n + 2n 1-types sur une partie de



cardinal n.
Pour calculer en général le cardinal de l’ensemble des k-types sur A, on utilise le fait que deux (k + 1)-uplets
(x1, . . . , xk+1) de G ont le même type sur A si, et seulement si, tpG((x1, . . . , xk)/A) = tpG((x1, . . . , xk)/A) et
tpG(xk+1/A ∪ {x1, . . . , xk}) = tpG(yk+1/A ∪ {y1, . . . , yk}) 1. On peut vérifier (par récurrence, où en décrivant
les k-types) que le nombre de k-types sur A ne dépend que de |A| et, si l’on note p(k, n) le nombre de k-types
sur une partie de cardinal n, on obtient
• p(k, 0) =

∑k
n=1 2k(k−1)/2S(k, n) ;

• ∀n p(1, n) = n+ 2n ;
• ∀k ∀n p(k + 1, n) = p(k, n).p(1, n+ k).

De la troisième formule on tire que pour tout k ≥ 1 on a p(k, n) = p(1, n).p(1, n + 1) . . . p(1, n + k − 1), d’où
au final la formule suivante, valable pour tout k et tout n ≥ 1 :

p(k, n) =
k−1∏
i=0

(
n+ i+ 2n+i

)
.

Remarque. En utilisant le même type de méthode, on voit que p(k, 0) = p(k − 1, 0).p(1, k − 1), ce dont on tire

|Sk(T )| = p(k, 0) =
k−1∏
n=1

(n+ 2n) .

(f) Soit A ⊂ G une partie dénombrable. Pour tout B ⊂ A, l’ensemble de L(A)-formules à une variable libre
{R(x, ca) : a ∈ B} ∪ {¬R(x, a) : a ∈ A \B} est finiment consistant avec T , et donc (par compacité) consistant
avec T . Par conséquent cet ensemble d’énoncés est contenu dans un 1-type qB sur A. Si B et B′ sont distinctes
alors clairement qB 6= qB′ , donc on vient de construire une injection de l’ensemble des parties de A dans
SGk (A), ce qui prouve bien sûr que |SGk (A)| ≥ 2ℵ0 . Comme A est dénombrable l’autre inégalité est claire
(l’est-elle vraiment ?) et on obtient donc |SGk (A)| = 2ℵ0 pour toute partie dénombrable A ⊂ G.

Retour sur cet exercice. L’unique modèle dénombrable de T est appelé le graphe aléatoire ; on peut le carac-
tériser (à isomorphisme près) comme l’unique graphe G dénombrable universel (tout graphe fini - ou même
dénombrable - est isomorphe à un sous-graphe de G) et ultrahomogène (tout isomorphisme partiel entre des
sous-graphes finis de G s’étend en un isomorphisme de G tout entier). C’est un exemple de limite de Fraïssé
d’une famille de structures finies du premier ordre. Le nom graphe aléatoire vient du fait que ce graphe à
une construction probabiliste ; on peut construire un graphe dont l’ensemble de sommets est N de la façon
suivante : pour toute paire (i, j) d’entiers distincts on lance (une fois par paire) une pièce de monnaie ; on
décide que R(i, j) est vraie si on obtient "‘face"’, fausse sinon. Alors le graphe obtenu est presque sûrement
(c’est-à-dire : avec probabilité 1) isomorphe au graphe aléatoire.
Signalons enfin que ce graphe a une réalisation "concrète" (ou plutôt, explicite) issue de l’arithmétique : cette
fois l’ensemble de sommets est l’ensemble des nombres premiers congrus à 1 modulo 4, et on met deux tels
entiers distincts p et q en relation si, et seulement si, p est un carré modulo q (où, de manière équivalente, q
est un carré modulo p...).

1c’est un bon exercice !


